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In this paper the dielectric matrix and its inverse are calculated for diamond using electron energies and wave
functions obtained by diagonalizing a simple molecular-bonding Hamiltonian. Results of the static longitudinal
macroscopic dielectric function and of the phonon frequencies at the I' point are presented. This macroscopic
dielectric function is derived from the linear response of the system to an external perturbation in the Hartree
approximation, i.e., neglecting the explicit influence of exchange and correlation in the linear-response
formulas. The parameters in the Hamiltonian matrix are fitted to the experimental values of the indirect band
gap and valence-band width. Results of the macroscopic dielectric function are given in the A, =, and A
direction. The effect of the off-diagonal elements, accounting for the variations in the local electric field, on
the macroscopic dielectric constant at zero wave vector, is 14%. A comparison is made with other
calculations. The double summation over reciprocal-lattice vectors in the electron-nuclear part of the
dynamical matrix is performed through a factorization procedure. Convergence is achieved by summing over
1185 shells. The calculated value of the optical frequencies at the I' point is 4.45 X 10'* rad/sec, compared with
the experimental value of 2.51 X 10'* rad/sec. The results show that in this model a realistic macroscopic
dielectric function does not necessarily guarantee agreement between the calculated and experimental phonon

frequencies.

I. INTRODUCTION

The diagonal part of the static longitudinal di-
electric function in the Hartree approximation for
diamond has been calculated before.'”® Diamond
has a very pronounced covalent bonding character
and in that respect serves as the prototype of co-
valent semiconductors. As such they have a
strong anisotropic electron charge density, some-
thing which is reflected in band-structure calcu-
lations where a local orbital scheme seems to be
preferable over plane waves or orthogonalized
plane waves. Nevertheless, an isotropic-charge
model has served a good purpose to describe the
electron-density response function of such sys-
tems.'"* Other calculations are mostly based on
pseudopotentials®~® and in one case Hartree-Fock
wave functions and energies have been used for
the expression of the Hartree dielectric function.”

Hanke and Sham® have evaluated the imaginary
part of the macroscopic dielectric function de-
rived from linear-response theory applied to the
Hartree-Fock Hamiltonian, with a tight-binding
approximation for the electron wave functions and
energies.

It is well known that band-structure calculations
based on pseudopotentials or Hartree-Fock or any
of its approximations are quite involved. For a
linear-combination-of-atomic-orbitals-type cal-
culation for example, a large number of overlap
integrals of basis functions and of matrix elements
of the Hamiltonian between such functions has to
be taken in order to achieve convergence in the

calculation of the energy bands. Because of the
necessity to keep all these overlap integrals, the
calculation of the dynamical matrix or dielectric
matrix becomes very difficult and little room is
left to test out such things as integrations over
the Brillouin zone or summation over reciprocal-
lattice vectors. It is for these reasons that in this
calculation a molecular-bonding Hamiltonian is
chosen.® This model yields a band picture which
has the overall features of a full band calculation.
It has built in the covalent bonding property, typi-
cal for diamond, but still keeps the computation
relatively simple.

Based on this model, a calculation of the micro-
scopic dielectric matrix, macroscopic dielectric
function, and dynamical matrix has been made in
which the integration over the Brillouin zone ap-
pearing in the dielectric matrix, the inversion of
this matrix, and the summation over reciprocal-
lattice vectors in the dynamical matrix has been
tested out.

In Sec. II a review of the formalism to calculate
the macroscopic dielectric function and the dynam-
ical matrix for a covalent-bonding Hamiltonian is
given. In Sec. III the results of the macroscopic
dielectric function versus wave vector and of the
optical frequencies at the I" point for diamond are
discussed and compared with other calculations.

II. SUMMARY OF THE FORMALISM

The microscopic theory of the longitudinal di-
electric matrix and of the dynamical matrix of
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insulators and semiconductors has been treated in
several papers.’®”'® One of the basic differences
between this theory and the formalism applicable
to free electronlike metals is, as one knows, the
appearance of off-diagonal elements in the dielec-
tric response matrix.'”~?! These terms arise in a
natural way if one uses Bloch functions instead of
plane waves for the electron states. Physically
the off-diagonal elements describe the local vari-
ations of the microscopic field E (q).

The function describing the macroscopic dielec~
tric response of the electrons in a crystal to an
electric field is related to the microscopic
screening, as Adler'” and Wiser'® showed, by the
expression

€n(@, w) =[€71(@,0,0,w)] ", (1)

where €7%(q, 0,0, ) is the (1,1) entry of the inverse

of the dielectric matrix €(q, 6, -é', w). The matrix

sentially the harmonics of an incoming wave, gen-
erated by the crystal through Bragg reflection off
the lattice sites.

Owing to these elements, the left-hand side of
Eq. (1) is not just equal to the (1,1) entry of the
dielectric matrix €(q, 0,0, w). The so-called local
field corrections are defined as the difference of
the macroscopic dielectric function and of
€@,0,0, w).

The dynamical matrix of the system can be split
up into a nuclear-nuclear part and electron-nu-
clear part. Following Sham'® the expression for
the latter is given by

D2 a) =3 (Xeol@;3,6, )
GG’

- bab Z X“B(ac; 0’ as a')) )
T

elemegts, fO_JE one or both reciprocal-lattice vec- @)
tors, G and G’ different from zero, measure es- with
Xoplab; &, G, &) = [1/ (M) V2] (1/00) [@ + B VG +8)eTRex @, G, G)e T Fov, @ +8)@+E)) - )

« (and B) denote the three Cartesian components;
a (or b,c) refer to the different atoms in the unit
cell; M, (M,) is the mass of the ath (bth) atom
and v, the volume of the unit cell; V,(K) is the
Fourier transform of the bare ion potential of the
ath ion. This potential is a bare Coulomb poten-
tial if all the electrons, core as well as valence
electrons, are treated on the same footing in the
density response matrix X. If the core electrons
are omitted from the response formulas and con-
sidered to move rigidly with the nucleus, then a
pseudopotential should be chosen in order to ac-
count properly for this part of the screening.

In order to obtain the electron bands and the
wave functions needed in Eq. (1), one must solve
the eigenvalue equation of a single particle Ham-
iltonian, such as the Hartree-Fock Hamiltonian
or any of the local exchange approximations. The
procedure amounts to diagonalizing the Hamil-
tonian matrix calculated between Bloch functions
which are built up from a truncated set of local
orbitals. Many authors prefer Gaussian or Sla-
ter type orbitals.???®* However, several groups
use directly molecular orbitals which have the ad-
vantage that crystal binding can be incorporated
in the calculation right from the beginning. Hall?*
applied this idea of molecular binding to diamond
by using sp® hybridized orbitals and only nearest-
neighbor overlap. Weaire and Thorpe® extended
this by proposing a model Hamiltonian in terms
of projection operators formed by these sp*® or-
bitals.

This Hamiltonian consists of two parts: one de-
scribing the strength of the overlap between dif-
ferent lobes centered on the same site, the other
describing overlap between lobes with the same
orbital number on different sites. Overlap be-
tween the same lobes on the same site is omitted
since this would just introduce an additional con-
stant and accordingly shift the energy levels by a
constant amount. If one limits the overlap between
lobes pointing in the same direction to nearest
neighbors, one has only two parameters V, and V,.

This is shown in Fig. 1 where the four different
lobes on the same atomic site are indicated by the
numbers 11-14, and the lobes from the four neigh-
boring sites by the numbers 21-24. Lobes 11-14
match, respectively, with lobes 21-24.

In the case of diamond which has four electrons
in the outer shell, one can construct four hy-
bridized sp® orbitals with their lobes directed to-
ward the four nearest neighbors. These lobes can
be written as a linear combination of the 2s, 2p,,
2p,, and 2p, hydrogenic wave functions and point
in the directions of the four nearest neighbors.

With only four lobes per atom and two atoms
per unit cell (the core states are neglected), a
total of eight electron bands will be obtained. The
electron wave functions are

¥,E D= cua®@ei, KD , @)
ia

with



FIG. 1. Diamond crystal showing covalent bonds.
Numbers 11-14 indicate the four atomic orbitals from a
central atom 1, while numbers 21-24 refer to the atomic
orbitals from the four nearest neighbors of atom 1.

- 1 “«R.+R > > =
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(5)

where ¢;, is the wave function of the ith lobe on
the ath atom. N counts the number of unit cells in
the crystal.
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At this point a further simplification is intro-
duced by assuming that the local orbitals are
Wannier functions, i.e.,

[ a2, G- R, - RaJor - Ry - Ra)

=6‘1-'26"1-?26‘1-‘2 - ()

This assumption implies that the overlap matrix
is diagonal and equal to the unit matrix and further-
more that matrix elements between wave functions
centered on different sites are zero. Of course,
overlap, as well as exchange and correlation ef-
fects, is taken into account implicitly by adjusting
the parameters V, and V, to the experimental band
gap and valence bandwidth.

To describe the linear response of the electronic
system to an external potential only the Coulomb
interaction between the electrons is taken into ac-
count, neglecting all exchange and correlation.
The result is the well-known Hartree expression
for the dielectric matrix.?! However, the model
used here describes the covalent bonding by hy-
bridized orbitals and as such some exchange and
correlation is included in the wave functions and
energies through the parameters V, and V,. This
procedure is, of course, not entirely consistent.
Instead, Hartree energies and wave functions
should be used.

As was previously done by Lukes and Nix,?® the
following additional assumption will be made in the
calculation of the matrix elements of the dielectric
matrix:

=6,1',26a1'026‘1',-2fd;gp,?"lal(F—-ﬁ,l—ﬁul)e“‘"q){l,l(F-R,‘-Ral) -

This assumption is more restrictive than the Wan-
nier approximation because only the diagonal terms
of the Fourier transforms of the overlap between
lobes on the same site are taken into account.

III. DISCUSSION OF RESULTS FOR DIAMOND

In order to calculate the dielectric function of
diamond, one could simply fix the values of the
two parameters in the Hamiltonian, V, and V,, by
fitting €(0, 0, 0, 0) to the experimental value of the
dielectric constant® and by choosing the overall
best curves of €(q,0,0,0). However, the purpose
of the present paper is to see whether a simple
band model can give a reasonable dielectric func-
tion without fitting the dielectric function itself.
Therefore, the parameters are chosen such as to

L

give an acceptable band structure by fitting the ex-
perimental indirect band gap of 5.47 eV and the
valence bandwidth of 21 eV. The result is a value
of -5.25 eV for V, and -14.15 eV for V,. These
values are obtained with a lattice constant of

3.56 A. The corresponding band structure was
first given by Weaire and Thorpe.

Compared with other band calculations,??:23:27-32
this model is quite reasonable for the valence
bands. The top valence band, however, is flat.
The width of the conduction bands is the same as
that of the valence bands which is 1.8 times larger
than the result of a linear-combination-of-atomic-
orbitals band-structure calculation by Chaney
et al. who start from a Hartree-Fock equation with
Kohn-Sham exchange. However, according to
Walter and Cohen® the influence of the higher bands
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on the dielectric function is rather small. In this
Weaire-Thorpe model, the band gap is direct at
the I" point. The flatness of the top valence and
conduction bands can be removed by including
nearest-neighbor overlap in the calculation of the
Hamiltonian between Bloch states.

The integrand of the microscopic dielectric ma-
trix does not have the full syminetry of the diamond
group, O], for a general a vector, but transforms
according to certain subgroups depending on the
direction of this vector. For q=0, however, it has
the full O] symmetry in the same way as the Fou-
rier transform of the charge density. In the latter
case, Baldereschi®® remarked that one could con-
veniently choose one point in th of the Brillouin
zone (BZ) for which, in the case of Ge, the inte-
gration over K space had converged to within 1.7%
from the value of a 512-points integration. Chadi
and Cohen®*:3% extended the Baldereschi procedure
to include several points in the irreducible ele-
ment of the BZ.

For a { vector different from zero, an appropri-
ate subgroup of O] has to be used in order to find
the region of the BZ for which this integrand re-
mains invariant upon transformation by this sub-
group. A complete analysis of how to use the sym-
metry is given in Ref. 36. This procedure reduces
substantially the number of mesh points to be
used. Depending on the K vector one considers,
the reduction factor can be as high as 8, 4, or 6,
respectively, for a vector in the A, =, and A direc-
tion. The weights of the integration points have to
be multiplied by the right multiplicity.

The dielectric function €(d, 0,0, 0) has been cal-
culated for a mesh with, respectively, M =4, 6, 8,
10, and 12, where M defines the number of divi-
sions of the interval between theI' and X point. The
last case corresponds to 864 mesh points in the
whole zone or 28 in the irreducible element. The
results of this integration differ by 1.8% with re-
spect to the case M =10, which corresponds to 20
points in the irreducible element. This relatively
small change can be attributed partly to the matrix
elements in the expression of the dielectric ma-
trix, which vary slowly with respect to the wave
vector in the BZ and partly to the top valence and
conduction bands, which are constant over the en-
tire zone.

The (1,1) element of the dielectric matrix is
shown in Fig. 2 for three directions of the vector
4, i.e., A, Z, and A. For comparison, the re-
sults of Penn’s interpolation formula are also
given, with the plasma frequency equal to 31.27
eV and the band gap equal to 13.84 eV. Since in
all Penn-like calculations the value of €(0,0, 0, 0)
is fitted to the experimental macroscopic con-
stant, a band gap is found which is about two times

e!lﬁl)

~

A (1,0,0)
-——-{2 (1,1,0)

A (1,1,1)
Penn - model

w »~ wm
e e

N
e T

r‘
r
L
~

(=}
o
~
o
®
N
o

FIG. 2. Calculated 6(6, 0,0,0) vs a for three directions
(A,Z,A). The dotted line represents the results of
Penn’s interpolation formula with Eg,,=13.84 eV.

too big.

In Figs. 3-5, €(q,0,0,0) is compared with the
calculated macroscopic dielectric function, given
in Eq. (1), for the same three directions, as a
function of the wave vector. There are three ma-
jor features in these curves which can be compared
with earlier calculations!™* 219253738, the values
of €(0,0,0,0) and of the macroscopic dielectric
constant €,,(0,0), the directional dependence of the
macroscopic dielectric function, and the presence
of a hump for small q values. In all three features
the present calculation differs from the one by
Lukes and Nix*® in the following aspects. In the

A
Without local field
With local field

~. ——
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FIG. 3. Diagonal of the dielectric matrix €(d, 0, 0, 0)
and the macroscopic dielectric function €,(q) vs q in the
A direction showing local field corrections.
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FIG. 4. Diagonal of the dielectric matrix €(g, 0, 0, 0)
and the macroscopic dielectric function €,(q) vs g in the
Z direction showing local field corrections.

latter calculation the parameters V, and V, are
chosen to match the value of the macroscopic di-
electric constant at =0 and to give an overall
good fit to the dielectric function, i.e., to the dia-
gonal of the microscopic dielectric matrix. Fur-
thermore the calculation of Lukes and Nix is only
valid for the direction of the wave vector in the A
direction and therefore does not include a direc-
tional dependence on the wave vector. Finally, in
the present calculation the macroscopic dielectric
function, which is the quantity with real physical
significance, has been calculated.

In the present calculation a value of 6.425 is ob-
tained for €(0,0,0,0). The calculated value of the
dielectric constant ¢, (0,0) is 5.537 which should
be compared with the experimental value of 5.7.
The local field corrections are -0.888, which is
a reduction of 14% compared with €(q, , 0, 0, 0) at
d=0. As Sinha® pointed out, the local field cor-
rections in the Lorentz-Lorenz limit tend to be
positive. However, the sign of the corrections
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FIG. 5. Diagonal of the dielectric matrix €(q, 0, 0, 0)
and the macroscopic dielectric function €,(q) vs q in the
A direction showing local field corrections.

seems to depend heavily on the model for the elec-
tronic band structure. In their calculation Van
Vechten and Martin®’ found a negative local field
correction of —0.4 (from 5.4 to 5.0) at small wave
vector and low energy, w=1.5 eV. Similar re-
ductions were found by Johnson'® and by Brener.”

Hanke and Sham calculated the optical spectrum
of diamond in the time-dependent Hartree-Fock
approximation assuming that the orbitals are Wan-
nier functions. On top of the exchange correction
from the self-consistent Fock term in the Hamil-
tonian, the local field corrections, coming from
the off-diagonal elements of the dielectric matrix,
have also been taken into account. In their calcula
tion the value of the static dielectric constant is
6.0 compared with a value of 5.1 for the diagonal
of the dielectric matrix in the Hartree approxima-
tion at zero wave vector, i.e., without local field
effects. This means that the corrections, due to a
combination of both the local field and the exchange,
increase the Hartree value of 5.1 by 17%.

The directional dependence on q of the diagonal
of the dielectric matrix as well as of the macro-
scopic dielectric function is stronger in this cal-
culation than in the results of Johnson® and in
calculations on Si by Walter and Cohen.® It de-
creases for a fixed wave vector from the A to the
A direction. This is so because the density re-
sponse function has its maximum in the (1,1,1)
direction where the electrons in a covalent bond
are located. This is in accordance with Walter
and Cohen’s result for Si. The present results do
not show a hump for small a values, contrary to
the results of the calculations by Penn,! Sriniva-
san,? Nara,® and Lukes and Nix.?® Such a hump can
be obtained for small ¢ vectors by integrating the
dielectric function only over the irreducible ele-
ment of the BZ, i.e., by assuming that the inte-
grand exhibits the full O symmetry for q different
from zero. Neither is there a strong directional
dependence for small ﬁ as is found by Nara® for
Si. Martin* observed that the existence of such a
hump is doubtful because it would lead to negative
elastic constants. The local field corrections de-
crease in magnitude as a function of a. Physically
this means, as one would expect, that the larger
the wave vector of the electric field the more the
local structure of the crystal is felt by the wave.
For large wave vectors, of the order of half a
reciprocal-lattice vector, the screening effect of
the electrons in the crystal has almost disappeared.

The dynamical matrix has been evaluated and
diagonalized at the I" point of the phonon spectrum.
In the form it is given in Egs. (2) and (3), the
density response matrix, which enters in the elec-
tron-nuclear part of the dynamical matrix, has to
be calculated for all reciprocal-lattice vectors
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and a double summation over all these vectors has
to be performed. It is clear that such a procedure
can be executed only if the matrix elements of x or
the Fourier transform of the electron-nuclear po-
tential, or both, become small rapidly enough
with increasing G. As far as X is concerned this is
unfortunately not the case for the diagonal as well
as the off-diagonal elements. Even in the 8th shell
the modulus of the off-diagonal elements is still

of the same order as the one of the diagonal ele-
ments.

As far as the electron-nuclear potential is con-
cerned, one should realize that a bare Coulomb
potential cannot be used. This is due to the fact
that only the 2s and 2p valence electrons are in-
cluded in the dielectric response calculation,
leaving out the 1s core electrons. In order to take
their screening effect of the nucleus into account,
a model potential may be used. In the present
calculation an empty core potential with zero well
depth is chosen:

Va(K) =(1/v,)(4n/K?) ZcosKr, ,

where 7, is the radius of the atomic 1s core elec-
tron shell. Its value is 0.38 A. Z is equal to 4.

As was pointed out by Sinha*! and by Hayashi and
Shimizu*? for the tight-binding approximation and
later shown for the general case independently by
Pick et al.,' Sham,*® and Hanke** when the elec-
tron wave functions are expressed in the Wannier
approximation, the polarization matrix can be
factorized into a product of three matrices. Con-
sequently, the dielectric matrix can be inverted
in a simple way. The net effect of this procedure
in the present calculation, where all overlap be-
tween lobes on different sites is neglected [Eq.
(6)], is that instead of having to invert a matrix
in reciprocal-lattice vectors, a matrix in the
Wannier lobes has to be inverted, i.e., a 8X8 ma-
trix. As Sham*! showed, with this simplification
the dynamical matrix reduces to a single sum over
reciprocal-lattice vectors. As a result the con-
vergence of both the inverse dielectric matrix and
the dynamical matrix can be thoroughly investi-
gated. Table I shows the convergence of the de-
terminant of €, the macroscopic dielectric func-
tion, and the dynamical matrix, in the limit as §
goes to zero, in terms of the number of reciprocal
lattice vectors and the shells used in the summa-
tion. Whereas the determinant of ¢ seems to con-
verge rapidly (the value calculated with only 27
reciprocal-lattice vectors differs only by 2.5%
from the one with 59 vectors), this is not the case
for the dynamical matrix.

In the determinant of € the terms obtained from
products of elements belonging to the same star
tend to cancel each other. This symmetry property

TABLE I. The values of the determinant of the dielec-
tric matrix €, the macroscopic dielectric function €,,,
and the optical frequency wgy (in 10! rad/sec) in the
limit as § goes to zero are given for five different sum-
mations. The first two columns give the numbers of
shells and lattice vectors, in reciprocal space.

No. No.
shells  vectors dete €m Wopt
27 537 13.24 5.518 4.11
104 2891 13.45248 5.592 593 4.32
261 8393 13.452 643 5.5925859 4.448
641 23 049 13.452658 9 5.592585 63 4.465
1185 44 975 13.452660 1 5.5692585 62 4.454

is destroyed in the dynamical matrix because each
element of the x matrix is multiplied by a different
factor.

The value obtained for the optical frequencies at
the I' point is 4.45X 10 rad/sec. The experi-
mental value is 2.51X10* rad/sec. It should be
noted that the main objective of the calculation at
this stage is to investigate the possibility to evalu-
ate the dynamical matrix for diamond as far as the
convergence goes, and not the value of the optical
frequencies as such. Second, this calculation
shows that a realistic result for the static dielec-
tric properties does not guarantee per se a simi-
lar agreement with experiment for the phonon fre-
quencies. Whereas the value of the macroscopic
dielectric constant is determined to a large extent
by the average over the Brillouin zone of the energy
gap between valence and conduction bands, the sit-
uation for the phonons is much more complicated.
In order to get a realistic phonon spectrum, one
must have the right long-range and short-range
forces.

To summarize, in this paper the macroscopic
dielectric response function is calculated for dia-
mond starting from a simple molecular bonding
Hamiltonian. Diagonalization of this Hamiltonian
yields a set of energies and wave functions which
are used in the calculation of the dielectric func-
tion. This function shows a dependence on the di-
rection of the wave vector. The off-diagonal ele-
ments contribute 14% to the macroscopic dielectric
constant. In this model the electron-nuclear part
of the dynamical matrix has been evaluated at the
T" point via the use of the factorization procedure.
The convergence of the summation over reciprocal
lattice vectors is investigated.
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