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Using the Hartree-Fock approximation, the half-filled Hubbard model is investigated for the
fce lattice at absolute zero. The results are quite different from those obtained for the simple cu-
bic lattice arising from the nonsymmetric band structure of the nonalternate lattice. It is found
that antiferromagnetism appears only when the intra-atomic Coulomb interaction U exceeds a crit-
ical value. This magnetic phase transition from a paramagnetic to an antiferromagnetically or-
dered phase proves to be of first order. With increasing U, a metal-insulator transition occurs,
caused by band separation. The gap collapse at the first critical U causes jumps in the curves of
conductivity and spin susceptibility. Both quantities are calculated as functions of U with the aid of
a generalized density of states. Investigating criteria for the onset of magnetism and constructing
a magnetic phase diagram for variable band occupation, the antiferromagnetic state is found to be
stable with respect to ferromagnetic ordering in the region of finite U only for electron densities
within 0.27 < n, < 1.21. In the strong coupling limit U — oo this stability criterion must be
modified and is shown to coincide with the predictions of Nagaoka’s rigorous investigations of an
almost half-filled band. In the case where the band is almost filled, a first-order paramagnetic to
ferromagnetic transition is obtained at a finite value of U, whereas the critical curve defining the
antiferromagnetic phase boundary diverges as n, approaches n, =2. For a band which is almost
vacant, the competitive phase boundaries both yield unphysically large values of U. In the latter
case there is no magnetic phase transition in a region of experimentally observable values of U at

all.

I. INTRODUCTION

Theoretical analysis of the Hubbard Hamiltonian for
the case of a half-filled band has been concerned with
the possible existence of an insulator to metal transi-
tion.'=3 In particular the Hartree-Fock approxima-
tion*~'® (HFA) has been used to investigate this ques-
tion. However, in most of the works only alternate
lattices are considered. These are lattices which can
support a simple 4B sublattice structure where all
nearest neighbors of the A4 sites belong to the B sub-
lattice and vice versa. Examples for such lattices are
the linear chain, the two-dimensional square lattice,
the simple cubic (sc) and bcc lattice. Moreover in all
works only nearest-neighbor (NN) hopping is taken
into account. It has been found that in this case of
AB lattice and NN hopping the condition for antifer-
romagnetism in the HFA is isomorphic to the gap
equation of the superconductivity theory. Thus all al-
ternate lattices, with NN hopping only, exhibit insulat-
ing antiferromagnetism for any nonvanishing U,
where U denotes the value of the interaction strength.
Note that this result is consistent with the exact solu-
tion of the model!' for the linear chain. The reason
for this behavior has been widely discussed by Penn®
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and Brandow.!? The point is that there exists a wave
vector Q characterizing the extra periodicity due to the
antiferromagnetic ordering. 6 is defined by the condi-
tion that exp(iQ - 1) =—1 for all translations ¢ which
transform one sublattice into the other. For the sc
lattice one has Q =w(1,1,1) and therefore the band
energies satisfy the perfect nesting condition

e(k+Q) =—e(k). Recently, it has been shown'? that
for the linear chain, where nearest- and next-nearest-
neighbor (NNN) hopping is taken into account, new
results arise when the hopping strength to the next-
nearest neighbors exceeds a criticai value. In this case
a phase transition from a paramagnetic to an antifer-
romagnetic state occurs, which proves to be of first
order and is combined with a collapse in the energy
gap. Moreover, a metal-insulator transition is found
which, however, occurs at a smaller value of U and
lies in a region of phase coexistence. These phenome-
na of a gap collapse and the separation of the magnet-
ic and electric phase transitions are due to the non-
symmetric band energies and the corresponding densi-
ty of states. Thus we expect that investigations of the
linear chain with nearest- and next-nearest-neighbor
hopping already anticipate general features of nonal-
ternate lattices.

2221



2222 D. GRENSING, E. MARSCH, AND W.-H. STEEB 17

In this paper we study the ground state of the Hub-
bard model within the HFA for the fcc lattice, a typi-
cal representative of non-AB lattices. At absolute
zero, on increasing U we find the successive phases:
(i) nonmagnetic metal, (ii) antiferromagnetic (AFM)
metal, and (iii) AFM insulator. Due to the nonsym-
metric band structure, the perfect nesting condition no
longer holds. Thus one expects, as for the linear
chain with NNN hopping, the AFM order to set in at
a nonzero Coulomb interaction U and the metal-
insulator transition to be separated distinctly from this
magnetic transition. It should be emphasized that the
chemical potential is no longer given by u = %Uas in
the case for the alternate lattice, and must be deter-
mined by a self-consistent equation.

In Sec. II the magnetic structure and the appropriate
6 are determined. This means factorizing the Hamil-
tonian to obtain a one-particle operator. With the aid
of the Green’s-function technique, the ground-state
energy, chemical potential, gap equation, magnetiza-
tion, conductivity, and electron susceptibility are
evaluated in Sec. III. Following this, the general
features of a combined electronic density of states,
defined for numerical purpose in the AFM phase, are
discussed.

Section IV is devoted to the numerical treatment
and the discussion of the results. In particular, since
phase transitions of first and second order occur, the
stability of the solutions has to be examined, finally
resulting in a phase diagram for all possible values of
the electron density #,.

II. DETERMINATION OF THE MAGNETIC
CONFIGURATION

In this section we set up the Gorkov equations for
the electron Green’s functions of a system described
by the grand canonical Hubbard Hamiltonian with an
applied external field ¢,

H=731le(k)—p—{sgn(a)led cp, e}

ko
ke

- t N ¢ —
+UN' 3 ol ChCi—g C%1
e(k) denotes the band energy, and N is the number
of lattice sites. Choosing basic vectors in the fcc lat-
tice, which point from a cube corner to the nearest
face centers, the band energy assumes the form

e(k) =—2J[cosk, +cos(k, — k) +cosk,
+cos(k, — k,) +cosk, +cos(k, — k)] , (2)

and the components of the wave number K satisfy
—r <k;<m (j=xyz2).

The Hamiltonian will be treated in a manner used
commonly in the theory of superconductivity. This
treatment is equivalent to a Hartree-Fock approxima-

tion within Green’s-function technique. The interac-

tion operator is approximated in Eq. (1) by a bilinear

form, i.e., it is replaced by the one-particle Hamiltoni-
an

Heﬁ=_2 [e(k) —;Z—ngn(o-)]c%”c;‘,

k, o

1 - .t
+_2(A,ck+o’lckl+A, Ck1Ck+O,I)
k.

+3 \ll,_,,c{-”c;;a’,,—%Eo : (3)

k., o

This Hamiltonian can serve as well as a test Hamil-
tonian when using Bogoliubov’s variational principle,
where the quantities we describe below would act as
variational parameters. u and { are no longer the true
chemical potential and magnetic field, but are now
defined by pw=p — %ne U and [ ={+ Us., respectively.
n, denotes the number of electrons and s. the z com-
ponent of spin per atom. The quantities ¥,;, ¥,|, A,
stand for

V,=UN"'3 (ctcevig,) o )
k
A,=UN" 2«?*6,'{_}1) . (5)
k

Here the angular brackets denote an ensemble average
with the density operator

exp(—BH.q)/Trexp(—BH.q)

Finally since we have counted the potential energy
twice in this way, we substract the term %—EO, where

E, is one-half of the total ensemble-averaged potential
energy.

Thus far, the wave numbers 6, are completely at
our disposal. In the sc lattice, this set of vectors
reduces to the single one Q= (1,1, 1) obeying the
condition of commensurability, i.e., exp(i2Q-&) =1,
where n denotes a lattice vector.

In order to specify the set {Q,} in the fcc lattice, we
require that the elements of this set satisfy the condi-
tion of commensurability and, together with the unit
element 27(1,1,1) =0, form a group, ensuring that
the corresponding system of equations of motion for
the Green’s functions becomes closed and solvable.
The smallest group of symmetrically built vectors Q, is
the set Q,=#(0,1,1), Q,==(1,0,1), Q;==(1,1,0).
These wave numbers point from a minimum to a
maximum of the band energy e(k) [a property they
share with the corresponding wave number
Q==(1,1,1) in the sc lattice] and are just the quanti-
ties one would fall upon when investigating low-lying
excitations.'* This procedure is quite similar to that
carried out in the case of the sc lattice and yielding the
vector Q= (1,1, 1).° However, using this set
{Q1, Q) Q;}, the subsequent program which consists
of the solution of the equations of motion for the
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Green'’s functions and the evaluation of the thermo-
dynamic quantities of the system, proves to be too
ambitious. Therefore we insist only on the condition
of commensurability and reduce the set of vectors Q,
to the single vector Q,. Thus we try to copy the anti-
ferromagnetic ordering of alternant lattices, the
difference being that the band energy no longer
satisfies the perfect nesting condition and the magneti-
zation whose Fourier components are A, ¥, ¥, no
longer exhibits the symmetry of the lattice.

In this situation it seems to be advisable to try a
new simplification and to set ¥, =0 which is another
step towards an impressed 4B structure that can be
seen from the reduced effective Hamiltonian

Her= 3 [e(k) - i—Csgn(lel e,
ko

lEo . 6)

— teo— = )—
ck1+A*c—k-lck+Ql‘) >

1
+ ; (Ac K431
K
Transforming back into the Wannier representation,
the interaction term can be written in a more compact
way,

Hip=YH (@) -S(7) , @)

where H (7) is the magnetic field
H (1) =2A(exp(iQ-1),0,0,)

and S (7) denotes the spin operator with the x com-
ponent

S (ﬁ)x=%(cg.rc;l+c%cm ,
etc. Thus the interaction term of Eq. (7) is the same
as the Hamiltonian of a spin-system in a magnetic
field shown in Fig. 1. The property and obvious
disadvantage of this field is the fact that every lattice
point is surrounded by eight next neighbors with an
opposite direction and four next neighbors with the
same direction of the magnetic field H. This magnetic
configuration with four wrong next neighbors is not
completely adapted to the symmetry of the lattice.
Since a decrease of the number of adjacent parallel
spins increases the possibility of hopping and thus
lowers the kinetic energy of the system, the chosen
configuration obviously is not the energetically most
favored one. But this incomplete antiferromagnetic
ordering cannot be improved as long as the y and z
components of the magnetic field H (n) are assumed
to be zero (¥;=¥,;=0). Nevertheless we do not ex-
pect the energy differences of the various antifer-
romagnetic states to be of such an importance as is the
general aspect of magnetic ordering itself.

III. BASIC HARTREE-FOCK (HF) EQUATIONS

We now use the Green’s-function technique'’ and
define the Green’s function
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FIG. 1. Magnetic configuration representing the interac-
tion term of the reduced effective Haniiltonian.

Go(K.G. 7. 7) =—(T.leg, (Do, ()

where @ is an element of the set {6,6.]. T, denotes
the time-ordering operator and the time-dependent
operators are defined as in the Heisenberg picture. As
a final step in this procedure we differentiate with
respect to 7 and introduce the Fourier representation

Grnr‘(E! a' T, T, ) = (th‘l 2 Gtrlr'(Ev a! wll)
xexpl—iw,(r—17)] ,

where the choice w, =(2n +1)/Bk guarantees the
proper Fermi statistics. Then the equations of motion
are found to be a pair of simple algebraic equations
which must be solved along with the self-consistency
conditions

A=—UN"'3 G (K, Q7 —7'=0+) , 8)
k
N,=3 (c%”c;,) =3G,.(k,0,7—7=0-) . )
k k

Substituting the results of the equations of motion
into the self-consistency conditions (8) and (9) yields
the gap equation and a formula which determines the
chemical potential

(=)' f(E.(k))

= , (10)
E (k)

A=AUQN)T" 3,
k
=1,

2

v
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No=1 3 r&,&)
2 %
v=l,

2

ey OUEENCD T
PSS E(K)

v=1,2

(11)

E.(K) are the particle energies
ELz(E) ="‘;l: +€+(E) + {AZ + [E_(E) _Z]Z}I/Z B
(12)

e*(K) =+ [e(k) te(kK+Q)] ,

E (K) stands for the square-root term in Eq. (12), and
f denotes the Fermi function. Utilizing the gap equa-
tion, we now perform the integration in the formula
for the thermodynamic potential expressed in terms of
the interaction Hamiltonian

U
a-0o-f L om), (13)

where A is the coupling strength and , is the ther-
modynamic potential of the noninteracting system.
We only quote the result of this well-known pro-
cedure:

Q0

Lo udai-s)+ L
N ey

x 3In l2cosh[%BE,,(E)]} . (14)
kv

It should be noted that for finite temperature Eq. (14)
is only physically reasonable in the weak-coupling re-
gion.'® The thermodynamic potential shows an analytic
form already known from previous calculations in AB
lattices.® Thus, at first sight, the nonalternant fcc lat-
tice discussed in this paper, seems to exhibit the same
thermodynamic properties in the scope of the per-
formed approximations. But the main difference ar-
ises from the nonsymmetric band structure and the
quite different behavior of the chemical potential,
which will be discussed later. Moreover, the modified
band energy e*(k) does not vanish and € (k) no
longer reduces to the original band energy e(k).
Consequently, we cannot use the usual density of
states g (€) for numerical calculations,'” but are forced
to convert momentum integrals into energy integrals
with the help of the combined density of states first
introduced by Brandt'®:

glxy)=N"38(x—e(kNd(y —e (k) , (15)
k
which we discuss in Appendix A.

The determination of the thermodynamic proper-
ties, following from the grand potential of Eq. (14),

will be done in a subsequent paper. Here we will in-
vestigate only the ground-state energy which can be
deduced from Eq. (14) letting 8 — oo,

E _
WO =2s, +(n, —1) + U(5n2 —s2)
A? o
+—-QN) ' I |E(K)] . (16)
v o
The ground-state energy has to be determined with

the help of the self-consistency equations. At abso-
lute zero, these have the simple form

(—1)¥sgnlE,(K)]

1=—U@N)"! — , 17
27T E®m an
n,—1=—Q2N)"' Y sgnlE. (k)] , (18)
k. v
s:=(@N)"S (=1)"sgnlE,( k_?][e"(k) -l
Yov E(k)
(19)

We want to emphasize that Eq. (16) is a good approxi-
mation over the whole range of the coupling strength
U/J for n,=1. By some simple modifications of the
results of Grensing and Koppe'® one can also show
Egs. (16)—(19) to be valid in the strong-coupling re-
gion U/J >>1. One must certainly admit that this
behavior seems to be mathematically singular because
finite temperatures and n, # 1 lead to a quite different
situation as outlined by the above cited authors and in
a recent paper of Heise and Jelitto.'® The gap equa-
tion (17) always allows the trivial solution A =0.
Demanding that A =0 be the only solution leads to
the inequality

v <y 3 8O —p (20)
k e (k)

This condition can also be obtained from an expansion
of the ground-state energy in powers of A and the re-
quirement that the coefficient of A2 be negative. Both
procedures yield the same critical value of U, indicat-
ing a second order phase transition into a magnetically
ordered phase. The aforementioned criterion can be
derived independently from the singularity of the stag-
gered susceptibility.!® It has to be emphasized that Eq.
(20) is an essential feature of all HF theories and is
quite insensitive to the choice of a more-sophisticated
magnetic-interaction term [Eq. (7)] being possibly
better adapted to the lattice structure of the fcc lattice.

In the case of alternant lattices and a half-filled
band, the right-hand side of the corresponding ine-
quality becomes infinite, the consequence being that
the system is conducting only for U =0 and insulating
and antiferromagnetic for any nonzero U. In the case
of the fcc lattice, the right-hand side of Eq. (20)
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proves to be finite for any & and thus there exists a
critical value U > 0 for the onset of antiferromagne-
tism for any n,, 0 =<n, <2. This can be seen when
performing two integrations on the right-hand side of

1
U"=Lf( dx In

1+i)/2

L+(1—x)"

x|

K is the complete elliptic integral of the second kind,
and the moduli k, k are defined by

K=[1+p)?-4x1/0 -p)?
and
K==+ +DU/(x2~p)

For the remaining values of x the corresponding
formulae are of the same structure and we can im-
mediately deduce that the right-hand side of Eq. (20)
converges on the whole interval —1 < g =<3 which ex-
hausts all possible values of the electron density n,.
The resulting U.(&) curve is shown in Fig. 2 as line a.
Having constructed this line in a phase diagram, it is
necessary to check whether this onset of antifer-
romagnetism has a real physical meaning. The au-
thors'? have already encountered a problem of this
kind in the case of the linear Hubbard chain with a
nonsymmetric band structure. HF calculations in this
simplified model indicate the possibility of a gap col-
lapse. This transition is apparently of first order and
the critical value at which the transition takes place is
smaller than the value U, which belongs to the second
order transition. In order to investigate the possibility
of a gap collapse and to determine the order of the ac-
tual transition in the fcc lattice, we have to compute
explicitly the gap parameter A and the ground-state
energy as functions of the interaction strength U.
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FIG. 2. Second-order phase boundaries above which the
antiferromagnetic state (line @) and the ferromagnetic state
(line b) are stable against the paramagnetic phase.

—_ A+w/2
]K(k)/(x2 o T
T

Eq. (20). Representative for the whole range of possi-
ble values of the chemical potential we only quote the
result for —1 <u <0, & and U measured in units of
4J

-l-ﬂll;l’.‘J]mk)/(x -5 .

@n

g

We postpone this numerical treatment and first dis-
cuss spin and particle susceptibilities X, « ds./d{ and
Xp « dn./du. Both represent second derivatives of the
thermodynamic potential and are known to be sensi-
tive indicators of phase transitions in a physical sys-
tem. The second quantity is connected with the elec-
tric behavior of the system which means it is porpor-
tional to the conductivity. By implicit differentiation
of the self-consistency equations one obtains

dS: _ Xo

a0 - 21-Ux (22)
and

dn. __2GG@ 23)

dp 2+ UG(R)

Here we have defined

2 —\2
_L RY) A f(E,) _ BJ(EA) e"—g
X"'N%()IE] E 3E, I E ]

(24)

In this expression it is understood that the quantities
E,, E, € are functions of k. G (@) stands for

af(E,)

—_(')—ET—- s 295)

G(@=N"'3()
k.l'

which reduces to the density of states of the two-band
system at T =0. In this connection, it is interesting to
note that X, is the tight-binding analog of a suscepti-
bility used by Fedders and Martin in a paper about
itinerant antiferromagnetism.?

The denominator in Eq. (23) reflects the explicit
dependence of n, on the effective potential & and
plays a minor role. It cannot cause a singularity in X,
because the function G (&) is always positive. On the
other hand the negative sign in the denominator of
Eq. (22) is responsible for the singularity at
U~'=g (@) in the paramagnetic (PM) phase at absolute
zero indicating the onset of ferromagnetism (Stoner cri-
terion). Here g (€) is the density of states'’ belonging
to the band energy (k) in Eq. (2).

Some additional remarks to Eq. (23) are necessary.
Standard procedures in transport theory?' lead to the
conductivity
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1 3f (E,) 2
g W ; (—)‘—arT(E,.)

kv

1
3

9,

dak

. (26)

where some scattering mechanism described by an
energy-dependent relaxation time has been assumed.
In order to treat the problem exactly one has to know
7(E) and to evaluate the function?

1 IaE,.(E)

2
WE)Y=N"'"S8(E—-E,(K)= — , 27
’ ~E 31 9k ]

k, v

being obviously smoother than the density of states
because no Van Hove singularities arise. This sug-
gests a simplifying approximation. We take 7(E) and
v2(E) out of the sum over k as an averaged quantity
denoted by (v?),, and the conductivity assumes the
simple form o o« (7v?),, dn./d iz, where the particle
susceptibility belonging to the effective chemical po-
tential & has been used. Calculating this quantity at
absolute zero yields

dn,

—~=N"35(E (k) . (28)
du o

This is the density of states of the two-band system.
In order to decide whether or not the system is con-
ducting it is sufficient to investigate Eq. (23). It pro-
vides as well as Eq. (26) information about the con-
ducting properties within the scope of our approxima-
tion and can be obtained simply as the second deriva-
tive of the great thermodynamic potential with respect
to u from Eq. (14). In Sec. IV the numerical results
are presented.

IV. NUMERICAL RESULTS AND DISCUSSION

The computation of the AFM ground-state energy
given by Eq. (16) requires a numerical solution of the
two simultaneous equations (17) and (18) which
specify the order parameter A and the chemical poten-
tial u for fixed values of n, and U, respectively. In
Fig. 3 the gap parameter as a function of U is depicted
only in the representative case of a half-filled band,
since for all values of n,, the A(U) curves exhibit the
same characteristic shape. We find that a nonzero gap
appears first at a certain critical value of the interac-
tion strength U!'. Note that this quantity is identical
with the solution of Eq. (20) where the equality sign
holds. Thus the zero of the A(U) curve corresponds
to a point of the second-order phase boundary marked
as line a in Fig. 2. But the initial increase of the gap
with a negative derivative indicates that the physical
system will not undergo a second-order phase transi-
tion but continues to maintain the AFM ordering as
the interaction strength decreases beyond UM. Ac-
cordingly the PM phase sets in discontinuously at a
smaller value of U.

20

T

A2
AN

05}
/

urz2)

FIG. 3. Gap parameter A plotted vs the interaction
strength U, both in units of 2/ in the case n =1. The point
marked as a circle indicates the metal-insulator (M-/) transi-
tion at Ay, _; =4J above which A -~—;—U for large U (dashed

line).

In order to locate this critical U} where the super-
script I now indicates a transition of first order, we use
a well-known procedure which amounts to a compari-
son of energies in different phases but which requires
ultimately knowledge of A(U) only. We suppose that
the occurence of a negative dA/dU and the sharp
bend in the profile of A(U), which is found to occur
at A =pu, result from the implicit assumption that the
system is homogeneous and the possibility of a coex-
istence of two phases has not been considered. This
suggests performing a Maxwell construction, quite in
accordance with the situation in the Vander Waals
gas.

As a first step we define the extensive quantity
c=N"! 2, {n,yn,), which measures the concentration
of doubly occupied sites and is thermodynamically
conjugated to the interaction constant U. Exploiting
the gap equation (17), the averaged quantity defining
¢ is readily calculated to give the equation of state

n2 2
c=-;{/-‘2(n,1n,l)=T——A——s:2 . (29)
Further, we introduce the Legendre-transformated
ground-state energy

G(c)=EyN-Uc , (30)

which depends explicitly on the particlelike quantities
n,, s., and ¢. From this one immediately obtains the
Maxwell relation U =—8G /dc. The necessary condi-
tion for the two phases to be in equilibrium is the

equality of the internal energies Eo(U)/N and of the
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intensive variable U. We thus obtain the equilibrium
condition which reads in terms of the function G,

Gl—Gz=U¢l((‘2—C|) B (31)

which becomes, through use of the Maxwell relation
mentioned above,

flz dc U(c) =UMcy—cy) . (32)

Thus it is shown that the equal area construction
known as Maxwell’s rule is a convenient procedure to
localize, in a diagram of conjugated variables, the
phase transition of first order. At this point, two re-
marks have to be made. First, it should be noted that
the above considerations apply also, with A set equal
to zero, to the ferromagnetic case s, = 0, which will be
dealt with at the end of this section. Second, it is to
be emphasized that, in making the Maxwell construc-
tion, it was necessary to use portions of the A(U)
curve we declared to be unphysical. Now we are able
to show that these portions represent regions of nega-
tive "compressibility" for dA/dU < 0 is equivalent to
dc/dU > 0 due to Eq. (29) and this describes the un-
physical state where the number of doubly occupied
sites diminishes with decreasing interaction strength
U.

Let us now focus our attention again on the AFM
case in a half-filled band. The Maxwell construction
yields the numerical value U!=5.9J of the critical in-
teraction strength which is only slightly smaller than
the second-order value U!l. As mentioned above, the
calculations of the gap A requires a simultaneous
determination of the chemical potential &. Thus it is
obvious to discuss both quantities together. In the
paramagnetic state (A =0), the chemical potential is
found to be constant and assumes the numerical value
/2J =0.46 as shown in Fig. 4. As soon as U reaches

-
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-

o~
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0 1 2 3 4 5
u/s2J

FIG. 4. Chemical potential &= — U in units of 2J

plotted against the interaction strength U/2J for n,=1. The
discontinuity at U/2J =2.95 indicates a first-order phase tran-
sition and is a result of a Maxwell construction.

the region of two coexisting phases, the function
m(U) is expected to display the same unphysical
behavior as A(U). Therefore, depicting z(U) in Fig.
4, we have already used the result of the Maxwell
construction, and, thus, the discontinuous jump of u
occurs at the critical U! at which the gap suffers a col-
lapse. The discontinuous bandsplitting, a decreasing
of band overlap with increasing U and, finally, a com-
plete band separation govern the further behavior of
. We notice that for values greater than the critical
U which indicates the total separation of bands, the
chemical potential is found to be identically zero quite
in accordance with the behavior of & in the sc lattice
where the magnetic and the metal-insulator transitions
are shown to merge at U =0.

With known values of A and g the ground-state en-
ergy E, is easily calculated. The resulting Eo(U)
curve is shown in Fig. 5. The critical point where the
AFM ground state leaves the PM line, is marked by a
circle. It should be noted that the discontinuity of the
derivative of Eo(U) at U/ is so weak, that a look at
the profile of E¢(U) in Fig. 5 cannot yield any infor-
mation about the order of the phase transition.

In view of the fact that the actual magnetic transi-
tion is found to be of first order, line a in Fig. 2
seems to be no reliable phase boundary any longer.
But the situation at n, =1 described above indicates
that the exact first-order phase transition nearly coin-
cides with the irrelevant second-order transition. The
determination of the exact line over the whole range
—3 < p =<1 is laborious and tedious, because each
point requires an equal area construction. Carrying
out this procedure at some representative values of
finally yields the result that indeed the two curves
nearly merge. This fact recovers the relevance of line
a and justifies the use of second-order boundaries also

-15 — L n L "

FIG. 5. Ground-state energy per lattice site £¢/N2J in
the AFM case (solid line) at n, =1 compared to the FM case
(broken line), both plotted against U/2J. Line PM indicates
the paramagnetic state and the points marked by circles indi-
cate the phase transitions of first order.
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in order to investigate the possible appearance of fer-
romagnetism.

Before embarking on this program, some remarks
concerning the shape of line a have to be made. In
contrast o the analogous phase diagrams in 4B lat-
tices, given by Penn® and Florencio and Chao,?’ the
diagram at hand is not symmetric due to the band en-
ergies of Eq. (2) and the resulting nonsymmetric den-
sity of states. The line a exhibits a peak at w=0.

This is a feature being common to the sc and fcc lat-
tice, the only difference being that in the alternant lat-
tice this peak is more pronounced and reaches the
abscissa due to the coincidence of the Fermi surface
and the magnetic phase boundary for a band occupa-
tion n, =1.5 This coincidence which results in a singu-
larity of the right-hand side of inequality (20) is des-
troyed as soon as NNN hopping has been taken into
account in an 4B lattice or the band structure be-
comes nonsymmetric as in the case of the fcc lattice.
The rudimentary spike in the present phase diagram
appears, like its analog in an 4B lattice, at the surface
e(k) = =0 but the corresponding electron density is
now n,=0.78. The nonvanishing minimum value of
U, at the peak of the phase boundary a reflects the
property of the fcc lattice that the onset of AF order-
ing needs a finite coupling constant for any value of
n,.
At p=+1 and mw=-3 the critical U tends to infinity
which can easily be seen from Eq. (20),

! 2 —
U =f—| dx f_) dy O —x jz)g(x.y) , (33)

expressed in terms of the combined density of states
[Eq. (15)]. In the first case the step function © causes
no restriction for the integration, and symmetry con-
siderations yield a vanishing integral; in the second
case the integrand of Eq. (33) is identically zero.

Let us now discuss the second line b in Fig. 2. It is
the phase boundary between a ferromagnetic and
paramagnetic phase, and has been calculated using the
Stoner criterion

UM@) =1/g(m) . 34)

Of course, the use of this criterion implies that the
resulting line b is a second-order phase boundary.
But, looking at Fig. 6 which represents the magnetiza-
tion s. as a function of U in the case of a half-filled
band, we recognize that the magnetic transition is ap-
parently of first order because of the collapse of the
order parameter. Investigating the magnetization for
electron densities n, # 1, one finds the same situa-
tion. This means the system itself realizes a Maxwell
construction and the ferromagnetic phase sets in
discontinuously at a critical U defined by Eq. (34).
Bearing in mind that both lines in Fig. 2 must now
be reinterpreted as phase boundaries of first order,
one might expect from the phase diagram that in the

05

urs2lJ

FIG. 6. Magnetization per lattice site s. vs the interaction
strength U/2J in the case n, =1.

region —1.04 < /4J <0.42, among the possible mag-
netic states, the ferromagnetic one is never the state
of lowest energy. We test this assumption by an actu-
al energy comparison. This has been displayed in the
representative case of a half-filled band in Fig. 5, re-
vealing unambiguously the AFM phase to be the
stable one. This situation is found throughout the in-
terval of u, where the AFM line lies markedly below
the FM line b, unless the repulsive potential U be-
comes very large. The extreme strong-coupling limit
requires a special investigation. A discussion of how
the stability criterion must be modified is given in Ap-
pendix B. There it is shown that in the particular case
of an almost half-filled band our simple model exhi-
bits ferromagnetism for n, > 1 and a ground state
which is no longer ferromagnetic as soon as 7, <1
completely in accord with the predictions of Nagaoka’s
rigorous investigations in the limiting case U — 00.2
The two magnetic phase boundaries cross each oth-
er at @/4J =—1.04 and z/4J =0.42 belonging to the
electron density n, =0.27 and n, =1.21, respectively.
In the vicinity of these intersection points a very accu-
rate calculation of the corresponding ground-state en-
ergies has to be performed in order to decide which
kind of magnetism is favored. This possibly reveals
additional magnetic transitions. But in the limiting
cases of a nearly empty or nearly full band we can im-
mediately deduce, without a comparison of energies,
that line a, representing the onset of AFM, becomes
meaningless. In the case of a nearly filled band
(n, —2), it is seen that the additional energy which
has to be afforded in order to establish the ferromag-
netic (FM) state, is overcompensated by the reduction
of repulsive energy between opposite spins, entailing
the stability of the FM phase against AFM and PM
beyond line 4. Finally, when the band is almost emp-
ty, we see that only the paramagnetic state exists for
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not too large values of U/2J.

In Fig. 7 the particle susceptibility dn,/d u is shown
as a function of U/2J. As has been discussed above
this quantity describes the electric behavior of our sys-
tem. Three successive regions are obtained: A metal-
lic one combined with paramagnetism, an antifer-
romagnetic metal—which could be better called a sem-
imetal, because this second phase is characterized by
band overlapping—and finally with further increasing
U an antiferromagnetic insulator. The discontinuity at
U/ of the order parameter A entails a jump in the par-
ticle susceptibility and decreases abruptly the conduc-
tivity. The successive semimetal region is character-
ized by both bands being partially occupied. Clearly,
turning on the "magnetic field" A lifts the twofold spin
degeneracy.

Due to Eq. (12), there exist for each k vector two
energy values separated by at least 2A. But despite
this gap, in certain regions of the Brillouin zone a shift
from one band to the other is possible with an ap-
propriate translation vector Q depending on k and
satisfying the equation E,(k) = E,(k +Q). This al-
lowed band-changing at the same energy value just
represents the mechanism which is responsible for re-
taining metallic properties. In order to account for the
decreasing of the conductivity with increasing U > U/
we want to make the point, that the analog to the me-
tallic Fermi surface (k) —z =0 is now the two sur-
faces in the Brillouin zone defined by E,(k) =0,
E,(K) =0. Obviously these regions are smaller than
the Fermi surface available for conductivity in the me-
tallic paramagnetic state. They diminish with increas-
ing A and vanish at Uy_; (M-I denotes the metal-
insulator transition) where band-separation produces
an insulating phase, and dn,/d u falls off to zero.

To understand this transition to a totally insulating
AFM phase, we consider the band structure El,z(i)
of Eq. (12) again. The condition that the bands cease
to overlap may be expressed by the equation

u/2J

FIG. 7. Particle susceptibility describing the conducting
properties in the PM phase (U/2J < 2.95) and the AFM
phase (U/2J > 2.95) for a half-filled band. The zero at
U/2J =4.56 corresponds to the gap parameter A, _, =4J.

E\ in= E3max, Where E| ., denotes the bottom of the
upper and £, the top of the lower band. The cal-
culation of this condition is elementary. Using the
inequalities —4J < e*(k) <4/ the band-edge energies
are easily determined to be £, ,;j,=—4J + A
E;mux=4J —A. Equating these values yields for the
critical gap parameter the result Ay, =4J. The gap
equation (17) determines the corresponding critical
value Uy _;. A numerical calculation yields

UM-,/2J =456

The second response function of interest, the mag-
netic susceptibility X,, is shown in Fig. 8 in the case of
a half-filled band and for {=0. In the paramagnetic
phase (A =0), this quantity, defined by Eq. (22),
reduces to g (@)/[1 — Ug()]. The numerator,
representing the Pauli paramagnetism, measures the
density of states at the Fermi level and is thus in-
dependent of the interaction strength U. Therefore,
the shape of X, in the PM phase is governed by the
singularity at U =1/g(@). We recall that this equation
is the standard condition for ferromagnetism used in
order to establish line b in the phase diagram in Fig. 2.
But the ferromagnetic phase boundary b has been
found to be meaningless at n, = 1, and consequently
the onset of AFM at the critical U/ prevents the sus-
ceptibility from diverging.

Quite analogously to the particle susceptibility, the
abrupt appearance of a finite-order parameter A at the
phase transition gives rise to a jump of X, at U!. In
order to understand in more physical terms why the
polarizability increases discontinuously, we first note
that it is sufficient to investigate the behavior of the
quantity X, given by Eq. (24). Indeed, the denomina-
tor (2— UXy) in Eq. (22), defining X,, has only the
effect of amplifying tendencies to rise or to fall. As a

u/s2J

FIG. 8. Susceptibility in units of 1/4J as a function of
U/2J for n,=1. The continuation (broken line) of the
paramagnetic susceptibility into the region of AFM assumes
an infinite value at U/2J =3.8 which determines a
corresponding point of the ferromagnetic phase boundary in
Fig. 2.
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next step we express Xp in the more tangible form

xo= G (@) +2ay23Y8) (35)
0A

where the gap equation (17) and Eq. (25) have been
used. The first term in Eq. (35) is directly related to
the conduction properties by virtue of Eq. (23) and
suffers an abrupt decreasing at U/, as has been dis-
cussed already. The second competitive term is
determined by the shape of the known A(U) curve,
displayed in Fig. 3 and is easily found to be positive in
the whole region U > U!. Thus, turning on the order
parameter A at a finite value entails a jump of the
second term which is markedly stronger than the weak
discontinuity of G ().

At first sight, an abrupt increasing of X, at the onset
of AFM seems to be a quite peculiar behavior. But it
has to be emphasized that X, represents a perpendicu-
lar susceptibility. Then the peak at U/ indicates that
an existing AFM ordering favors the alignment of
spins in a direction, perpendicular to the AFM order.

As soon as the two bands are totally separated, only
the second term in Eq. (35) survives. For still larger
values of U, the system degenerates to completely lo-
calized spins and A behaves roughly like %Uentailing

the asymptotic behavior X;”' ~2A — U which accounts
for the rise and the divergence of X at U — oo.

V. CONCLUSION

We have considered the onset of antiferromagne-
tism in the Hubbard model for a nonalternant lattice
using the HFA. At 0°K, we find the following three
phases of the system with increasing U: (i) paramag-
netic metal, (ii) noninsulating antiferromagnet, and
(iii) antiferromagnetic insulator, provided the band is
half-filled.

The appearance of these successive phases contrasts
with results of the HF treatment for an alternant lat-
tice where only the AFM insulator phase occurs, and
moereover invalidates the notion that in the paramag-
netic phase the HFA disregards the tendency of oppo-
site spin electrons to avoid double occupations and
hence produces AFM ordering too easily. We believe
that the suppression of the paramagnetic metallic
phase in alternant lattices is a feature inherent in the
model rather than a consequence of a rough approxi-
mation. The reason is that the onset of AFM at
U =0 in AB lattices for n, =1 is unequivocally associ-
ated with the coincidence of the magnetic zone boun-
dary and the Fermi surface, which must be destroyed
in order to remove the onset of AFM to a nonzero
value of U. This distortion can be accomplished when
adding or extracting one electron,® or turning on NNN
hopping® or choosing a lattice with a nonsymmetric
band structure as has been done in this paper.

In the case of one electron per atom the AFM

phase has been carefully investigated. The magnetic
transition into the AFM order occurs at a critical

U!/J =5.9 and is combined with a discontinuous de-
crease of conductivity. This proves to be quite in ac-
cordance with Slater,?® who first introduced the idea
that the AFM order may cause a splitting of the band,
degrading the metallic properties. In contrast to AB
lattices, the magnetic transition does not coincide with
the M-I transition but this transition from an AFM
metal to an AFM insulator now occurs on increasing
U and appears as a band-crossing transition.

Comparison of these HF results with experimental
data of transition-metal oxides has to be done at the
absolute zero of temperature, where transitions of
those materials can occur only under pressure or with
varying composition. This means a confirmation of
the present results requires materials with a lattice
constant a that can be varied, and moreover requires
the experimental results to be extrapolated smoothly
to T =0. Keeping in mind that the dependence of the
hopping strength J on a is given by J = #?/2ma?® and
that the physical quantities in the present model are
given as functions of the Coulomb repulsion U in un-
its of J, we find that a decrease of U can be brought
about by reducing the lattice constant a.

Measurements on pure and doped V,0; at low tem-
perature indicate that a pressure-induced transition oc-
curs between a high-pressure metallic state and a
lower-pressure antiferromagnetic-insulating state.?®
Moreover, electrical resistivity and magnetic suscepti-
bility as functions of pressure exhibit all the qualita-
tive features found in the present model.”’~?

A complete consistency with available experimental
results cannot be expected in view of the facts that the
Hubbard Hamiltonian only allows the description of
narrow s bands and that the fcc lattice investigated in
this paper is by no means the lattice type appropriate
for the description of a system as complicated as V,0;.
It is for this reason that the model used in this paper
cannot be expected to give a V,0;-type phase diagram,
for example. At any rate, the calculation of phase
boundaries confirms once more how cautiously one
has to handle phase transitions. The second-order
phase boundaries in Fig. 2 have been found by a
method which is equivalent to a response function
technique. But investigations of the energetic stability
of the magnetic ordered states revealed those lines to
be of no physical significance and required a Maxwell
construction. The resulting phase boundaries indicate
first-order transitions but happen to coincide nearly
with the old ones. Nevertheless, this circumstance
may serve as a warning when using the response func-
tion method to construct phase diagrams. This
method analyses only stability against infinitesimal
external perturbations which is misleading in the case
at hand, where the phase transition occurs while the
state is still stable against infinitesimal perturbations.

Moreover, it should be pointed out that due to the



17 MAGNETIC AND ELECTRIC PROPERTIES OF THE HUBBARD... 2231

present results one is forced to lay emphasis, in the
future, on the exact evaluation of the summations
over the Brillouin zone which are involved in the
equations. Simulating the properties of various lattice
types by simply changing the coordination number, as
Florencio and Chao?® did, appears to be insufficient.
Also the "parabolic density of states," introduced for
the first time by Hubbard' and then frequently used
by other authors owing ot its simplicity, would have
been too crude an approximation to make the present
results available.

APPENDIX A

For numerical purpose we define the combined den-
sity of states

g(x,y)=N"28(x—¢+(E))8(y—e‘(F)) . (A1)
P

Expressing the sum over allowed k vectors of the Bril-
louin zone as an integral, we obtain after some ele-
mentary transformations

1 1 3
g.z.f_l Ll f /I_Ildll(l -.[/‘2)_”28(.\' +I|lz)
XS())+/2[3+[3[‘) ) (A2)

-

J(1) ={

0 otherwise -

where x,y are now dimensionless quantities measured
in units of 4J, and £ stands for g #3(4J)2
We perform the integration over /3 and get

2
& ‘:f-flfu H di;(1 _liZ)—l/Zs(X +1ily)
j=1
x (1 +1)2 =y~ (A3)

where the domains of integration I,II are determined
by |y| <[/, +1,]. For reasons of symmetry, the in-
tegration may be restricted to one of the two domains,
say . There is another simplification arising from the
fact, that g is an even function of y. Thus we can
confine ourselves to the case y > 0. Performing the
integration over /, and utilizing the remaining & func-
tion 8(x +/,/,) finally yields

. ! J()
g=2f~1+,.,dll (1_112)1/2 ' (A4)

where J is defined by

U =x)VHIUE =) /)=y 712 fory -l = —x/l) <1 ,

(A5)

We now have to distinguish the two cases x + %yz = 0. Finally, g can be expressed in terms of the first complete

elliptic integral

2K (k) [2kk'/s (1 —x)]1'?  for x+%y’<0 ,
4K () /1A —=y2)(y2 —=xD1'? for x+%y2>0 ,

g=

where
K=1-k?=3{1-[s2+U-r)(x?=r)]

X [Sz + (1 _,)2]—1/2

x[s2+(x2 -1 (A7)
r=x +‘7y2 , (A8)
s=y(|x|—%y2)'/2 , (A9)
yr=gy G+, (A10)

E=0-y)(p2-x)/0-y)(p2—x) (Al

APPENDIX B

Here we show that the approximate results of the
present paper coincide with the exact results of Nagao-

(A6)

L ]

ka?* in the strong-coupling limit. To this end we in-
vestigate Eqgs. (16)—(19) for U — o and compare the
asymptotic forms of the ground state energies of the
two competing magnetic states. As a first step we
study the AFM state and confine ourselves to the case
of an almost half-filled band |1 —n,| << 1. Here the
gap equation (17) is given by

2 1 1 [1-n,| .
—_—=— =, (B1)
U N kZ E(K) A

and thus the gap varies as %(l —|1=n.]) U for

U — 0. With this limiting behavior of A the AFM
ground-state energy is easily determined as

E, (n,—1) (e} +U) forn.>1

N . —Det, forn, <1 (B2)

The ferromagnetic state and the determination of the
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asymptotic form of the energy per lattice point re-
quires the solution of Eq. (19) instead of the gap
equation. In the ferromagnetic case Eq. (19) reduces
to

4s, = z {sgn [e(K) — & + Us,]
k

1
N
—sgnle(k) —z — Us.]} (B3)

This relation, together with the Eq. (18), implies that
the maximum possible magnetization for a given n, is
s =21 =1=-n) . (B4)

From Eq. (16) it follows that the maximally magnet-
ized ground-state energy is

E, |ne—DW +eni) forn,>1,

N (.= Demy for n, <1 (BS)

We have summarized the information contained in
Eqgs. (B2) and (B5) in Table I. This table indicates the
state of lowest energy among the ferromagnetic and

TABLE I. Summary of the information contained in Egs.
(B2) and (BS).

FM AFM

n,>1 (n, = 1) (U + €pin)
ne <1 - _"e)emax

(n,—1D)(U +€})

—(1—n,) eqax

antiferromagnetic states in the strong-coupling limit
(U — ) depending on the sign of n, — 1. Bearing in
mind that in the fcc lattice €., = €;,x =4/ and

€min =—12J < €, =—4J, and comparing the energies
of the various magnetic states, it is found that the fer-
romagnetic state with maximum total spin is not the
ground state, if n, =<1, and the ferromagnetic ordering
with s, = s."** is favored, if n, > 1. Thus the HF
results in this paper are consistent with the predictions
of Nagaoka?* who studied the role of holes and excess
electrons quite rigorously in an almost halif-filled band
with a strong repulsive Coulomb interaction.

*Permanent address: Max-Planck-Institut fiir Physik und As-
trophysik, Institut fiir Extraterrestrische Physik, Garching,
bei Miinchen, West Germany.
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