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The effect of an impurity on the spectral properties of a dielectric medium is analyzed, using the dispersion
self-energy formalism. Estimates are made of the energy shifts of the impurity. The case of the free electron
in a dielectric medium is discussed as the limit of a loosely bound impurity, and a generalization of the
stationary polaron picture is derived. The effect of the finiteness of the dielectric medium on the energy shift
is analyzed within this formalism, taking the example of an electron in a thin dielectric film.

I. INTRODUCTION

In an earlier paper' (hereafter referred to as I),
the binding energy of an impurity in an ionic crys-
tal had been evaluated through the frequency shift
of the LO mode of the crystal. This approach is
not directly applicable to an impurity in a general
dielectric medium. However, many of the prop-
erties of an impurity in a dielectric medium, such
as its binding energy and the features of its spec-
trum can be related to the dielectric response of
the medium. In general, there will be many con-
tributions to the dielectric response, and a theory
of the properties of an impurity must take all of them
into consideration. QOur object inthis paper istopre-
sent an analysis of the properties of an impurity ina
dielectric medium, based on the dispersion self-
energy formalism.

II. GENERAL THEORY

The theory of dispersion energy can be adapted
to this problem in the following manner. We con-
sider an impurity at R, whose dynamic polariz-
ability density in its nth quantum state can be rep-
resented by a,(T -~ R; w). The electric field at any
point T in the medium is connected to that at T
through the relation

B 0)= [CE,7;0)

Xa, (¥ -R;w) E(F; w)d® . (1)
Here G(F, T'; w) is the dyadic Green’s function con-
necting the field at T with a dipole source at T’.

If the size of the impurity is small_‘ i.e., if
a(F - R; w) is highly peaked near T=R, Eq. (1) can
be written in an approximate form

EF; 0)=G,F, R; 0) - E®; ), )
where
GG, w)= j GE ™ 0)a,F -7 w)dr". )

Equation (2) leads to the secular equation
rf_.én(ﬁs ﬁ; w) I =0 ’ (4)

whose roots give the perturbed frequencies of the
field, and hence the change in its zero-point en-
ergy, which is the dispersion self-energy of the
impurity.

The above theory for a small impurity has been
used in earlier work.?* A more general theory
must obtain the secular equation from Eq. (1) for
all sizes of the impurity. This is readily done
taking the Fourier transform of this equation,

@)= [ CE & +ka, @) - EE)

X e-ii‘bidakr dsk» , (5)
where
>, 1 -4 e
00 =y f ety F)ddsr, (6)

and a similar equation is satisfied by _ﬁ(l:), and
- 1 il
G(k, ')=(2—,,)§ IEG, r)e-ter

X efB"F g3y g3, (7

The procedure for evaluating «,(k, w) from the
electronic wave functions of the impurity has been
outlined in I. Its explicit form (as a dyadic) is

(K, )= - (2?;;% zm: ((nl?elmxm PRI

Wy + @

R Ie  ) )

2
Wy = W k

®)

It will be an isotropic tensor when |z) is a sym-
metric state, and we shall be concerned with only
this situation. Replacing the integration over &”
in Eq. (5) by a summation, it can be written
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B®) =2 G,k k") -E®"), ©)

T
where

— - - 3 — - - - -
Gy(K, k")=-(—2-;l f Gk, & + k")ar,, (&)

X eF Ry | (10)
V is the volume of the solid, assumed to be large.

Equation (9) leads to the more exact secular equa-
tion

D, (w)=|f -G, w)|=0. (11)

Here, both Tand G are infinite dimensional ma-
trices, and the (3 x 3) submatrices of G,,(w) are
the G (k, k") defined in Eq. (10).

The expression for the dispersion self-energy,
as indicated in earlier work®™ becomes

EM= f dwTrE ([G (@)] /l) (12)

ani

To the first two leading orders, this can be writ-
ten

(n) _
E{m=

4:;. f dw Tr<z E,,(E, k)

+3 5 TR RICR,Reee).
kX’
(13)

The properties of the medium enter throughﬁ,,,
which is governed by its dielectric response.

The shift in the relatively sharp spectral lines
of an atom or ion when it is inserted into a med-
ium as an impurity can be obtained, as indicated
inanearlier work,® by taking the difference inthe
dispersion self-energies of the atom inthe two levels
between which the optical transition occurs. We
shall, however, be dealing with the spectral prop-
erties of the system as a whole, which can be
described in terms of the spectral density function
&n(w)

&n(w)= Im[(%) d% InD,(w+ iO‘)]

= _Im{(l) Tr[;w E ([5..(w+ i0‘)]'/l>]} .

(14)
In this form, the poles (3,, arising out of the di-
electric response of the medium, as also those
from o, will automatically be included.
In a homogeneous dielectric medium with no
spatial dispersion, G(T, ¥; w) has the simple form

GF, T w)=- (VV,)?(T))T;_:_?T
f (kK) e FE g3 (15)

“@r 3<(w
where €(w) is the dielectric constant of the medi-
um at the frequency w. In this case, Eq. (10) be-
comes

> =, (4m@2n)
Gk, k™ @) = - Ve(w) <75T>

X a, (K -Kk"; w)e tEENE (16)

A A point to note here is that the representation
in k space implied by Egs. (15) and (16) is strictly
valid in a truly continuous medium. In a real sit-
uation when & exceeds various critical values (cor-
responding to shorter wavelengths), the graininess
of the medium will appear, and the continuum pic-
ture will break down. A natural cutoff from this
point of view is &, =2m/d, where d is the inter-
atomic distance in the medium.

A more important cutoff in 2 space arises from
the polaron effect which we shall discuss in Sec.
III. This is the value of 2 beyond which the cou-
pling of the dielectric medium with an electron in
it disappears. These cutoffs in # space render
the sums in Eq. (13) finite.

III. ENERGY OF A FREE ELECTRON IN A DIELECTRIC:
THE POLARON PICTURE

A free electron in a dielectric medium of a spe-
cial type, i.e., an ionic crystal, has been studied
in great detail within the framework of the polaron
picture.>”” We shall indicate here the connection
between the polaron concept and that of the dis-
persion self-energy, and shall also indicate a way
of generalizing the polaron concept to apply to the
electron in a general dielectric medium.

The polaron concept is based on two tenets.

(i) The electron lowers its energy in a dielectric
medium by an amount

AE=(e®/R)(1/€-1), a1

where R is the size of the polarization charge in-
duced by the electron.

(ii) If the medium has a characteristic frequency
w, of polar oscillations, the coupling of the elec-
tron with that mode can be assumed to reduce
sharply at velocities exceeding that at which the
distance travelled within the period (27/w,) ex-
ceeds its de Broglie wavelength (which is a mea-
sure of the extent of the localization of the elec-
tron and hence of the polarization cloud).

This critical velocity v, gives a cutoff wave num-
ber k&, satisfying the equation
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ky=wo/v,=mw,/hik,
or (18)
ky= (mwy/H)2.

For an electron in a plane-wave state correspond-
ing to a wave number k#<k, we can assume that
the energy of interaction is

ek e fmw )m
—_— 2 [ = —_— 0 = .
Vint""' 2T (( ) 217?( 7 yh—wo’

(19)

Yo (m/hw)' 2,

217(

Here 1/€ stands for 1- (1/€). v is the coupling
constant which Frohlich has evaluated®—in his
notation it is denoted by «.

The shift in the energy of the free electron due
to its coupling with the phonons corresponding to
the polar oscillations of the medium of frequency
w, is a particular case of the problem of its en-
ergy shift in a general dielectric medium. This
shift can be evaluated from its dispersion self-
energy in the following manner.

From Eq. (8), using box-normalized plane-wave
states, we get, for the free electron,

a(k, w)= (e2/Vmw?)s (k) . (20)

Using this in Egs. (16) and (13), we get for the
dispersion energy difference between vacuum and
the medium the expression

ap=- g f a Z((w) )(4ﬂ><"j") @

In view of the situation 1 explained at the end of
Sec. I, we expect the K sum to have cutoffs. If
the medium has one polar frequency w,, as inI
we can write €(w) in the form (as is consistent
with a low-density crystalline medium)

47Ne*? 1
e(w)=1+ ST (22)

0

where N is the number of cells per unit volume,
e* and M are the effective charge and mass of

the oscillator in each cell. The pole of (1/€) -1
in Eq. (21) will be very close to w, in this low-
density approxima_iiion. Taking this approximation
and replacing the k sum by an integral over a
sphere of radius k,= (mw,/%)'/?, we get the result

ez m 1/2
A€=~ g:n—z-h_— (ﬁ;) ﬁwo = —'yﬁwo . (23)
Here
1 _47mNe*® 1
§ M2 ~< - €(0)> : (24)

The constant y here differs from that in Eq. (19)
by an unimportant numerical factor. This result,
which has already been alluded to in I, indicates
that the energy shift occurring in Frohlich’s po-
laron problem is implicitly contained in the dis-
persion self-energy of an electron in a dielectric
medium,

If there are several characteristic frequencies
in €(w), i.e., if €(w) has the form

€(w)= 1+41rN< >Z f’ (25)

where f; is the oscillator strength associated with
the Ilth frequency, a procedure similar to the above
leads to the result

Aex-2 v i, (26)
H
where
e m \*/? 1 4nNe?f
7"_'6112,75(%?,) S T Tt 27)

IV. IMPURITY IN A DIELECTRIC MEDIUM:
BINDING ENERGY AND FREQUENCY SHIFTS

We shall consider here only those impurities
which form hydrogenic bound states in the solid,
with the electron wave functions spread out over
a few lattice cells so that local-field corrections
are negligible. The coupling of the impurity with
the medium is complicated, but it can be split
up in the following manner. Firstly, the forma-
tion of the hydrogenic system takes into account
the dielectric screening of the impurity-ion po-
tential which forms the bound state with the elec-
tron. Secondly, after the bound state is formed,
the impurity interacts with the medium through
its polarization fluctutations. The former inter-
action is included in the effective Bohr radius a,
that characterizes the impurity ground state. The
latter interaction can be studied in the dispersion
self-energy formalism,

As in I, we make the assumption (for the impur-
ity in its ground state)

a(k, w)= a(w)(K) . (28)

The explicit form of 7(k) is not as important as
the fact that it is a peaked function with a spread
of the order of 1/a,. As indicated in Sec. II we
are concerned with the secular determinant D (w)
of Eq. (11), using

(4m)(27)2a(w) { KK\ = =,
Ve(w) \ 22 )f(k‘k )

Xe-i(;-;")-ﬁ . (29)

‘G."(E, E"; w)=—
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The energy shifts can be computed in exactly the
same way as in Sec. III, the only dﬁference being
the occurrence of the form factor f(k k"), which
introduces a cutoff in the k sums occurring in
Eq. (13) at about 1/a, in the second- and higher-
order terms. We shall give here the results (in
the first two orders) for the shift in the binding
energy of a loosely bound impurity

457t r 3/2
AE——Z?’xﬁw [1+ 16 )/,(m) ]- (30)

This result is entirely analogous to that obtained
for an impurity in an ionic crystal in I by direct
estimation of the frequency shift of the polar mode
of the crystal.

Of some interest is the change in the spectral-
density function of the system consisting of the
medium and the impurity due to the latter. ThlS
is obtained from Eq. (14) substituting for G (k
ke, ; w) from Eq. (29). For a small concentration
of 1mpur1t1es, the optical absorption of the sys-
tem would be given approximately by Eq. (14) mul-
tiplied by the concentration in the right-hand side.

The shifts in the principal absorption frequencies
of the medium due to the impurity can be estimated
with reasonable accuracy from an approximate re-
lation
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Dy(w)=1-Tr [é,,(w)] -0
or (31)

14 dma(w)
Ve(w) Z =0.

If the summation over Kk is cut off in the manner
discussed earlier, Eq. (31) can be written

)

When the above formulas are applied to the
case of an impurity in an ionic crystal (as in I),
the results already stated in I are readily obtained.
But this formalism is obviously of wider applica-
bility to any type of medium.

V. SURFACE EFFECTS

In this section we calculate the self-energy of
an electron in a dielectric slab of thickness L
usmg the result (13). The Green’s function G(F,
T; w) for this case? consists of two parts—the
flrst part is the same as Eq. (15), while the sec-
ond part arises due to the finite size of the medi-
um

S |
- YV 1 A [ & explik-(-7)]
G(r, r, w) == E(w) (l k[l - Az exp(_4kL)]

x {expl—k(z + 2’) — 2kL]+ A exp[~k(z — 2") — 2kL]

+ expl+k(z+2") - 2kL]+ A exp[k(z - 2') - 2’”‘]}) , (32)

where A=[e(w)-1]/[e(w)+1], § is the position
vector of T in the plane parallel to the surface of
the slab, and z is the corresponding perpendicular
coordinate with the center of the slab as the origin.
In the limit of L going to infinity the second term
in Eq. (32) vanishes as is expected. Substituting
Eq. (32) into Eq. (7) and utilizing the result in Eq.
(13) enables us to calculate the self-energy fol-
lowing the procedure of the earlier sections. For
simplieity, considering only the first term in the
expansion (13) and restricting to lowest order
terms in 1/L, allows us to write

ap=-3 o, [1- (zgﬁf) el e

where C is an unimportant numerical factor of the
order of unity. For large L the second term in
Eq. (33) becomes negligible while for L small but
larger than (7/mw,)*/2, the effect of the slab thick-
ness can become significant.

V1. CONCLUSION

The main purpose of this paper has been to il-
lustrate the various ways in which the concept of
dispersion self-energy can be used to analyze the
properties of an impurity in a dielectric medium.
This is in the same framework as the semiclas-
sical treatment of interaction of radiation with
matter which was the basis of I. It may be em-
phasized here, however, that in this framework
the problem is analogous to other impurity prob-
lems in solid state physics, notably the lattice
dynamics of crystals with impurities. Instead of
dealing with atomic displacements we are dealing
with polarizations in the lattice cells, and the im-
purity introduces additional correlations among
the polarizations leading to new absorption fre-
quencies obtained from a secular equation of the
type given in Eq. (11). It is also demonstrated
that many of the features of the polaron picture
are implicit in this approach.
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At the moment, apart from the work of Dean,
Manchon, and Hopfield® not much detailed ex-
perimental work has been done on the optical prop-
erties of dielectrics with impurities. Such ex-
periments would be extremely useful, since the
way in which polarization correlations in the med-
ium and in the impurity affect the optical proper-
ties would be clarified through analysis of the ex-

perimental data within the theoretical framework
outlined in this paper.
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