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A new formulation of the renormalization-group in real space, suitable for quantum spin sys-
I

tems is proposed. The method is applied to the two-dimensional spin- —X- Y model on a triangu-
2

lar lattice, the renormalization-group transformation being evaluated up to second order in an ap-

propriate cumulanf expansion. To first order an unstable fixed point of the transformation is

found, corresponding to a critical temperature and critical indices in satisfactory qualitative agree-

ment with present high-temperature series expansion estimates. In the second-order calculation,

however, this fixed point disappears, thus throwing some doubt on the conventional picture of cri-

ticality as furnished by high-temperature series. The free energy of the model is also computed.
For relatively small values of the nearest-neighbor coupling it is in good agreement with that

found by high-temperature series analysis.

In recent years considerable efforts have been made
to obtain definite evidence for a phase transition in

two-dimentional X- Y and Heisenberg spin models.
Mermin and Wagner' rigorously excluded the onset

of long-range order in these systems at any nonzero
temperature. Nonetheless, numerical analysis of
high-temperature series expansions led Stanley and
Kaplan' to suggest the possible existence of a nonzero
pseudo-Curie temperature at which the magnetic sus-
ceptibility could become infinite in two-dimensional
Heisenberg systems with spin larger than —,.

While the Stanley-Kaplan transition seems now un-

likely for two-dimensional Heisenberg models with

any spin, extensive work on high-temperature series
expansions shows strong evidence for a divergent sus-
ceptibility at a finite T,, both in classical' and quantum'
two-dimensional X- Y models.

Quite recently some attempts have been made to
study the X- Y system by means of renormalization-
group techniques in the manner of Niemeijer and van
Leeuwen (NvL)."

Such an approach, carried out to the second order in

a cumulant expansion, allo~ed Lublin' to predict a

phase transition in the classical (spin ~) X- Y model
with nearest-neighbor interactions. The existence of a

single nontrivial Axed point for the renormalization
transformation both in the first- and second-order cal-
culations leads to a conventional description of the
critical behavior of the system, with power-law singu-
larities in the thermodynamic quantities.

Even if the critical coupling and critical indices es-
timated in this way are in qualitative agreement with

those predicted on the basis of some high-temperature
series investigations, ' the conventional description of
criticality emerging from Lublin's analysis is not com-
patible with the Kosterlitz and Thouless phenomeno-
logical picture of the transition in the classical X- Y

system. According to this picture a more complicated
fixed-point structure should probably be associated
with the transition.

The situation is even less clear as far as the quan-
tum X- Y models are concerned, as, for example, the
spin- —, system.

In fact, the renorrnalization-group approaches for-
mulated up to now for these systems have not yet
given easily interpretable results concerning the ex-
istence and nature of the conjectured transition.

Rogiers and Dekeyser' and Betts and Plischke"
have recently introduced a generalization of the NvL
method to treat quantum spin systems, and applied it

to the plane triangular lattice using both 3-spin' and
7-spin" cells, and to the square lattice using 5-spin
cells. "

While in the first-order calculations no fixed point
can be found, a nontrivial fixed point appears in the
second order for the triangular system. Even in this
case, ho~ever, the corresponding critical indices and
the nearest-neighbor critical couplings are found to be
in disagreement with the high-temperature series esti-
mates. ' "

Moreover, some of the critical exponents take un-

physical values (g (0, 6 ( 0). In our opinion, a pos-
sible reason for the last failure can be the fact that in

those methods the definition of the transformation
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implies an explicit choice of basis in order to preserve
the symmetry of the system in spin space.

Such a choice, with the consequence of a possible
spurious basis dependence of the results, is not avoid-
able if one defines the block-spin transformation ac-
cording to a standard partial-trace procedure, as in the
above cases.

In this note we present a quantum-renormalization-
group approach in real space, in which the block-spin
Hamiltonian is constructed according to a completely
different procedure, ' which in principle allows for a
larger freedom in the definition of the transformation
and avoids the difficulty of the basis dependence.

Let our system be described by the reduced Hamil-
tonian

H =—PK = $ (S,"„5,", + S.' S„')
K[

(rn, n)

where the sum is over nearest-neighbor pairs on a
two-dimensiona) triangular lattice, the Pauli-spin- —,

operators Sn (i =x,y, z) are normalized to unity, and

)3 = 1/k Ts, as usual.
Triangular cells are constructed on the lattice, each

cell containing three spins Sl „where I = 1, 2, 3 denotes
the spin in the cell and a is a cell index. The state of
the system is described as a superposition of products
of eigenstates of single-spin operators, e.g. , Sl- . In
order to define the renormalization transformation we

introduce a new set of spin- —, operators o-„, each asso-

ciated with one of the cells.
A weight operator P((o }, (S )) is then defined act-

ing on the product space of S and X, the spaces of
eigenstates of site-spin and cell-spin operators, respec-
tively.

P is chosen in such a way as to satisfy

operator sgng, S/ with the same eigenvalue.
The operator may thus be written as

f

P((a }, (S })= g —l + a. "sgn $S,"
a l

+ o-'sgn XS/'
l

+ rr sgn XSj
l

(5)

and of a cumulant expansion" to obtain from (4)

H'((o. )) =ln Trse 'P+ (W)

+ —,
' (()V') —(lV)') +

~here

W = V+ —[V,Ha] —
—, [2Ha+ V, [ V Ha]l + .

~here the product is extended over all cells in the lat-
tice.

Of course there is a large freedom in the choice of
P; in our opinion the above form provides a natural
generalization of the majority rule of NvL'; manifestly
it guarantees the Hermiticity of H'(( a. }).

Actual calculations were performed using a cumu-
lant expansion along the lines well established in the
literature. '

After dividing the Hamiltonian into two parts Hp
and V, containing all intracell and intercell interac-
tions, respectively, use is made of Baker-Campbell-
Hausdorf" formula to write

~H(tS)) ~ P ' ~8'(tS))o (', s)&

Tr, P((a. }, (S )) = I, (2) The average of a spin operator 3 is defined accord-
ing to

where the last equality defines the rcnormalized Ham-
iltonian through the relation

"""'=T ""' 'P([ }, [S)) (4)

where Tr' indicates the trace in X space and I, is the
identity operator in S space.

Because of (2) we can write the partition function of
the system as

Z =Trse"" '=Tr Tr e"s"'P((a. ), (S})
H'(' })

Ki' = 2K]f]2 {10)

with

Tr e ' '

A ((S })P((o), (S))
e ('s})

P((~), (S))

The above perturbative algorithm may need to be
properly symmetrized in order to yield Hermitian con-
tributions to 0' at any given order in K]."

To first order in K] the transformation for the
nearest-neighbor coupling turns out to be of the form

The weight operator we use is obtained as a quantum
extension of the one first introduced by NvL to treat
Ising systems. Namely, the operator is such that it
selects a configuration in X space in which the o, th cell
is in an eigenstate of one of the components
cr,', (i =x,y, z) with eigenvalue +1, if the configuration
of the site spins in S space is an eigenstate of the

—K[ 2K]
f~ =(3+4e '+Se ')/6zo

where

-K[ 2K]zp=1+2e '+e

Transformation (10) exhibits a fixed point at

(12)
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Kz'= —,Ki'f((7fg+1 —Sf') +fi'Kg

K3 =2K1 (f3 fi )

L1' = K)2 (2fi —f4 ) +2f4Lt

~here f1 is defined in (11), and

2KI
fz = (1 —e )/2zo, ,

2K
1

-K1
f3 = 2(e ' —e ')/3zo

f4=(3+2e '+e ~)/3zo

(13)

(14)

(15)

(16)

K2 K3 and L 1 are the couplings of the new interac-
tions generated by the transformation. K2 and K3

0.7463
Linearization of (10) at K1 yields a thermal eigen-

value A. T =1.487, ~hereas the magnetic eigenvalue,
computed along the usual lines ' by considering a
perturbation term of the form /t X, S/ in H, has

been found to be A.~=2.557.
In this approximation the critical nearest-neighbor

coupling is in fairly good agreement with the
corresponding quantity as calculated by Betts et al. 5 by
means of high-temperature expansions, and given as
K„.=0.667»

The critical indices, deduced from the above values
of A. T and A, ~, by assuming the validity of scaling rela-
tions, are all physical and are reported in Table I. A

comparison is made with those predicted by Betts" on
the basis of scaling by assuming y - 1.5 and 5 = 5, as
estimated from numerical analysis of high-temperature
series expansions.

So far, the renormalization group approach seems
thus to confirm the existence of a phase transition as-
sociated with a single nontrivial fixed point of the
transformation, with scaling properties as deduced
from series analysis.

A dramatic change in the overall picture is, howev-
er, obtained by going further in the cumulant expan-
sion. In fact, in the second-order calculation one gets
the renorrnalization transformation

K, '=2Ktf( +4K~zftfz+2K('f((f)+1 —2f)')

+f1 (3K2+2K3)

refer to X- Y interactions of the form (1) between
second and third neighbors, respectively, while L1
describes an Ising-like interaction of the form

, L~ —X& „t S-S„between nearest neighbors.

Contrary to what one would expect, the transforma-
tion (13) does not exhibit any nontrivial fixed point:
the nontrivial fixed point of the first-order approxima-
tion disappears when turning to the next, hopefully
better, approximation.

This drastic change of situation is hardly conceivable
if, as usually, we think of a transition associated to a

single nontrivial fixed point of the renormalization
transformation, as the high-temperature series analysis
seems to suggest. If this were the case, we would ex-
pect some stability of the results, at least in the lowest
orders of the cumulant expansion.

To visualize the discrepancy between our second-
order results and those of high-temperature series, we

have evaluated the dirnensionless free energy per spin,
f, for the nearest-neighbor model, by iterating the
spin-independent part of the transformed Hamiltonian
along the lines well established in the literature. "9

The results are plotted in Fig. 1, ~here they are
compared with those obtained from an eleven-term
high-temperature expansion. "

%e see that for relatively low values of K1, K1 &0.4,
the two curves agree, while, for higher values of the
nearest-neighbor coupling, sizable discrepancies are
present, our curve being lower than the series curve.

The absence of a nontrivial fixed point in the
second-order calculation could be an indication of the
fact that the transition in the spin- —, X- Y system is of
a more complicated nature than that suggested by
series expansions and by the above first-order calcula-
tions.

For the classical spin-~ J-)' system there are now
indications that the transition may in fact be con-
sistent with the Kosterlitz and Thouless picture. '

According to this picture, in which vortex excita-
tions play an essential role, the temperature singulari-
ties, when approaching T,. from above, should be of
an exponential character, rather than simple power
laws.

If a transition of the Kosterlitz and Thouless type is

taking place also in the quantum-spin- —, system, then

TABLE l. Comparison between the critical indices estimated in the present work and

those predicted by Betts (Ref. 13) on the basis of high-temperature series analysis.

Present work
First order

Second order
196 5 88 2 36 -076 1 38 058

High-temperature

series
expansions

3

2

15

8

1

4

9
8

2

3
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it is sensible that a relatively standard treatment, such
as ours, is not adequate to describe correctly the criti-
cal behavior. Of course' further investigations are
needed to clarify this point.

We believe that our scheme, in particular our choice
for P, is useful to describe conventional phase transi-
tiohs in quantum spin systems. To improve our
understanding of the critical behavior in the spin-

1 X- Y model, however, we need a deeper knowledge

of its low-temperature and ground-state properties, so
that a more specific renormalization transformation
may be defined according to the general scheme out-
lined above.

Finally one more comment on the expression (5)
for P seems appropriate.

In the second-order calculation presented above the
renormalized Hamiltonian H'((a }) has the same
symmetry properties as H([S }). In higher-order ap-
proximations, however, H'([cr }) will loose the rota-
tional invariance around the z axis in spin space exhi-
bited by (1), since Pin Eq. (5) has not its fullsym-
metry.

To avoid this difhculty it is natural to modify the
definition of the weight operator in the following way:

f-ln 2
.8

.6.

O .2 .4 .6 K)

FIG. 1. Dimensionless free energy per spin f (minus

ln2). Upper curve: from our second-order transformation.

Lower curve: from the eleven-term high-temperature expan-

sion; after Rogiers and Betts (Ref. 12).

p 2n'
1P([~ }, [S }) jl d$ g —1+(cr„"cos$+a. 'sing) sgn QSI „

2m' a I

+ (o'cosP —a "sing) sgnxS +cr'sgn /Sf
I I

Up to second order (5') is completely equivalent to
(5), and in general it preserves the symmetry proper-
ties of the original Hamiltonian at any order in the cu-
mulant expansion.

Another possibility is that of replacing the sign
operators with operators having the transformation
properties of the components of a vector in spin
space, thus preserving automatically the symmetry at
any order. The most simple and obvious example is

that of a P operator which induces a linear block-spin
transformation.

Work is in progress along these lines to generalize
the approach presented above and to investigate the
critical properties of other quantum spin systems such
as, for example, the Heisenberg model.
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