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The ground-slate energies of (i) an ideal two-dimensional electron gas, (ii) a quasi-two-

dimensional electron system resembling electrons trapped on a liquid-helium surface, (iii) a quasi-

two-dimensional electron system resembling inversion layers of the Si(100)-Si02 system, and (iv)

an ideal three-din~ensional electron gas are obtained by numerically evaluating the sum of "ring di-

agram" contributions to the corre)ation energies for all magnetizations and a wide range of elec-

tron densities. The transition from nonmagnetic to ferromagnetic state is abrupt in (i) and (ii)

and gradual in (iii) and (iv), It is argued that these transitions may occur in quasi-two-

dimensional systems without violating the theorems on the nonexistence of long-range order in

two dimensions because of the presence of weak long-range forces in such systems.

INTRODUCTION

Electrons placed on the surface of liquid helium and
electrons attracted to a silicon-silicon dioxide interface
by an electric field are two examples of quasi-two-
dimensional electron systems. Recent experimental
and theoretical work on these systems indicate that an

appropriately modified two-dimensional electron-gas
model may describe the essential physics of these sys-
tems. ' Properties of the unmodified two-dimensional
electron gas are also of interest since they provide a

simple standard for comparison.
A particularly appealing aspect of these two-

dimensional systems is that the electron density can
be experimentally varied. As the density is lowered,
interactions become relatively important, and one
might expect to see the effects of these interactions in

the form of new states of the system and phase transi-
tions between these states. It is difficult to calculate
what electronic configuration will be stable at a given
density, and a great variety of states is conceivable.
For example, it has been suggested that electrons at
the Si-Si02 interface [metal-oxide-semiconductor
field-efi'ect transistor (MOSFET)] may be localized in

the sense of Anderson or Wigner, ' or that the elec-
trons form a spin-density wave, a charge-density
wave, or a more complicated ordering. ~ The primary
purpose of this paper is to present a detailed investiga-
tion of the stability of the paramagnetic and ferromag-
netic electron ordering in two-dime'nsional and quasi-
two-dimensional systems. '

The ferromagnetic state is investigated in part be-
cause we believe that ferromagnetic order is a real

possibility for some two-dimensional systems. Anoth-
er reason for considering ferromagnetism lies in the re-

lative simplicity of the problem which allows us to per-
form better calculations with fewer ad hoc parameters.
Because we have not investigated all possible electron-
ic configurations, we cannot honestly insist that the
electrons will ferromagnetically order if our calcula-
tions so indicate. %e can, however, be assured that
the paramagnetic state is unstable if the ferromagnetic
state has lo~er energy.

Of course, our calculations are not exact and some
approximations are unavoidable. A particularly
di%cult problem is associated with the question of
long-range order. Our calculations do not consider the
possibility of ferromagnetic order over short distances
with long-range disorder. There are, in fact, some im-

portant theorems' ' which would appear to rule out
the existence of long-range order in simple two-
dimensional systems. %'e will show, however, that
these theorems do not apply in real systems which
have long-range interactions and asymmetries.

Our conclusion is that magnetic order is possible in

two-dimensional electronic systems, and this order
may well be observable at presently attainable electron
densities. A complimentary approach to the MOSFET
system has been taken by Falicov and Kelly' ~here
Fermi-surface geometry was considered in greater de-
tail but many-body effects were parametrized into an
effective Hartree-Fock theory. Our calculation pro-
vides a quantitative estimate of the parameters which
should appear in such a theory.

In Sec. II, we give arguments to show how the exi-
istence of long-range order in two dimensions can
come about via weak but long-range interparticle in-

teractions. In Sec. III, we consider in detail the calcu-
lations of the ground-state energy of the quasidirnen-
sional system. This is further divided into subsections
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in order to discuss (a) an ideal two-dimensional sys-
tem; (b) a quasi-two-dimensional system which
resembles electrons on liquid helium; (c) the Si(100)-
Si02 system, and (d) an ideal three-dimensional sys-
tem. The last one is of interest as an interesting sys-
tem to compare the results of the quasi-two-
dimensional systems. In Sec. IV, we summarize our
results.

corresponds to all spins up.
The classical equation of motion for spin S, is

dS,' =B,~x S,
dI'

(2)

Assuming the x-z plane io be the plane in which our
two-dimensional (2-9) array of spins lie, for the
square-lattice geometry, we have for the motion of S„

II. LONG-RANGE ORDER IN T%P DIMENSIONS

Before proceeding to calculations of the relative sta-
bility of ferromagnetism, ii is important to consider in

what sense ferromagnetism may exist in two dimen-
sions. Theorems of Mermin and Wagner, ' Hamilton, '
and Walker and Ruijgroks suggest that there cannot be
long-range order. Of course it is still possible that
some phase transition could exist even for these sys-
tems where the theorems are applicable. More impor-
tantly, the thcorems are based on some restrictive as-
sumptions which are often invalid in real systems.
For example, these theorems require that forces be
short ranged and isotropic in at least two dimensions.
Real electrons exhibit weak but long-range dipolc-
dipole interactions which are not insignificant. For ex-
ample, these forces give rise to the distinction
between "external" (H) and "internal" (8 = H +4+M)
magnetic fields. If the approximation of replacing H
by B and ignoring dipole-dipole interaction is made
and applied to the Mermin-%'agner arguments, one
can no longer exclude the possibility of long-range fer-
romagnetic order. (That such a replacement of P by
8 in the theory of electron gas occurs in principle has
recently been demonstrated by Holstein, Norton and
Pincus. )' One can, however, suggest that the transi-
tion temperature should be decreased by a factor in-

volving the logarithm of the ratio of the exchange in-

teraction to the dipole-dipole interaction. Another ar-

gument against ferromagnetic order in two dimensions
is that the calculated number of spin ~aves at any
nonzero temperature is infinite. However, if there is

any anisotropy in the system due to spin-orbit forces,
the spin-wave energy no longer vanishes for very long
wavelengths and this divergence disappears. Dipole-
dipole forces will also change the long wavelength
spin-wave dispersion so that the number of spin waves
is finite.

Here wc will give a simple classical derivation of
this result for a system of spins on a square lattice in-

teracting via the usual Heisenberg exchange along
with weak dipolar interactions

H,„;„,=—J $S S +D
&~0

x X[S, S, —3(S, n„)(S; n„)]
((~)

~here n„ is the unit vector along the line joining the
sites i and j. Assume J && D so that the ground state

B,[i = (J —D) ( Sp+ S3+S4+ Sg)

+3D[z{S zz+S4 z)+x(S3 x+S5 x)]; {3)

for the case under consideration,

$ s $A I[k 0 —ml)
z~

"
& Il0

(4)

where u, v &(S. Let

~ =-2S(J-D), B =6DS .

Then, from (2)—(5) we obtain for small k,

W '( ,
' k4) + W—B( —,

' k') [1+( —,
' k„') ] + a'( —,

'
A,') .

Thus, for small k, cu = k instead of k', and the
number of spin waves is finite.

One might also argue that surface imperfections
should destroy long-range order in some two-
dimensional systems. In fact, Imry and Ma' and
Sham and Patton" have shown for systems with a
continuous (rotational) symmetry and short-range
forces that an arbitrarily small random magnetic field
will destroy the long-range order. Again, we argue
that these results must be treated with caution in real
systems with anisotropy and residual long-range forces.

In our view, the question of the existence of two-

dimensional ferromagnetism (or any such magnetic
order) in real itinerant electron systems is a two-part
problem. There is the question at gross level of the
relative energetics of ferromagnetic and paramagnetic
orders and the delicate question of existence of long-
range order in two-dimensional systems. In consider-
ing these two problems, one may need io perform
different but seemingly inconsistent model calcula-
tions. For example, possible long-range order in two
dimensions is related to the questions of rotational
symmetry and long-range forces. Anisotropy fields
and dipole-dipole interactions are present in real sys-
tems and these effects cannot be ignored since they
may stabilize thc ferromagnetism. On the otQcr hand,
any quantitative calculation of the relative energy of
itinerant electron ferromagnetic and paramagnetic
states is dominated by a comparison of kinetic and
Coulomb energies. The very small dipole-dipole and
anisotropy energies would appear to be insigni /can(ly
small in these calculations and as such they are ig-
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nored. Strictly speaking, then, when our calculations
indicate ferromagnetism, we are really implying that
the Coulomb interactions with exchange effects lead to
significant short-range ferromagnetic order, and at
sufficiently low temperatures the weak long-range
forces should change this short-range ferromagnetic
order into a real two-dimensional ferromagnetic one.

One could argue that the forces which allow long-
range order in two dimensions are so weak that fer-
romagnetisrn might occur only at very low tempera-
tures. However, these weak forces can become
effectively strong when there is significant short-range
order so that one can consider the interaction of
"blocks" of spins rather than individual electrons.
When the "blocks" become large the dipole-dipole and
anisotropy interactions become more important and
may lead to ferromagnetic order, at a relatively high
temperature.

III. STABILITY OF FERROMAGNETISM

The method we use to estimate relative ferromag-
netic stability in two dimensions is based on the nu-
merical calculations of the sum of ring diagrams. At
high densities these ring diagrams give the correct
high-density Gell-Mann —Brueckner series expansion"
of the ground-state energy. At low densities, Iwata"
has shown that in three dimensions these same di-
agrams yield a good low-density expansion of the
ground-state energy. We, thus, have some confidence
that an exact evaluation of the ring-diagram contribu-
tion to the ground-state energy of an electron gas may
be a good interpolation formula for the entire range of
electron densities, and the evaluation of these ener-
gies can give good estimates concerning the stability of
ferromagnetism. The results presented here are, in
part, an extension of previous works where the first
few terms in the high-density expansion of the
ground-state energy of the two-dimensional electron
gas were presented, '4 and the ferromagnetic stability
in the two-dimensional electron gas was investigated
in the Hartree-Fock approximation. '

There have been other calculations of the stability
of ferromagnetisrn related to the ring-diagram approxi-
mation, ' ' but in three dimensions. These earlier
results do not treat the two-dimensional case as we do.
Jonson' has only recently published such calculations
only for the paramagnetic case for two- and quasi-
two-dimensional systems. In addition, we have ob-
tained the pair correlation function at zero separation
from the calculated ground-state energy. The correla-
tion function reveals a weakness in the ring-diagram
approximation at low densities.

The ring-diagram approximation to the ground-state
energy of the quasi-two-dimensional electron gas
depends on the electron density and magnetization.
The density is specified in terms of the dirnensionless
quantity r, ' given by

with K being an average dielectric constant. For the
MOSFET K is the average of the Si02 and Si dielectric
constants. The effective mass m" is measured in units
of the free-electron mass. The magnetization of the
system is given as

(- (ni —n 2)/(n t + n i) (9)

where ni (nt) specifies the density of spin-up (down)
electrons.

The leading order term in the high-density expan-
sion of the electron-gas energy is simply the kinetic
energy of the noninteracting electrons

E„;„=(1+(2)/n, r,'. (10)

where all energies are expressed in renormalized Ryd-
berg units (=13.6 eV x m'/n ).

The next term in the energy expansion is the ex-
change energy which can be written

' I /2

E,„= — 2, XJ)d k d2k' V(k —k')
n, . 4m2r, . ' „

x f„(k)f„(k') . (11)

All wave vectors here and in subsequent formulas are
scaled by the Fermi momentum kr. Here f„(k) is the
zero-temperature Fermi function for the spin cr elec-
tron with wave vector k and K is the dielectric con-
stant of the material in which the electrons reside.
The quantity V(q) is the Fourier transform of an
effective electron-electron interaction. In general,
V(q) diverges with 1/~q ~

as q goes to zero, and for
the simple two-dimensional electron gas

(12a)

More generally, V(q) depends on the material and its
form is given here, which takes into account the finite
extent of the electron wave function and image
effects'"

V(q) = q '( K/n, ,)F(q) (12b)

F(q) = —'(1+q/b) ' + —, (1+q/b) '

+ —,
' (1+q/b) '+ g(1+q/b)- (12c)

r, ' = (2/n, )' . (kraa')

where kz is the Fermi wave vector, and n, , is the band
degeneracy. For electrons on the surface of helium,
and the simple electron gas np =1, but for the MOS-
FET there is more than one piece of Fermi surface
and n, . may be four or six depending on crystallo-
graphic orientation. The quantity ao is the effective
Bohr radius of the system

ao'=(n/m )aa .
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with

g = («,, —«;„}/(«,.„.+ «;„} (12d)

arises from the image forces. x,, and N;;„are the
dielectric constants of the semiconductor and insula-
tor, respectively. The finite extent of the wave func-
tion is parametrizcd by b and it is chosen to be

b/kF =[12.2' ' x n, '(.m3'/m')

x («/« .) r, '(—,", + i))r„,Q/it/)]'~' (12e)

x [1 —f„()k+q'[)l[(1 —f„([k'+q])]

V(q) V(iq+k+k'[)
q2+q (k+k')

The last contribution to the total energy E, comes
from the sum of all higher-order ring diagrams,

F.„- Jt du J d'q ~q~[ln(1+x) —x]
s p

(14)

where

x = [( «/«) r, '/err]n, "V(q) [Q„t(u. ) + Q„t(u)] (15)

and

Q, „(k) =f k'k f dtf„(k)t) —f„))kkql)l

xexp[iruq —(r((q'/2+q k)]

N&„ is the number of electrons in the depletion )ayer
and m3' is the e6'ective mass of the electron in the
transverse direction. For Hc, N&„=0.

The next contribution to the energy E2 comes from
the lowest-order ring diagram. In two dimensions this
term is not divergent as it is in three dimensions,

(, ) («/«)'n,
(2m)'

xx J)d'k d'k'd'q f„(k)f„(k')

A. Ideal two-dimensional system

In an ideal two-dimensional system, the system
parameters are very simple. All the dielectric con-
stants and the cffcctivc masses arc unity. There is no
valley degeneracy (np -1). The energy is measured in

Rydbcrgs and the dimensionless parameter r, " is
denoted by r, and is given by Eq. (7) with ao' re-
placed by ao. Moreover, V(q} is given by (12a).
Then Eq'"' becomes independent of magnetization and
density and is a mere constant. ' The dependences of
Q„(u) [=—Q„,„(u) with &=01 on q for various values of
u are shown in Fig. 1. Clearly the sharp cutoff ap-
proximation used in the high-density approximation'4

Q, (u) =2wR (u} independent of q, can lead to
significant errors and, in fact, we find substantially
diFerent results for calculations performed with and
without this approximation.

In Fig. 2, the ground-state energy of the two-
dimensional paramagnetic and ferromagnetic states are
displayed. Thc insert in the lower right shows
difference in these energies. Thus, according to this
calculation, the transition to the ferromagnetic state
occurs abruptly at r, = 5.4, which is a considerably
larger value than the result obtained in Hartree-Fock
approximation (r,"F=2) or by making the high-
density approximation (r, ~ = 2.3)."

By investigating the energy of partially magnetized
states, we have found that these states are never

stable. Thus, the transition to the ferromagnetic state
occurs abruptly at r, = 5.4 in an ideal two-dimensional
system.

S. Quasi-two-dimensional system- Electrons

on liquid helium

This model is similar to the ideal system in that the
dielectric constants ~;„=1.053, x,, =1, and effective
masses are unity and there is no valley degeneracy.
The only new effect here is the finite extent of the

00

The calculation of the energy and its magnetization
dependence consist of numerically evaluating the sum

E =E„,„+E,„+E[-}+E„„, ,

40—
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for various systems. %c have omitted herc a contri-
bution to the energy arising from the finite extent of
the electronic wave function which in the scheme em-

ployed here does not depend on (. %e shall discuss
these separately now.

FIG. 1. Function 0~(u) in two dimensions as a function

of q with u held constant. individual curves are labeled by

the value of u. These curves should be compared with the
sharp cutoff approximation Q~(u) = 2n. R (u).
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FIG. 2. Two-dimensional electron gas energy per particle

as a function of the density parameter r, . Curves labeled F
and P correspond to the energies of the saturated ferromag-

netic and the paramagentic states. The dotted curve on the

lower right is the energy diN'erence between the paramagnetic

and ferromagnetic states (hE), and the vertical scale for this

curve is on the right-hand side.

wave function introduced via the parameter b which is
taken here to be given by Eq. (12e) with N„„=O.
The energies are again measured in Rydbergs and the
dimensionless parameter is rg as in A. In a sense, this
calculation is the same as the one described in A but
with the only new feature of the "finite-thickness"
effect incorporated here. Our numerical results are
similar to those of A: abrupt transition to the fer-
romagnetic state (f =1) at r, =11. The effect of finite
thickness is thus to move the transition to a lower
density.

E2'"' now depends on r, and $ but the numerical
calculations are not accurate enough to estimate its
effect.

FlG. 3. Magnetization dependence of the energy per parti-

cle of the quasi- 2-D electron gas system in Si(100)-Si02.
Curves are labeled by values of r,. "and are for

Nd, p
7.6 & 10' %m . Note the occurrence of possible partial

magnetization for r,. 'near 12 and the fully magnetized state

occurs only after r, "exceeds 13.

Here we use the dimensionless parameter r, '. The
calculation of the total energy as a function of r,. "for
g -0 with Nd„7.6 & 10'0/cm' has been done by Jon-
son' without the second-order exchange term and our
numerical results agree with his. In Fig. 3, we have
displayed a calculation of the energy as a function of f
for representative values of r, ' for
Nd„-7.6 & 10'%m'. In contrast to cases A and B„
we find the transition to be gradual. For
N )4.6 x IO'%mt we have $ 0 state„3.99 x 10'o
& N & 4.6 X 10'%m' states with 0 & ( & I
have a minima and for N & 3.99 x 10'0/cm', )=1 is
the ground state. For Nd„7.6 x 10"/cm', similar
results are obtained but states with 0 & g & 1 now oc-
cur for 5.6 x 10'0 & N & 8.3 x 10'%m' and (- I for
N & 5.6 ~ IO'%m'. These values of'electron densities
in the inversion layer are in the experimental range.

C. Quasi-two-dimensional system-Sl(100)-8102 system D. Ideal three-dimensional system

We have done the numerical calculation for two
representative values" of Nd„, 7.6 &10' and
7.6 & 10"/cm'. The parameters used here are

m3'-0 9, m' 0 19, n„, 2

K = 11.8, x;„3.8
42.5 meV; ao' 4lao

(18)

For the sake of completeness and for providing an
interesting comparison with the cases considered
above, we have also calculated the magnetic properties
of an ideal three-dimensional (3-D) electron gas. It
may be pointed out that previous calculations' '~ are
not as complete as those presented here. Our results
are given in Fig. 4. Misawa's" high-density approxi-
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paper, as well as Ref. 2.} have to be considered as
speculative, at best. The pair-correlation function for
the ideal system can be calculated by diA'erentiating

formally the total energy with respect to the Coulomb
potential, V(q} and from a ground-state energy calcu-
lation of Sec. III A, the pair correlation function at
zero separation was calculated. Our results are found
to be unphysical for r, ~2.4 and they point to a weak-
ness in the ring-diagram approximation. How serious
this weakness is in terms of errors in the ground-state
energy is not clear from this calculation. In three di-

mensions, a similar calculation of the pair correlation
function at zero separation was found to become
negative for r & 2.6.

The results of our ground-state energy calculation
are summarized in Table I. It appears from this that

ferromagnetism may be possible in the Si(100)-SiO&
system in a realistic density region of the inversion
layer.
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