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The scattering of free helium atoms at the surface of liquid 4He at zero temperature is dis-

cussed in terms of the Feynman variational method. If the scattered atom is distinguishable from

those in the liquid target, as is true for the scattering of 3He, the problem reduces to the motion

of a single particle in an effective potential. Above the surface the effective potential is the same

as the real van der Waals potential and, in the surface and below, it is related to the density and

kinetic-energy distribution in the liquid ground state. If the theory is applied to the scattering of
He, neglecting the indistinguishability of the scattered atom, an excellent fit to the experimental

reflection coefficient is obtained. When the trial wave function is fully symrnetrized to calculate

the reflection coefficient for 4He more realistically, the theory describes the production of a single

excitation (phonon) from each absorbed atom. The resulting reflection coefficient disagrees with

experiment, predicting total reflection at certain critical angles. Even when multiple production of
low-energy phonons is considered, total reflection will still occur. It follows that the multiple pro-

duction of some other type of excitation, in particular low-energy ripplons, must be a dominant

process in agreement with the calculations of Echenique and Pendry. It seems that the simple un-

symmetrized theory fits the data because the reflection coefficient is mainly determined by the

static van der Waals potential outside the liquid where the effects of symmetry, inelastic scatter-

ing, etc, , are negligible. An atom which penetrates belo~ this region is then effectively lost as far

as the original beam is concerned because it begins to produce low-energy ripplons and is in-

coherently scattered. The problem of determining the density profile at the liquid surface from

the experimental scattering data is briefly considered.

I. INTRODUCTION

In this paper we discuss the theory of the scattering
of helium atoms (mainly 4He) at the free surface of
liquid 'He. The liquid "He target is supposed to be at
such a low temperature that it may be treated as being
in its ground state. %e are primarily interested in

R (k, 0), the probability of elastic scattering, where the
incident 'He atom is specularly reflected without
change in its kinetic energy Ir'k'/2m and with an angle
of reflection equal to its angle of incidence 8 (see Fig.
I). Other possibilities are: inelastic scattering, with

probability D(k, 8), where the incident atom rebounds
from the liquid surface but with loss of energy to the
liquid; and absorption, with probability f(k, 8), where
the kinetic energy of the atom ir'k'/2m plus the bind-

ing energy is completely converted into excitations of
the liquid. The excitations which may be produced in-

clude quantized capillary waves' (ripplons) as well as
phonons. If the incident atom is 'He, the energy of
the resulting 'He quasiparticle must be taken into ac-
count. Obviously

R(k, e)+D(k, e)+y(k, e) =l .

A satisfactory theory of helium scattering should ex-
plain the results of recent experiments, ' which
measured R (k, 8) and D (k, 8) for 'He and 'He, and

R (k, 8) D(k, e) f (s, e)
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FIG. 1. Three possible fates for a free He atom striking

the surface of liquid ~He and their probabilities: (a) elastic

scattering (specular reflection), (b) inelastic scattering, con-

verting some of the atom's kinetic energy into excitations
(phonons, ripplons), {c)absorption, generating excitalions

whose total energy is equal lo the kinetic energy plus the

binding energy of the atom.

the distribution of excitations produced by the absorp-
tion of a 'He beam. In addition, it would be very
desirable to obtain, if possible, the density profile of
the liquid from the experimental measurements. The
density profile is the dependence of p, the number
density in the ground state, on height z as one passes
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from the bulk liquid to the vacuum through the sur-
face region. There have been numerous theoretical
calculations' "of p(z) in the ground state of liquid
'He but no measurements. One of the most interest-
ing questions connected with p(z) is whether there is

a "peak" or maximum in the density at the surface" or
even a series of oscillations. ' Some calculations, ' '4

however, give a smooth monotonically decreasing
p(z), but with little agreement as to the precise width
or shape of the profile, except that the width is of the
order of a few angstroms. A review of these theories
and of the scattering experiments will soon be pub-
lished. "

It has been suggested' " that the density profile
might be measured using other types of scattering
experiments —neutron, low-energy electron, or optical.
It is easy to show that the elastic scattering probability
R (k, 8) for neutrons is directly related to the Fourier
transform of p(z). Since it is interesting to compare
elastic scattering of neutrons with that of helium
atoms we have discussed this case in the Appendix.
However, the intensity of elastic neutron scattering at
the surface is so weak that this is not a practicable
method of obtaining p(z) unless the scattering from
about 10' parallel surfaces can be combined in some
way. The possibility of obtaining the profile by elec-
tron or optical scattering remains an open question.

This paper does not include a description of earlier
theoretical and experimental work which preceded the
measurements of R (k, 8); this may be found in Refs.
2 and 16, and in our earlier experimental paper. "
However, we must mention an important theoretical
suggestion which we shall call the "Anderson-Widom
assumption, ""' that the dominant process in the
scattering or evaporation of He atoms is a single-
particle process —the conversion of an atom into a sin-
gle high-energy phonon (or roton) or vice versa. This
hypothesis would lead to an "edtre" or "dip" in R (k, tt)

at the roton threshold k =0.50 A ' where an incident
atom has enough energy lr2k2/2m +La= 5 to produce
an excitation at the roton minimum (see Fig. 2).
Here Lo is the binding energy or latent heat of He at
0 K (La/ks =7.16 K). The most recent calculations
on the dip have been performed by Caroli eI al. , '" but
without reaching a quantitative conclusion as to its
size or shape. Since there is no dip or edge in the ex-
perimental data it was concluded in Ref. 2 that the
production of multiple excitations is a dominant pro-
cess. In Sec. IV of this paper we describe an explicit
calculation of the consequences of the Anderson-
%'idom assumption that single-particle processes are
the only ones of importance. The results are quite
different from the experimental data. %'e also point
out a qualitative feature of the assumption which was
overlooked in previous work. This is the prediction of
total external reflection [i.e. , R (k, t)) =1] for certain
values of k and H. This happens when there is no sin-

gle excitation which has the same energy and
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FIG. 2. Energy-momentum relation for free He atoms

compared to other excitations in liquid He. A free atom

with total energy greater than the roton energy, i.e., with
0

momentum Ak greater than -0.5 A ', can, in principle, gen-

erate a phonon of momentum Aqua or one of the rotons with

momentum h'q2 or hq3. The production of a single ripplon is

impossible because of the conservation of transverse momen-

tum, hl, The ripplon spectrum is from Ref. 32.

transverse momentum as the incident atom. It is not
observed experimentally, again showing that
multiple-particle processes must be considered.

The Anderson-%idorn assumption was introduced
in connection with the theory of evaporation from
liquid helium. We have discussed the connection
between evaporation and scattering in Refs. 2 and 21
in terms of detailed balance. Very briefly, the experi-
mental measurements of R(k, 0) and D(k, 0) show
that the momentum distribution of atoms evaporated
from the liquid in equiIibiium is extremely close to
Maxwellian, and the accommodation coefficient is

therefore almost indistinguishable from unity. " In
some experimental situations, such as that described
in Ref. 17 where the angular distribution of evaporat-
ed atoms from a thick film was not isotropic and
therefore not Maxwellian, the liquid was not in equili-
brium with the vapor, and the distribution of excita-
tions in the liquid was not an equilibrium distribution.
There has been little theoretical analysis of this type of
experiment but at the present time it seem unlikely
that evaporation measurements, as opposed to scatter-
ing experiments, can give much information about the
surface of the liquid, unless the distribution of excita-
tions incident on the surface does not correspohd to
equilibrium and is experimentally determined. An in-

teresting experiment of this type has been performed
by Ba)ibar. "He has observed that rotons incident on
the surface from below do, in fact, give rise to eva-
porated atoms.

At the present time it seems that the problem of
atomic scattering is fairly well understood, at least in a
semiquantitative way, on the basis of the theory
described by Echenique and Pendry" or using the ap-
proach presented here. Both methods lead to the
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same general conclusion: that R (k, H) is determined
by the van der Waals potential in the vacuum outside

0
the liquid region (i.e., several A from the surface and
above). Nearer the surface, the atoms are completely
absorbed as a result of the production of multiple
low-energy excitations, particulary ripplons. The prob-
lem of determining p(z) from R (k, H) is reduced to
(a) fitting the van der Waals potential V(z) in the
"vacuum region" to the data and then (b) finding the
distribution of matter p(z} in the "liquid region"
which gives rise to V(z), using the known interatomic
potential. With a rather rough fit to the data,
Echenique and Pendry estimated the width of the den-

0
sity profile to be about 5 A, In the present work we
have an excellent fit to the data but the "effective" po-
tential U(z) which we have determined is the same as
the real van der Waals potential V(z) only above a
certain ill-defined distance from the surface, and it

has not been possible to obtain a unique density
profile from the result. The principal objective of this
paper is to show, explicitly, the consequences of the
Anderson-Widom assumption and to demonstrate, by
a method different from that of Echenique and Pen-
dry, that ripplon production is a dominant effect. A

brief account of some of the theory in Sec. III has al-

ready appeared. " In Sec. II we summarize the results
of the scattering experiments before describing the
calculations in Secs. III and IV.
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II. SUMMARY OF EXPERIMENTAL RESULTS

The results of the atomic scattering experi-
ments"" for 'He incident on liquid 'He can be sum-
marized as follows:

(a) Within experimental error, the probability of
elastic scattering R (k, H) does not depend on the
transverse component of the momentum of the in-

cident atoms but only on the vertical component, i.e.,
R (k, H} = R (k cosH), as shown in Fig. 3.

(b) The probability of inelastic scattering is zero
within experimental error, D(k, 8) (-2 x 10 '.

(c) There is no discernible dip or edge in R (k, H) at
the roton threshold, although rotons are produced at
higher energies. 4

(d) Within the experimental range of k cosH (from
0.05 to 0.5 A ') R(k, H) is very small so that the pro-
bability of absorption f(k, H) = 1. Further, R (k, H)

does not seem to tend to unity as k cosH 0, but to
some limit near 0.05.

(e} The results in (a) to (d) apply to the scattering
by the ground state of pure liquid 'He. This was
sho~n by the absence of any temperature dependence
between 0.03 and 0.12 K, demonstrating that, in this
range, thermally-excited ripplons or phonons have no
effect. (The range of temperature has now been ex-
tended up to 0.25 K."} Adsorbed He on the He
surface produces measurable inelastic scattering but,

FIG. 3. Probability of elastic scattering R (k, 8) for a ~Iie

atom striking the free surface, as a function of the perpendic-

ular component of its momentum, Sc cosH. The points are
experimental data from Ref. 2, for the angles of incidence

0
shown. The theoretical cuves labeled 0 and 5 A are from

Echenique and Pendry (Ref. 23), for a step density profile at

the surface ("0") and for a linear profile of width. 5 A. The
curve labeled U(z) has been fitted to the data using the
model described in Sec. III.

at least for low concentrations of 3He, it has little
effect on the values of R (k, H).

The observation in (d), that R (k, H) does not seem
to tend towards unity as k becomes small, was satis-
factorily explained' by the effect of the attractive van
der Waals potential outside the liquid, which, to a
good approximation, varies as 1/z . The Schrodinger
equation for an atom in this region can be reduced to

kZ~+ 1+ /=0
Q(2 g3

(2)

+ k'+ —y=0,
2 = 3

I

where k =k cosH and, for the van der Waals potential
between a 4He atom and liquid He, A. =20A. Rewrit-
ing thiS in reduced form with (= k z gives



D. O. ED%ARDS AND P. P. FATOUROS

The long-wavelength limit will not be reached until
k A. && 1. Then, when k. A. 0, the potential will act
like a step function, so that R (k, 8) should approach
unity when k is small compared to 1/h. , that is when

0
k &&0.05 A '. This explanation is confirmed by the
more detailed calculations described below.

The observations' of thc scattering of 'Hc atoms at
the surface of 'He, although limited in extent and in

accuracy, confirm that R (k, 8) is mainly determined
0

by the product k A, , at least for k. -0.1 A '. For 'He,
0

due to the lower mass, A. =15 A. Assuming, once
again, that the motion of the scattered particle in the
static 1/z' van der Waals field outside the liquid is

governed by (1) and (2), we deduce that the reflection
coefficient for 'He is related to that for 'He by'

(3)

Equation (3) is confirmed, within experimental error,
by the data.

p(r)) = N 4'd r2 ~ d r~ (5)

and po is the number density in the bulk liquid. The
probability density for atom 1 in the state 0 is then
~i[i(r~) [ apart from a normalization constant. Minimi-
zation of the energy in this case gives

(6)

momentum tK in bulk helium, f(r)) =e ' The
energy is then

E = S'K'/2m~ +(m/m~ —1)vo/po

where vo/po is the kinetic energy per atom in the bulk
4He ground state. When the theory is applied to heli-
um with a free surface, it is convenient to write

f (r/} = ij/(r[)/[p(r[)/po]'

where p(r)) is the number density in the ground state

III. SIMPLE MODEL

E = +'H'Wd r) d r,~

'(II 'kd r) d ry
t

(4)

is minimized, Feynman showed that, for a state with

In this section we describe a simple model for
scattering based on the Feynman variational method"
in which we treat the scattered atom as distinguishable
from those in the liquid- He target, i.e., thc variational
wave function is not symmetrized with respect to the
scattered atom. If the scattered atom is not reflected
elastically, it becomes an impurity "quasiparticle" in

the liquid. The possibility of ripplon or phonon pro-
duction is not included. The model gives a very satis-
factory fit to the data for 'He and it serves as an intro-
duction and basis for the symmetrized theory in Sec.
IV. The model was first described in Ref. 21 but no
details of the fit to the experimental data were given
there.

The Feynman trial wave function of a state in which
one of N 4He atoms has been replaced by an "impuri-
ty" He atom is %' =f( r)) 4{r), . . . , r ~) where 4 is
the ground state for N'He atoms; 4 is real and posi-
tive and H4=0, where H is the Hamiltonian for pure
4He, and we are now measuring energies from the He
ground state energy. (The ground-state energy for N
4He atoms is —NLO plus the surface energy compared
to the vacuum. ) If the impurity has the same intera-
tomic potential but a mass different from 4He,

m] A m, the Hamiltonian becomes

H'=( ir /2m~ + ri /2m) V—, +H

When the expectation value of the energy

d aa "(r) = V'a(r) =
dz

(7)

Since P P is the probability density for the scattered
atom and P obeys a single-particle Schrodinger equa-
tion, thc current of scattered atoms is conserved and
the problem is reduced to finding the single-particle
reflection coefticient for the one-dimensional potential
function U(r) = U(z) = a "/a. The probability for
elastic scattering is thus directly related to the density
profile of the liquid p(z) = [a (z)]'po.

The model has two features which agree very well
with the experimental observations: {a) The predicted
reflection coefficient only depends on the perpendicu-
lar component of the incident momentum Ak cosH.
(b) There is no inelastic scattering, only specular
reflection or absorption. It is also clear that the theory
can be applied directly to 'He scattering from 4He; in

this case the effective potential would involve the dis-
tribution of kinetic energy v{r) in the ground state as
well as the density profile p(r). The reflection
coefficient for 'He has not yet been calculated by this
method.

i.e., a single-particle Schrodinger equation with an
effective potential (lr'/2m~) U(r) which is related to
the particle density p( r ) and kinetic energy density
v(r) in the ground state 4. This result, which was
derived by Lekner, ' has been applied with consider-
able success ""to the calculation of the binding en-
ergy of 'He to the surface of 'He; the potential func-
tion U(r ) for 'He has a minimum at the surface
which is strong enough to give a bound state.

If we assume that the "impurity" is a scattered 'He
atom so that m) = m, the effective potential is given by
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In calculating the reflection coefficien, the proper
asymptotic behavior of a(z) outside the liquid must
be taken into account. Far above the surface, where
the liquid density decreases exponentially with z, the
eff'ective potential must be identical to the real, van
der Waals potential. So for the He potential we find

u —P'-k/z',
which leads to

a(z} [expp(z}+ I]

p (z) = Pz —g, + k/4P(z'+ g, )
(10)

where g] and gq are adjustable constants, and g2 must
be positive to avoid singular behavior in p{z). Then

U =a "/a = (I —a) [p'(1 —2a) —p "]

a exp[ —(pz +const+ X/4pz + )], (9)

where tr'p'/2m =Lo, and p=1.087 A '. The fact that
the density p(z) = a'po decreases as exp( —2Pz) for
large z was pointed out by Regges and by Saam. " In
writing Eq. {8) wc have assumed that the leading term
in the expansion in I/z of the van der %sais potential
outside the liquid is g'}/2mz' —This follow. s it' the
leading term in the interatomic potential is proportion-
al to I/r6 ln fac.t, of course, at distances r, larger

0
than a few A, retardation effects very gradually change
this to I/r', which is the asymptotic form at dis]stnces
which are large compared to several hundred A."
Although an accurate interpolation formula between
I/r and I/r is available, we have assumed that retar-
dation plays a small role since the potential is so weak
at large distances. Another problem is the precise

0
value of A.. The value we have assumed (A. =20 A) is
smaller than the I/r6 term in the Leonard-Jones em-
pirical potential but it is slightly larger than the
theoretical value. See Sec. V for further discussion of
both these points.

A simple formula which interpolates between the
asymptotic behavior far from the liquid (8) and (9),
and that deep inside, ~here a 1 and U 0 is

then JI (k, ) = ~8/A ~'. The reflection coefficient fits
the experimental data very well for

0
g] = 2.5, g2 =8.5 A2

Neither parameter must be adjusted very carefully to
get an excellent fit. With these values substituted in
Eqs. (10}and (11) we shall refer to U(z) and [a(z)]'
as the "model potential" and "model profile. " The fit
to the experimental data is shown in Fig. 3. It is cer-
tainly within the experimental data. However, the
model profile (shown in Fig. 4) cannot be taken seri-
ously as a determination of the real density profile of
liquid helium. Apart from the lack of symmetry in

the variational wave function there is another reason:
The reflection coeScient is not sensitive to the poten-
tial U(z) in the region ~here p(z) is substantially
larger than zero. This is shown in Fig. 5 where we
have plotted the reflection coefficient calculated from
the model potential U(z) and from a modification
U(z) + —,P'p/po. The modification differs from U(z)
only where a' = p/po is substantially larger than zero.
The figure demonstrates that the reflection coeScient
is not appreciably changed by the t.iodification. This
means that the fit to the data is not sensitive to U(z}
in the region where p(z) is diff'erent from zero, i.e., in

the "liquid region" where we would like to determine
the profile.

The reason for this insensitivity can be better un-
derstood by studying the eff'ect of another
modification to the potential; we add an imaginary
term to U, proportional to the density of the liquid,

0O'= U —ia'y'. The result of using y =1.5 A ' is
shown in Fig. 5. The eff'ect of the imaginary part of
the potential is to produce a strong absorption inside
the liquid (the current of the scattered atom is not
conserved). Deep inside the liquid ~here a'=1 and

06-
where p' and p" are the first and second derivatives of
p with respect to z. We have solved the Schrodinger
Eq. (6) numerically using the Numerov" method with
the potential specified by Eqs. (10) and {11).To cal-
culate the reflection coefficient, we write mt = m and

ttJ =e " ${z) with k =k sinH, k =k cosH in Eq. (6),
yielding

0,2-

I

-4

d'g + [k.'+P' —U(z)]f(z) =0
dz

Starting with z several angstroms below the surface
where U =0 and g(z) =exp[ —i(k.'+P')'~'z] we in-

tegrate out to z —200 A where U =P' and
-t/ tk =

g(z) = Ae = + Be . The reflection coefficient is

(12)
Z (ANGSTROMS)

FIG. 4. "Model" potential and density profile (see Sec. III

of the text) in dimensionless units plotted against the height z

in angstrom units. The quantities plotted are p(z)/po and

U(z)/P2. As discussed in the text, the density profile and

the potential probably have no direct physical interpretation
0

for z less than a few A.
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FIG. 5. Elastic-scattering probability R (k, 8) for 4He as a

function of the perpendicular component of the momentum,
calculated from the model potential U(z), and from the
model potential with modifications inside the liquid region
where p/po is nonzero. For the potential with the imaginary

term U(z) —i yp/po there is very strong absorption in the
0

liquid, corresponding to a free path of less than 2 A at the
bulk density. For the potential with the real term,

U(z) + ) P p/pp, the binding energy of the incident particle
l

has been halved inside the liquid.

U =0, the wave function of the scattered atom is of
the form e e", so that the probability density lPl'
(and the current) decreases as z decreases with a free
path 1/2a. With y =1.5 A, the free path in the bulk
1/2a is approximately 2 A —less than the diameter of
an atom —this corresponds to the curve shown in Fig.
5. Even with this very strong absorption the reflection
coefficient is not seriously affected. With y = i A '

and 1/2a —2.5 A the effect is so small that it would
hardly be visible in Fig. 5. This shows that, for an
atom moving in the model potential which has
reached the liquid region, the probability of reflection
is negligibly small, and that R is determined by the
potential further away, in the vacuum above the
liquid. We have also tried the effect of modifications
to U proportional to the amplitude function a(z) rath-
er than a'. These modifications do have an appreci-
able effect on R showing that the reflection coeFicient
is sensitive to the effective potential where a(z) is not
negligible but a'(z) is. This is roughly in the region
z & 3.5 A for the model profile.

Although R is not sensitive to U in the liquid re-
gion, the profile p(z) in the liquid can still be deter-
mined, in principle, from the effective potential U(z)
in the vacuum region. Sufficiently far from the liquid
U(z) mgst be identical to the real Van der Waals po-

tential which is related to the overall distribution of
matter in the liquid through the interatomic potential.
In practice, however, it has proved to be quite difficult
to determine p(z) unambiguously by this method.

0- Xf(r, )4(r, rtv) (i4)

where 4 is the ground state and H4=0, with

jj =— $'7,'+ $ v(r„) —Eo .
2m t, (j (is)

Fo is the ground-state energy relative to the vacuum
and v(r) the interatomic potential. Feynman showed
that, when the expectation value of the energy is
minimized for the homogeneous liquid, f(r) = e'"'
and the state 4 has momentum hq, mass current
j = pomv = po(jjq/W), and energy E = jr'q'/2mS(q).
The structure factor S(q) in the homogeneous ground
state is related to the two-particle density p(rI, r2) and
the two-particle correlation function g (r). In general

p(rI, r2) —= p(rI) p(r2)g(rI, r2)

= N(N —1) 4'd r3 d r/v

For the homogeneous ground state, p(rI) = p(r2) = po
and g(rt, rt) =g(l rt —rzl) so that

p(&i r2) = pog(l ri

and

IV. SYMMKTRIZED THEORY

The theory in Sec. III describes the absorption of an
atom into the liquid in terms of the creation of a sin-
gle "quasiparticle" in the liquid. This might be an ac-
curate description for the scattering of He but it is
obviously incorrect when the incident beam is 4He.

(Since it does not include the production of ripplons
or phonons it probably does not apply to 'He either. }
When the trial wave function is symmetrized, as in

the present section, the theory describes the conver-
sion of an incident atom into a single high-energy ex-
citation (phonon) with the same energy and transverse
momentum tk„. The possibility of inelastic scattering
or the production of several excitations is not allowed.
The theory, therefore, corresponds to what we have
called She Anderson-Widom assumption, that only
single-particle processes occur or are important. As
we shall see, the results of the theory are in strong
disagreement with experiment, particularly in the
prediction of complete or almost complete reflection,
R (k, 8) —1, for certain large k and 8, and the princi-
pal usefulness of the theory is to demonstrate con-
clusively that multiple production of excitations, and
particularly ripplons, must be important.

The symmetrized Feynman wave function for an
excited state of the liquid containing N He atoms is
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S{q)=I —
pp Jl d re ' "[I -g(r)i

Since, for low q, S(q) = tq/2mc (where c is the veloci-
ty of sound), the theory gives an accurate description
of the phonon states on the linear branch of the heli-
um energy spectrum (Fig. 2) where E = Acq. At high

q the roton minimum is predicted to be at the correct
0

wave vector q —2 A ' but the energy at the minimum
is too large by a factor of two. Although more refined
trial wave functions give better agreement with experi-
ment in the roton region, our conclusions concerning
the rotons will not require accurate quantitative calcu-
lation and we will confine ourselves to the original
Feynman wave function, Eq. (14).

%hen the energy E is minimized for the inhomo-
geneous liquid with a free surface, the Euler-Lagrange
equation is

I(I

((2) -e -, z --~, (22)

where q may be real and positive, or imaginary. For
large z,

This integro-diA'erential equation and its equivalent
Eq. (20), was first given by Saarn. ' It is identical to
the Schrodinger equation (6) when a (z i } is negligibly
small, i.e., when zi is outside the liquid. This means
that the symmetrized theory is identical to the unsym-
metrized theory in the vacuum region ~here both
theories reduce to the motion of a single particle mov-
ing in the potential U(z).

The solutions to the integro-difterential equation
(21) are of several types, depending on their asymp-
totic behavior for z —~ and z ~. For a horizon-
tal free surface near z =0, we can assume

'7»(p»'7»f») +, .fipi
2mE

g2

+ d r2 72(p»2 72,f g) + .fop»2 =o . (19)2mE
A2

(

—(/ II(,

g(z} —We - +ae -.
, 2 —~,

where

2 m// (I' = Pz + (( ' + (t
' - q /2 mS (q )

and

(23)

(24)

Here fi means f ( ri), ,f2 =,f ( r2), the density

p, =p(r, ) =N Jt@'drz dr((

and the two-particle density function p»p p(ri, rq),
given by Eq. (16},will no longer just depend on
[r, —

r&~ in the region of the surface, Writing
f(r) = Q(3r/[p(r)/po]'('and dropping terms which are
zero, Eq. (19) becomes

(20}

In this equation Ui = U(ri) is the potential function
derived from the density profile U = a "/a and
c.»2=&(r», r~) =—1 —g(r», r~). The function c»2 is 1 for
ri = r2 and zero when ri and r2 are far apart; in the
bulk of the liquid it is I —g{[r~

—rz[). In general, c~z

can be written c»2 = c»2(z», 22, h) where zi and z2 are
the vertical components of r» and rq and h is the mag-
nitude of the horizontal component of ri —r2.

Writing P{r) as e " ((z), and a(z) —= [p(z)/poi'",
Eq. (20) becomes

T

zl + 2mE
k p U( ) (( )

dzi'

= 2mpo a (zi) d22 0 (22) $(22)
2mE

h dh Jo(k h ) & (2 », 22, h)

(21)

q2 q2+k2 (2S)

The solutions we are primarily interested in have q
and k real. These correspond to states in which there
is a phonon of wave vector q = {q +k„2)»/2 in the bulk

liquid or an evaporated atom of momentum
k = (k, +k,2)»/2 in he vacuum region. States in which

q is real but k is imaginary, so that the wave func-
tion decreases exponentially with z in the vacuum re-

gion, correspond to phonons which are incapable of
single-particle conversion to an evaporated atom and
which are totally reflected at the surface. Their energy
is below the threshold (if'/2m) (P'+ k,.') for the eva-
poration of an atom with transverse momentum hk„-.

There are also solutions to Eq. (20) or (21), which
are localized in the surface region, i.e., both q and k.
are imaginary and the function g(z) decays exponen-
tially for large negative z and large positive z. These
correspond to the ripplon excitations. Solutions of
this type have been sought by Chang and Cohen, '
Miller, ' and Woo" to determine the theoretical rip-

plon energy spectrum, i.e. , the dependence of E on k,.
for these states. The ripplon energy spectrum can also
be determined at low k,. by classical or quantum hy-

drodynamics" and this is shown in relation to the
phonon and free particle states in Fig. 2. In the con-
text of the present theory the possibility of an incom-
ing atom being absorbed and generating a single rip-
plon of the same energy and transverse momentum is

clearly ruled out.
Finally, there are solutions to Eq. (21) which have

k real but q imaginary so that the wave function de-
creases exponentially in the liquid region. These
states correspond to atoms which are totally reflected,



D. O. KD%ARDS AND P. P. FATOUROS

i.e., they have R (k, 8) =1. Total reflection will occur
when the atom cannot convert to a single excitation
(phonon) of the same energy and conserve transverse
momentum tk„. The conditions under which this will

happen can be examined using Fig. 2. If we ignore
the possibility of producing a roton for the moment,
total reflection occurs when

q&k„ (26)

k, . = (mc sin8/h) —[(mc sin8/h) z —Pz] '~z (27)

Values of k, , are marked on Fig. 6, which also shows
the experimental R {k.0) as a function of k.

%hen the energy is above the roton threshold
0

(corresponding to k &O.S A ' for the experimental
excitation curve) the atom can always convert into
one of the two roton states with the same energy.
However, even in this case the present theory indi-
cates that the reflection coefficient should still be very
high when k is above the critical value k, Above the
roton threshold for a given energy E there will be

I '
I ' I ' I ' I " I
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FIG. 6. Probability of elastic scattering R (k, H) for free
He atoms striking the surface of liquid 4He as a function of

the incident momentum tk. The points are experimental
values from Ref. 2 at the angles of incidence shown. The ar-

rows mark the theortical momenta k, , for angles of incidence

of 70', 64', and 58' at which total reAection could occur (see
text).

~here q is the vvave number of the phonon which has
the same energy as the incoming atom of wave vector
k. Equation (26) implies that q & k so that the energy
must be above the intersection of the free atom and
phonon curves in Fig. 2, i.e., k must be larger than0
0,47 A '. For any given angle 8, the critical value of
k above which total reflection occurs k,. can then be
calculated from the condition q = k„=k sin8 using the
energy equation tcq -(II'/2m)(P'+k'). The result is R = —, (R] + R2+ R3) (28)

hen k & k, , the reflection coefficient must be larger
than —,, R (k, 8) ~ —,, despite the fact that the two ro-

I

ton channels are open for absorption of the atom.
The preceding. argument, which is qualitative and

general, should hold despite the fact that the simple
Feynman wave function does not give a good value
for the roton energy. The same reasoning could be
applied to more accurate tria) functions which would
give agreement with the experimental roton energy
curve.

To calculate theoretical values of R (k, 8) below k, .

we must solve Eq. (21). This requires knowledge of
the correlation function c(z],22, h) in the region of the
surface. Shih and oo]] and Chang and Cohen
have proposed that c(z],z2, h) may be approximated
by c(p, I r, —r&I), a function depending only on the
distance between the two points r[ and r2 and on the
local density at some mean point between them:
p = p(z). For instance, p can be chosen to be
[p(r~)(rz)l' ' or —, [p(r~) + p(r2)]. This approxima-

tion could have been incorporated into out' numerical
integration of Eq. (21} relatively easily, but would
have lengthened the computation time. Instead we
made the simplest possible approximation by writing

c (z~, z&, h) = cp[(z) —zz) z + hz] '~z

where co(r) is the correlation function in the bulk
liquid of density po. %'e further simplified the integral
with respect to h in Eq. (21) by representing the ex-
perimental values of co(r} by ten points, with a linear
interpolation in r between them. The resulting struc-
ture factor S(q), and theoretical phonon spectrum
Irpp(q) = h q /2mS(q) are close to the experimental
curves in the region of interest between —0.4 and
-0.7 A '. To complete Eq. (21) we also need U(z)
and a(z); for these we used the model potential and
profile described in Sec. III.

three degenerate solutions of the integro-differential
Eq. {21)corresponding to the three possible values of
the excitation momentum q], q2, and q3 in Fig. 2. If
k ) k, , of these three degenerate solutions, the value
of q will be imaginary for the first phonon solution
and real for the roton solutions 2 and 3. The incom-
ing beam will be composed of three independent com-
ponents of equal amplitude corresponding to the three
solutions labeled by the quantum numbers q], q2, and
q3. The first component will be reflected with proba-
bility R] equal to unity because of the imaginary value
of q]-. The total reflected current for the whole beam
will be the sum of the currents for the three com-
ponents since they correspond to different quantum
numbers q~, q2, and q3, and there will be no interfer-
ence effects. This means that the reflection coefficient
for the whole beam will be
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To find the reflection coeicient, ({z) was assumed
ill

to be e deep inside the liquid, i.e., for z large and
negative. Then Eq. (21) was integrated numerically to
z —200 A where a(z) -0, and U(z) =P-, and g(z)
has the form Ae - +Be with R = IB/A I'. The
numerical integration was performed by writing the in-

tegral with respect to z~ in terms of Simpson's rule,
and the differential with respect to z~ in terms of the
Numerov expression, then solving the resulting set of
linear equations by elimination. The interval of in-

0
tegration in z was 0.2 A. For z larger than several
angstroms, where the integral term is negligible, the
diA'erential equation was integrated by the Numerov
method as in Sec. III. The final results for R(k, 8) are
shown in Fig. 7.

Before discussing the numerical results we ought to
comment on the physical interpretation of the "single-
particle" function P(r ) and the corresponding trial

function 'P. In contrast with the situation where the
scattered atom is distinguishable and thy trial wave
function is unsymmetrizc;d, the current j evaluated for
the symmetrize function %' is not conserved. This

lo'

was checked by calculating the current from the nu-
merical solution in the bulk liquid region and in the
tegion very far above the surface where z & 200 A.

tt(, x —tri = .
In the bulk liquid region where Q(r) =e ' it can
be shown that the expectation value of the mass
current operator for the state 4 is given by C q S(q)
where C is a constant which depends on the normali-
zation constant of the ground-state wave function.
The z component of this current, which we call j", is
therefore

j~=—Cq 5(q), z ——~
In the vacuum, above the liquid, where

(29)

Q(r) =e ' (Ae - +Be - )

the z component of the mass current is

j axiom gk (IA I2
I jt I2)

=—«-IA I'(t —R); ~ -+ (30)

It was found that the numerical values of these
currents agreed with the following simple physical pic-
ture: The net mass current of atoms approaching the
surface and being absorbed is —.j"'""', therefore the
number of atoms per unit area being absorbed is
—j."'""'/m. Each absorbed atom produces a single pho-
non moving with group velocity —(q /q)(d~/dq) in

the z direction so that, if the number density of pho-
nons is 8

p4 jUlOAl/~6 QJ

q dq
(3l)

IO

The mass current or momentum density correspond-
ing to this Aux of phonons is j~= n~(fq ) so that

J utoAI

mdcu/dq
(32)

l05

lO-0 I I I

O. l 02 Q3 04 0.5 06
k cos e(A ')

This relation between j~ and j"'""' was confirmed by
the numerical values of IA I' and R when substituted
in Eqs. (29) and (30). The phonon mass current. j.~
therefore is just what one would expect but it is not
equal to j"'""'. The discrepancy is made up by a su-
percurrent. Instead of using the stationary ground
state 4 in constructing the variational wave function
we should use

FIG. 7. Probability for elastic scattering R (k, 8) for free

He atoms striking the surface calculated from the sym-

metrized- theory of Sec. IV. The full curves, which are la-

beled with the angle of incidence 8, have been drawn through

the numerical results from the computer program, shown as

the points. The dashed curve is the unsymrnetrized theory,

which is a very good fit to the experimental data. The sym-

metrized theory allo~s only the conversion of an atom into a

single energetic phonon. It does not agree with the experi-

ments, and it predicts total reflection, R (k, 8) = I, at certain

momenta and angles.

t t

@exp ™V, Xr,
I

where the superAuid velocity V, is in the z direction
and makes up the difference between j-~ and. j"'""':

~y +j4 jatom (33)

The magnitude of V, is microscopically small and the
additional energy involved is negligible. The
modification to the Euler-Lagrange equation is also
negligible. In this way we conserve mass current and
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we agree with a conventional two-fluid picture in

which the current of absorbed atoms j is converted
into a normal current j ~ due to the phonons and a
super current j, = p()m V, .

We now return to consideration of the numerical
values of R (k, 8) in this theory, shown in Fig. 7. For
each angle of incidence we can distinguish three

0
ranges of k, . Initially for low k, , below -0.03 A ' the
symrnetrized and unsymmetrized theories are i™denti-

cal: in this range the reflection coefficient is insensi-
tive to the integral on the right-hand side of Eq. (21).

0
In the intermediate region, up to -0.1 A ' depending
on the angle of incidence, the results for different an-
gles fall on the same curve, i.e., R depends only on k,
and not on k„. However, R is quite different from the
curve obtained from the unsymrnetrized theory, and it
is in poor agreement with experiment. In this range
the integral in Eq. (21) has an important effect but the
argument of the Bessel function Jo in the integral is
small enough that Jo = 1 and the integral does not
depend on k„. The poor numerical agreement with
experiment in this range of k, could perhaps be
corrected by using a density-dependent correlation
function and by a better choice of U(z) and a (z) in

the liquid region. A serious attempt to adjust the po-
tential to fit the data would have been quite costly in
computer time, and probably quite useless, since the
absence of total reflection in the data indicates that
multiple excitation processes are important. Since the
integral in Eq. (21) is proportional to a(z, ) it has a
negligible effect where this factor is negligible. Ac-
cording to the model profile a(z) has fallen to approx-
imately 0.01 at z =6.4 A. Above this height the sym-
rnetrized and unsyrnmetrized theories are equivalent

O

and so, above 6.4 A, U(z) should not require any
correction.

At higher values of k. , the value of k„becomes im-

portant and the reflection coeScient rises; for the an-

gles of incidence greater than 41' the reflection
coefFicient reaches unity as the critical momentum k, .

for total reflection is reached. Since the theoretical ro-
ton energy in the Feynman theory is so large, we are
not able to calculate the effects of roton production on
the reflection coefficient in this model but, as we have
already demonstrated in the discussion of (28), the
prediction of a large reflection coeScient near or
above the critical angle for total reflection will not be
affected.

In principle, the symmetrized theory which we have
described above could be elaborated to include multi-

ple excitation processes. The trial wave function
would contain products of single-particle functions

The appropriate Euler-Lagrange equation would then
be formidable. However, we can deduce an important
fact about the excitations poduced by absorbed atoms

without further calculation. If the only excitations
produced were phonons we would still observe total
reflection for k & k, . below the roton threshold. This
follows because k„would still be larger than the com-
bined momenta of all the phonons produced:
k,. & q~ +q2+ . . Since no trace of total reflection
is observed in the experimental data we deduce that
ripplon excitations must be important in dissipating
the energy of an absorbed atom. Low-energy ripplons
because of their k„' ' spectrum can carry away an al-

most unlimited amount of transverse momentum for
a given total energy. The conclusion that ripplon pro-
duction has a dominant effect was also reached by
Echenique and Pendry" by direct calculation.

V. DISCUSSION

The calculations in Sec. IY and those of Echenique
and Pendry demonstrate that the production of multi-
ple low-energy excitations, in particular ripplons, must
be the fate of the majority of incident atoms, which
are subsequently absorbed into the liquid. How then
can one understand the success of the simple unsym-
metrized theory (Sec. III) in fitting the reflection
coefficient? Apart from the excellent quantitative
agreement when the model potential is used, the un-
symmetrized theory, which treats the incoming atom
as moving in a one-dimensional effective potential,
explains the lack of any dependence on the transverse
momentum k„and the absence of any measurable ine-
lastic scattering.

The explanation is that the specular reflection
coefficient is mainly determined by the static van der
Waals potential outside the liquid where the effects of
symmetry, inelastic scattering, etc. , are negligible. An
atom which penetrates beyond this region is then
effectively lost as far as the original beam is concerned
because, as shown by Echenique and Pendry, it begins
to produce )ow-energy excitations and is incoherently
scattered. The effective potential U(z) in the liquid
region is therefore just an approximate way of ter-
minating the real van der Waals potential outside the
liquid. As we have seen in Sec. III, the reflection
coefFicient is insensitive to U(z) in the region where

p/po = a' is appreciable and has only a weak depen-
dence where a(z) is appreciably different from zero.
In addition, a large imaginary component in the poten-
tial has a negligible effect where a'(z) is large and a
small effect where a(z) is appreciable. This shows
that an incident atom which has penetrated this far to-
wards the liquid has a negligible chance of being
reflected. We can assume that the effective potential
U(z) has very tittle physical significance in the liquid
region but it must be a fair representation of the real,
static van der Waals potential in the vacuum region
beyond some critical distance z, . According to
Echenique and Pendry, the critical distance from the
liquid, at which ripplons begin to be produced, is ap-

0
proximately 5 A. In their theory the calculation of the
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reflection coefficient reduces to the solution of a one-
dimensional Schrodinger equation with a potential
composed of the real van der %'aals potential plus an
imaginary term, proportional to 1/k, z'"', calculated
from the rate of ripplon production.

Further evidence confirming this physical picture is
provided by the measurements' of the angular distri-
bution of excitations produced in the bulk of the
liquid by an incoming 'He beam. The experiments are
consistent with the idea that an incident atom, which
is absorbed by the liquid, loses some of its energy to
low-energy ripplons as it approaches the surface, but
the rest of its energy and all of its transverse momen-
tum tk„are given up in the creation of a single ener-
getic phonon or a single roton if the remaining energy
is sufficient. The hypothesis that the production of
ripplons takes place without much loss of transverse
momentum is consistent with the calculation of
Echenique and Pendry in which the ripplon modes are
standing waves, with zero momentum.

Returning now to the problem of finding the density
profile from the data on the reflection coefficient, if
we define the van der %aals potential in the vacuum
outside the liquid, where p(r) =0, as /i' V(r)/2m,
then

v( r
' —r )p(r ') d r ', p(r) =0

(34)

where v(r) is the helium interatomic potential. The
integral in (34) is taken over the region in r' where
the liquid density is substantially different from zero.
In the vacuum the model potential, measured with

respect to the energy of an isolated atom,
/r'/2m [U(z) —P'], should be identical to the real van
der %'aals potential

U(z) —P = V(z), z ) z, . (3S)

In comparing their theory with the reflection
coefficient data, Echenique and Pendry tried two V(z)
derived from two different density profiles. The first,
—}t/z', corresponds to a step-function profile giving the
result labeled "0" in Fig. 3. The second, —h.z/(z' —I'),
corresponds to a profile which falls linearly from the
bulk density to zero over a width 2I of S A. The

0
resulting reflection coefficient, labeled "S A" in Fig. 3,
is in better agreement with the data but the fit is still

not quite satisfactory.
It is interesting to compare our effective potential to

the V{z}used by Echenique and Pendry, although it

is difficult to do so unambiguously. This is because
the origin of z is arbitrary for U(z), since a displace-
rnent of the origin makes no difTerence to the calculat-
ed reflection coefficient. For a van der Wa, als poten-
tial derived from a profile using Eq. {34) it is logical
to define z =0 at the dividing surface for the density
profile, however, since the model profile has no physi-

cal significance, it does not make sense to do this for
U(z). %'e have tri.d choosing the origin of z so as to
make U(z) —P' coincide with the Echenique and Pen-

0
dry potentials at some given distance, z =10 A say.
The effective potential looks fairly different from ei-
ther of them, considering that all three are asymptotic
to —k/z' at large values of z. We have also tried
fitting the potential V(z) corresponding to a linear
profile of adjustable width to U(z) —P'. The fitted
width depends on the range of z over which the fit is
made. Fitting at z =6.5, 8, 10, and 15A gives a
width of 6.5 A, but, if larger values of z are used, the
width is smaller. If a more complicated type of profile
is assumed, the fits tend to favor one with a very pro-
nounced maximum in density just belo~ the surface;
ho~ever, we have been unable, so far, to obtain an
unambiguous result for the density profile by these
methods. Probably refinement of the Echenique and
Pendry calculation would be more fruitful in yielding
the profile.

In using Eq. (34) to obtain V(z) from p(z), it is

perhaps worth noting that there is some latitude in the
choice of the interatomic potential v{r). For instance
the usual values" of the parameters in the Lennard-
Jones potential give for the asymptotic potential at
large distances ti'k/2mz' w—ith h, =21.5 A for a 'He
atom. The Bruch-McGee" potential, which uses the
theoretical value for the 1/r term in v(r), gives

0
A. =19.2 A for 'He. The value that we, and Echenique
and Pendry, have used, A, =20 A, is a compromise
between these two values. There is also the problem
that, at large distances, retardation effects cause the
1/r6 term to graduaily change to 1/r', so that at large
distances from the surface the interaction is 1/z' in-

stead of 1/z'. An accurate interpolation formula" for
the interatomic potential can be integrated to give the
ratio between the retarded and unretarded potential
for a step profile. To study the possible eff'ect. of re-
tardation on the reflection coefficient we multiplied
our effective potential U(z) —P' by this correction
factor and calculated the reflection coefficient. The
results were very little changed and we conclude that
retardation probably has an unimportant influence on
the scattering probability.

ACKNOWLEDGMENTS

This work was begun when one of us {D.E.) was a

guest of the Physics Dept. , BNL, whose kind hospitali-
ty is acknowledged. %'e wish to thank Dr. M. Blume,
Dr. C. Ebner, Dr. V. J. Emery, Dr. Y. Imry, and Dr.
%. F. Saam for valuable suggestions and discussions.
This work was supported by NSF Grant No. DMR
75-19S46-A01, and BNL.

APPENDlX

Possible methods for measuring the density profile
at the free-helium surface, apart from atomic scatter-
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ing, include elastic neutron scattering, light scattering,
and electron scattering. This appendix looks at the
first possibility.

Cohen and Feynman" showed that inelastic neutron
scattering from liquid He II can be used to determine
the energy-momentum relation for the elementary ex-
citations (phonons and rotons) in the liquid. They
also pointed out that elastic scattering occurs only at
the surface, where the density p(r ) varies with posi-
tion. In their theory a contact interaction 5(r —r, )
between the neutron at r and the atom at r, is assumed.
The cross section for a process which leaves the
ground state 4 of the liquid unchanged is

a'a. =
i Vy)(k' —k) i~8(k' —kt) d k', (Al)

k

where a =3 x 10 "cm is the s-wave scattering length
and k is the wave-vector of the incident neutron. The
matrix element is given by

f(q) =— p(z) e'~=dz1

Po
(A3)

with

p(r)) =N 4 dr2. . .drtt/ (A4)

o = (a p rr A/2kk ) ( f(2k.) )

and thus the reflection coefficient is

R = o/3 cost) =a'porn'ff(2k )f'/2k'

(A5}

(A6)

so that R is directly related to the Fourier transform
of p(z). For example, if p(z) = po/(1+e"=) with a
Fourier transform

f(q) = (zri/a) c—sch(eq/a) +n5(q) (A7)

and po is the bulk density. Substituting Voo into the
expression for cJ gives

ht'

Voo(q) = 4 e 4d r, ...d rp„.
/

the reflection coefficient is

R = —[a porr2/(k a) csch(2trk /a) j (A8)

4'e ' d r~. ..d r/v
As a ~, scc h(2mk/ )a /2ankz and thus
R —n'pota'/8k ', the .expression for a step profile.
Using a =3 & 10 "cm and o, —1 A ' yields

p(r)e'~'d r R = (2 x 10 "/k ') csch'(6. 3k ) (A9)

= w I,y(q.), (A2)

where 3 is the area exposed to the incident beam.
The function .f(q) is the Fourier transform of the
normalized density function p(z),

0
where k. is expressed in A '. Assuming a typical

0
momentum transfer, 2k. =0.2 A ', we obtain
R =4 &10 which would be very difficult to measure
unless the incident beam were exposed to a large
number of free helium surfaces, as for example, in

helium adsorbed on Grafoil.
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