
PHYSICAL REVIE% B VOLUME 17, NUMBER 5 1 MARCH 1978

Soseyhson-junction threshold viewed as a critical point~

A. R. Bishop~ and S. E. Tru)linger
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York l4853

(Received 26 August 1977)

We examine the expression for the mean thermal-noise voltage in the dc Josephson effect ob-

tained by Ambegaokar and Halperin via a Brownian-motion analogy. %'e find that their expres-
sion can be reduced to closed form by two different methods which give the same result. This ex-
act closed-form expression is used to derive analytic approximations in several limits and we find

that the behavior of the mean voltage near the threshold current is characterized by "critical ex-
ponents" which bear a remarkable resemblance to those exhibited by an order parameter near the

critical point of a continuous phase transition.

I. INTRODUCTION

In recent years there has been considerable interest
in comparisons between instabilities in dissipative
nonlinear systems and thermodynamic phase-
transition phenomena. The quantum-mechanical
analysis of the threshold behavior of a single-mode
laser has been studied most extensively' and the
close analogy with a ferromagnetic phase transition ap-

pears to be well established. Similar analogies have
been suggested for threshold instabilities in chemically
reacting systems, thermal instabilities in the Benard
problem, ' the Gunn instability, 6 tunnel diode' and

parametric oscillator instabilities, the Wien bridge os-
cillator near threshold, etc. General reviews of these
topics are given in Ref. 10.

In this paper we investigate a close analogy between
the behavior of the mean thermal-noise voltage v in

the dc Josephson effect and the behavior of an order

parameter for a classical mean-field phase transition.
The expression for v obtained by Ambegaokar and
Halperin" (AH) using a Brownian-motion analogy is

reduced to closed form by two alternate methods
which give the same result. This simple closed-form
expression allo~s us to easily determine analytic ap-
proximations in several limits and by examining these
limiting forms we extract "critical exponents" which

govern the behavior of v near the threshold current.
We note that the exponents are reminiscent of a clas-
sical mean-field transition, ' where v plays the role of
an order parameter, the applied current serves as the
reservoir variable {temperature), and the temperature
serves as an external field conjugate to the order
parameter.

The outline of the paper is as follows. In Sec. II we

briefly describe the AH theory which is based on a
simple analogy to a Brownian-motion problem, we ex-
hibit their expression for the mean thermal-noise vol-

tage, and we replot their I- Vcurves in a slightly

different but suggestive fashion. In Sec. III we reduce
the AH expression for v to closed form and obtain
several asymptotic expressions for v and related quati-
ties. In Sec. IV we examine the results of Sec. III to
extract critical exponents and other information relat-
ing to the critical behavior of the system. In Sec. V
we summarize our results and present comments and
observations of a general nature.

II. NOISE UOLTAGK AND THE BROWNIAN-MOTION
ANALOGY (AH THEORY)

In a letter published a few years ago, Arnbegaokar
and Halperin" presented a calculation of the thermal-
noise voltage arising from fluctuating-noise currents in

the dc Josephson effect. They made use of a mechan-
ical analogy to recast the problem in terms of the
Brownian motion of a particle in a nonlinear potential
(given below), and determined the noise voltage in

the limit of small capacitance by solving a Smolu-
chowski equation for the steady-state distribution
function of the "particle's" coordinate.

In terms of the mechanical analogy, the equations
governing the motion of the "particle" are"

—qp+L(t)dp dU
dt d8

The particle coordinate 8 corresponds to the difference
in the phases of the order parameter on opposite sides
of the Josephson junction. The particle mass is given
by M = (t/2e) C, where C is the capacitance. of the
junction and the particle momentum is given by

p = (hC/2e) V, where Vis the potential difference.
The damping constant q is given by g = (RC) ',
where R is the resistance of the junction; L (t) is a
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thermal white-noise force arising from fluctuating-
noise currents. The "potential energy" U(8) is given

by U(8) = y—T—(x8+cos8) with y= fl~(T)/eT and

x = I/I~(T), where I~(T) is the maximum Josephson
current at temperature T (ks = I) in the absence of
noise, and I is the driving current from a constant
current source.

In the large damping limit, defined by

II —=RC(2el, /IiC)'~' = co~/rt && I

AH solve a Smoluchowski equation" for the steady-
state coordinate distribution function and thereby ob-
tain the dimensionless mean voltage v = (V)/I~R:

(2.3)

where f(8) is a Boltzmann factor given by

f(8) = exp[ —U(8)/T]

=exp[ —,
' y(x8+cos8)] (2.4)

Plots of v vs x can be obtained by numerical evalua-
tion of (2.3) or any of the alternate expressions given
in Sec. III. In Fig. 1 we plot v vs x for several values
of the temperature (T ~ y '). Note that as the tem-
perature approaches zero (y 00), a sharp threshold
behavior appears and at T =0, no voltage develops
until the current exceeds the maximum Josephson
current (x = I). At finite temperature the thermal
noise currents serve to round this threshold behavior.
The nonlinear behavior of v as a function of x near
x = 1 can be seen more clearly in derivative plots
(dv/dx vs x) which we show in Fig. 2.

The behavior of v exhibited in Fig. 1 suggests an
analogy with a continuous phase transition where v

plays the role of an order parameter, x serves as an
external reservoir variable (e.g. , temperature), and T
serves as an external field conjugate to the order
parameter. With this identification we see that the
order develops above the "critical temperature" (x,. =1)
in zero external field (T =0). The analogy can
perhaps be made more appealing if we instead regard
I/x as the reservoir variable so that the order develops
below x, =1. In Fig. 3 we plot v/x vs I/x for a few
values of the "external field" (y '). The resemblance
to a rrlean-field ferromagnetic phase transition" is
striking, and motivates the question of whether the
"critical behavior" near x, =1 is characterized by "criti-
cal exponents" which bear any relationship to those of
the magnet problem. In Sec. III we pursue this ques-
tion by investigating the mathematical behavior of v in
more detail.
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FIG. 1. Dimensionless mean voltage vs the dimensionless

applied current for several values of the temperature

(T ~x: y ') (cf. Ref. 15)
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FIG. 2. Plots of dv/dx vs x showing a divergence at x =1
as the temperature is lowered to zero (y 0o).
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~here 10 is the modified Bessel function. Upon mak-
ing the substitution cosh(yxy) c=os(i yxy), the in-

tegral appearing in Eq, (3.1) can be found in tables, '

with the result that

sinh —m yx
v(x, y) = (3 ' 2)

0.5 I.o
'/x

1.5 4s0 2.5

FIG. 3. Plots of v/x vs x ' suggesting the analogy with

magnetization curve for a ferromagnet. The temperature

T ~ y
' plays the role of an external applied field.

where I, (y/2) (2 y) is the modified Bessel function of
imaginary order.

The second method of arriving at Eq. (3.2) begins
with a series form for v found by Falco, Parker, and
Trullinger. " Starting directly from Eq. (2 ~ 3), these
authors used the series representation"

III. BEHAVIOR QF THK MEAN VOLTAGE:
A CLOSED-FORM EXPRESSION

AND LIMITING ASYMPTOTIC FORMULAS

'I

i- oo

e''~/))""- g /, +~ cos/;e,
—oo

to obtain

(3,3)

x 10{ycosy) dy (3.1)

In this section we note that the AH expression for v

[Eq. (2.3)] can be reduced to closed form by two

different methods which give the same result. This
closed-form expression is then used to obtain several
analytic approximations which aid the investigation of
the phase-transitioh analogy.

The two alternative routes for reducing Eq. (2.3) to
closed form consist of straightforward manipulations
of intermediate results obtained by other authors.
The. first of these starts from a simple expression for v

obtained by Henkels'~ using a method due to Strato-
novich".

1
Slnh —1l"yX ' yri2

v(x, y)- 2
cosh(yxy)

0

„ I'(-, y)
v(x, y) = (—1)"

yX ,'g, ~ yX +4k
(3.4)

The summation in Eq. (3.4) can be performed in a

straightforward manner using the method of residues
and the relation" Il, = I & to obtain the result given by
Eq. (3.2). It is worth noting that Eq. (3.1) can be ob-
tained directly from Eq. (3.4) by a method'9 which

employs Poisson's summation formula. 20

The compact form exhibited for v in Eq. {3~ 2) in

terms of the modified Bessel function allows us to
easily determine analytic approximations (in terms of
simpler functions) in various limits, using known
asymptotic properties of Bessel functions. ' " For
small y with x arbitrary, we use an ascending series
formula' for I+&(y/2)&( 2 y) to find

v(x, y) =x 1— y
1 1 4 3 2 2 1 4 4
8 (—y)(S ——y x'+ —y x)

+ 256 4 16 + (y small, x arbitrary)
(1 + —'y'x') (I + —,

' y'x') '(4+ —,
' y'x')

(3.5)

For large values of y we make use of the relation"

f ()/2) (—,
'

y) -e""/"J,
(y/2) (—,

'
y) (3.6)

in order to use various asymptotic forms of J„(vz) when (v~ && 1. For y large and x && 1 we set v-/(y/2)x and
z = 1/x ((1 and use Meissel's extension of Carlini's formula" to obtain

v(x, y) (x —1) exp 2 2 3
ii2 4x +1

2y2{x2 —$)3
(y large, (x —1) && y ) . (3.7)

In the limit y oo, Eq. (3.7) is valid for all x & I, i.e., v (x' —1)' '. For y large and x &&1 we use Meissel's
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second expansion" to obtain

(1 —x )'i exp[ —
&

rryx+(x + —')/y (1 —x ) l sinh —'myx
v(x, y) =-

1+2 sinhr [—y[(1 —x )'i ——'rrx +x sin 'xl + (2x +3)/12y(1 —x )3ir]

(y large, (1 —x~) )) y ~i3) . (3.8)

In the limit of very large y, Eq. (3,8) gives the limiting form obtained by AH".

v(x, y) =—2(l —x')'i'exp[ —y[(1 —x')'i'+x sin 'x]] sinh —, myx —0 (x &1) . (3.9)

The approximate forms given by Eqs. (3.7) and
(3.8) are valid as long x is not too close to unity. The
value of x may be taken closer to unity as y increases,
but not arbitrarily close for a fixed finite value of y.
Fortunately, approximate expressions do exist for
the region ~1 —x~ & y 'i', i.e. , when x is slightly less
than or greater than unity. %'e obtain the following
approximate form for v in this region (~ ~1 —x):

where the functions B„,(az) are mth order polynomi-
als. The first few of these are"

B,(&z) =1, B,{.z) =.z,
B2(CZ)

2
~ Z —

20

1 2 2 1

83(E'Z) =
6

6 Z
15

KZ
1 3 3 1

v(a, y) =— X B i~a sin[-, (m+1)rr]9m

m 0

' -(]/3) (m+]) —2

xr( —Irl+ —) i
3 3

B4(tz) = —a 2 ——a z +—44
24 24 2&0

B&(~Z) =—~ Z ——& Z +1 5 g I 3 3 43

120 60 8400

(3.»)

(y large, )a~ ~y 'i') (3.10)
If we keep only the first few dominant terms appear-
ing in the summation in Eq. (3.10), we have

' —2/3

v(e, y) = [I (—')]' ~
12

+J3r(-,')r( —,') y'
r '2' ' —4/3

+[r(—)]' y
2 12,

1 1 4

——r(-) r{—)—1 1 2 1 y6 1+—
8 2 40 2

+ 0( —&/3)

280 12

(y large, ~e~ && y 'i') . (3.12)

In the limit as x 1 (~a~ 0), this becomes
' —1/3

v(x =1, y) =-
[r(-,')l', »,

From Eq. (3.12), we also find

dx [r(—')]3 12

I ( 2 )
r ~ 4/3

x
840 I (' ) 12

+ ~ ~ ~

I(-,') '

x
420 I-(' ) l2

+ ~ ~ ~

(y large) . (3.13) (y large) (3.14)
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It should be emphasized that Eq. (3.14) is obtained by
taking x 1 while keeping y finite. If, on the other
hand, we take y ~ first, we find from Eq. (3.7) that

lim — = (x2 —1)
dv

x I+ dX
(3.15)

and from Eq. (3.9) we find

dvlim-
x ]

=0 (3.16)

%e also obtain the following results from Eqs. (3.7)
and (3.9):

=—(1 —x )' exp[—y[(1 —x )' +x sin 'x]}
d(1/y)

x [2y'[(1 —x')' '+x sin 'x]

x sinh nyx —n—y x cosh rryx] 0—1 ]

2 2

[y large, (1 —x') (( y "'], (3.1$)

lim, =5(x' —1) '"d v.-)+ d(1ly)' ~=-
(3.19)

and

d v
lim =0
,-i- d(1/y)' ~--

(3.20)

Finally, from Eq. (3.9) we find

2 2

v(x, y) =—myx 1+ y ——x'+0(x )
24 2

x exp[ —y(1+ —x'+ )]
2

—(x' —1) '/2(4X'+1)y ' 0
d (1ly) Q~oo

[y large, (x' —1) )) y '~'], (3.17)

/+2' —1/5 ~ 1 (4.1)

is satisfied as an equality.
These observations lead naturally to the question of

whether the predictions of the static scaling hy-
pothesisi2 for the ferromagnet are also satisfied by the
Josephson junction. In terms of dimensionless quanti-
ties, the equation of state [Eq. (3.2)] should scale as

IV. CRITICAL-POINT ANALOGY

The form of the threshold illustrated in Fig. 1 (and
Fig. 3) is reminiscent of a continuous phase transition
in equilibrium systems, "with temperature (T —y ')
playing the role of the symmetry-breaking field conju-
gate to an order parameter (the mean voltage v) and
with the applied current x playing the role of the tem-
perature or external reservoir variable. The threshold
is sharp at T =0 (y = ~) but smeared at all finite T,
in much the same way as a magnetic field smears the
transition in a ferromagnet. The power-law behavior
found in Sec. III for v(x, y) near the point
(x, y) = (1, ~) suggests that this point be viewed as a
"critical point"' in an equilibrium phase transition
analogy. In this section we explore this analogy in de-
tail, with particular regard to the identification of "crit-
ical exponents" which characterize the power-law
behavior near the critical point. In the following, we
regard v (x, y) as the "order parameter" although at the
level of a discussion of critical exponents x 'v(x, y)
may serve just as well and it may also be some~hat
more appealing (see Fig. 3).

In Table I we have collected the key results from
Sec. III for the behavior of the mean voltage. For clar-
ity we have restored the dimensions for the various
quantities ( V, I, T) and for comparison we have also
listed appropriate quantities for the ferromagnet. In
Table II we list the critical exponents for the Joseph-
son junction and the mean-field exponents" for the
ferromagnet. %'e note that all of the exponents are
the same for the two systems, except for the exponent
y (not to be confused with the conjugate field y ').
The source of the zero value of y for the Josephson
junction lies in the fact that V(I, —T) = V(I, T), i.e.,
the order parameter is an even function of the conju-
gate field; thus the first-order susceptibility must van-
ish at zero field. It is interesting to note that (as in

other mean-field systems ) the Coopersmith inequality]-'

(y large, x &( y ')

In the limit as x 0, Eq. (3.2) yields

(3.21)
v (E, y) I&I

"v (4.2)

v
lim —= lo ~
x~x 2

(all y), (3.22)
close to the critical point (e =0, y = ~), with P = —,

and 5=3 for a mean-field system. It is customary to
define scaling functions F+(z) so that

in agreement with the result obtained by AH. Equa-
tion (3.22) also agrees with the x 0 limit of Eq.
(3.21) when y is large. and

v(+1 y]ai'") =F,(y]ai'") (4.3a)
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TABLE I. Threshold behavior of the Josephson junction compared to the critical

behavior of a ferromagnet.

Josephson junction Ferromagnet

(V& (or (V&]1)
1(or 1 ')

(M}
T

Order parameter

Reservoir variable

(1=1,, T=o)

T=o- &/2

=0, 1 &1)

(T=T, , H=o)

(M&H~-(T, . -T)~, T & T,
=0, T&T,.

Field conjugate to order parameter

Critical point

Coexistence curve

(V&I-I Critical isotherm

,
T-0

I

, H 0

Zero-field susceptibility

, T-0
)-S&2

82 (M&

, H-0
( T T)P( l —2h) Second-order susceptibility

Bf I Ii
I

I

9(M)
T~T

C

(j(V} Q(V}
Ql I-I

i
8 T

I

T0 8(M}
8T T T

! I
('

Q(M }
BH T-T

Specific heat at constant

field

Then v should have the form

{4.3b) TABLE II. Comparison of critical exponents obtainable

from the equation of state for the Josephson junction and the

Wean-field ferromagnet.

{44)

We find that, as long as ylal'~' && 1, v does indeed
have the form (4.4). From Eq. (3.7) we And

F (z) = 82exp[5/(16z') + . ] (z » 1), (4.5)

and from Eq. {3.8), we find

Critical

exponent
Josephson
junction

Mean-field

ferromagnet

1

2

F,(z) =—v2exp —J2z — + +5 5
24z 32z2

2

3
2

3
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We wish to emphasize that Eqs. (4.4) —(4.6) are valid

only when [e[ is small and y is large enough (T small

enough) so that y[e['t' » 1. Thus, if the conjugate
field (y ') is held fixed, the scaling laws (4.4) are
valid as long as the reservoir variable (x) does not ap-

proach too close to the critical point (x = I). When
y[e['t' « I the equation of state has the approximate
form given by Eq. (3.10) [or (3.12)] and does not ap-

pear to possess any simple scaling property, although
it does give classical values for the exponents 5, P,
and P (Table II). Even in the region (y[e['t' » I),
where the scaling laws are obeyed, the scaling func-

tions (4.5) and (4.6) are exponentials rather than the

power laws of more familiar examples (e.g. , the fer-
romagnet't), thus reflecting the more complex nature

of the junction threshold.

V. DISCUSSION

In Sec. IV we noted a very close analogy, at the lev-

el of critical exponents, between the threshold behavior

of a nonequilibrium system (Josephson junction) and

the critical behavior found near an equilibrium rnean-

field phase transition. Such an analogy is novel but

certainly not unique; there has been considerable in-

terest in recent years in comparisons between instabili-

ties in several dissipative nonlinear systems and ther-

modynamic phase-transition phenomena. In several
of the examples cited in Sec. I, it has been possible to
demonstrate an explicit analogy between the none-

quilibrium system and a mean-field phase transition by

constructing an "order-parameter" expansion of
phenomenological Landau form. ' ' This approxima-

tion usually follows implicitly from a self-consistent-
field treatment of the nonequilibrium system (e.g. , the
quasi-plane-wave approximation for the laser" ).
Sufficiently near threshold such approximations break

down and deviations from mean-field behavior are

found, ' analogous to critical fluctuation corrections. "
In the case of the Mien-bridge oscillator there is

sufficient external control on the Landau-expansion
coefficients (i.e., choice of nonlinear elements) that
classical first-order, second-order, and rnulticritical-

point phase transitions can be simulated, and critical

deviations from classical behavior can be enhanced by

an external white-noise generator. We suspect that

the "mean-field" exponents listed in Table II result

from the restriction to the large-damping limit in the
theory of Ambegaokar and Halperin. "This view is

consistent with critical fluctuations being suppressed in

a Landau prescription. ' Similar assumptions are im-

plicit in laser descriptions, ' and mean-field exponents
for the Wien-bridge oscillator only arise in the zero-

noice limit. Dramatic effects of finite (rather than

infinite) damping have been found in the Brownian-

rnotion system (dc Josephson effect) by Monte Carlo
studies" and some approximate analytic pro-

cedures. "'6 We can expect to find deviations from
mean-field exponents if these latter results are extend-
ed sufficiently close to the threshold (low-T region).
We recall from Sec. IV that the equation of state exhi-
bits simple scaling behavior near the critical current
only if the temperature is sufficiently low and it will be
most interesting to examine the nonscaling region« I in the presence of finite damping.

Comparison with a simple Landau order-parameter
expansion is quite direct in, e.g. , the laser case be-
cause of a simpler nonlinearity in the order parameter
(field amplitude of the lasing atoms) equation of mo-

tion; typically, the steady-state solution to the
Fokker-Planck equation takes a relatively simple form
in which low-order powers of the order parameter ap-

pear. In the Brownian-motion problem studied here,
the steady-state mean velocity (voltage across the
junction) has a nontrivial form [Eq. (3.2)] and we

have not yet found any simple mapping onto an

equivalent equilibrium system or phenomenological
Landau form. Basically, the only information we have
is the "equation of state" [Eq. (3.2)l, but not the
relevant "thermodynamic potential. " Although we

have not yet found an explicit equilibrium phase tran-

sition representation, we anticipate that the mapping
(if one exists) should be to a real order parameter,
zero-dimensional quantum system, or alternatively a

time-dependent Ginzburg-Landau problem in zero di-

mensions. Equivalently, we might transform the
dynamic system to a one-dimensional static one via-'"

it x(position). The lack of explicit spatial depen-
dence in the AH theory suggests that there should be
no strict phase transition in the analogy we seek, even
at T =0. A mean-field treatment gives" dimension-
independent exponents and a finite transition point
even in one dimension. The finite damping simula-

tions of Ref. 25 indeed suggest that the T =0 thres-
hold current is reduced by decreasing the damping
constant so that it at least sho~s a tendency to ap-

proach zero as q 0.
Recently, it has become possible to solve' the prob-

lem of an infinite array of coupfed nonlinear pendula

(or Josephson junctions, etc.) undergoing driven
Brownian motion in the overdamped limit. We expect
that this problem may map onto a t~o-dimensional stat-
ic phase transition problem. Nonlinear spatial fluctua-
tions play a dominant role in this case" and the effects
of finite damping should be especially interesting. It is

found that the large damping threshold exponents at
T =0 (where there are no spatial fluctuations) are un-

changed from the single-pendulum (junction) case, as
we expect for a mean-field theory.

In this paper we have demonstrated, ' at the level
of exponent comparisons, an interesting analogy
between the threshold characteristics of a nonequilibri-

um, nonlinear driven Brownian-motion problem
(Josephson junction), and the critical-point properties
of an equilibrium classical phase transition. We con-
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sider this problem to be a new member of a growing
class' of nonequilibrium systems exhibiting such "crit-
ical" instabilities. In a future publication, we hope to
consider (i) the effects of finite damping (e.g. , q ex-
pansions) on the location of the threshold, on the
classical exponents, and on the size of the nonclassi-
cal critical region; (ii) a transformation to a zero-
dimensional time-dependent 6inzburg-Landau formal-

isrn; (iii) corresponding analysis of the coupled junc-
tion system in the light of recent analytical advances".
and (iv) extension to space-time correlation func-

tions' (critical slowing down, etc.).
Note addedin proof. Finite-order expansions in g

'

do not appear to change the mean-field exponents re-

ported here [T. Schneider er al (u. npublished)].
However, an interesting additional "critical" variety is

possible for sufficiently small damping: hysteresis oc-
curs at zero temperature [D. E. McCumber, J. Appl.
Fhys. 39, 3113 (1968); %'. C. Stewart, Appl. Phys.
Lett. 12, 277 (1968)], and one branch is unstable

(cf. metastable states) at finite temperature [P. A.
Lee, J. Appl. Phys. 42, 325 (1970].
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