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We have measured the thermal conductivity of solid hydrogen in the temperature range of 1.4-13 K.
Measurements were taken on a single sample over a 196-h period. During this time the ortho-hydrogen
concentration changed from 75 to 19.8 at. %. Because precise temperature control allowed corrections to be
made for changing ortho concentration, thermal conductivity versus temperature is given for constant ortho-
hydrogen concentrations of 20, 30, 40, 50, 60, and 70 at.%. Addition of thermal resistances was assumed
and several curve fits to the data are given, including one with terms proportional to ¢ 2T ~? and ¢T ~3. An
umklapp term is given that also agrees well with the data from previous experiments.

I. INTRODUCTION

The first measurements of thermal conduction
in solid hydrogen were done by Hill and Schneid-
messer' for ortho-hydrogen (0-H,) concentrations
ranging from 0.5% to 72% over a temperature
range from 2 to 12 K. They deduced that the
thermal reésistance that could be attributed to the
o-H, molecules had a temperature dependence
that varied as 7T™", where 2<n<3. Subsequent
measurements by Bohn and Mate,? and Constable
and Gaines® have concentrated on para-hydrogen
(p-H,) (or HD in the case of Constable and Gaines)
with small concentrations of 0o-H, molecules, c
<0.05. At low concentrations of 0-H,, the effect
of isolated 0-H, molecules on the thermal resis-
tance could be determined more readily. A the-
oretical paper by Ebner and Sung® looked at this
effect specifically and predicted a c27"2 depen-
dence for the resistance at low temperatures and
low concentrations. This was only in qualitative
agreement with Bohn and Mate, who obtained a
¢T3 dependence. The measurements by Constable
and Gaines at temperatures less than 1 K, how-
ever, confirmed the results by Ebner and Sung.
In 1975 Kokshenev® took the effect of 0-H, pairs
into account and obtained results that were in bet-
ter agreement with Bohn and Mate, although dif-
ficulties arise for c = 0.05 because of the effect of
higher-order clusters.

The purpose of the present work is to extend the
measurements of Hill and Schneidmesser to in-
clude a greater temperature range and to improve
the overall accuracy. In addition, we have made
use of the fact that the o-H, concentration in solid
hydrogen is time dependent.® A single sample was
grown at the beginning of the experiment, and mea-
surements were performed over a period of ap-
proximately 200 h. This method allowed us to
remove any variation that might occur if a new

crystal were grown for each concentration. In
addition, the changes in 0-H, concentration could
be explicitly taken into account. Since normal pro-
cesses are extremely rapid in solid hydrogen®
(ty—~0), the additive resistive approximation
would appear to be valid. Using this approxima-
tion, we hope to determine explicit expressions
for the umklapp resistance, impurity resistance,
boundary resistance, and the resistance due to

the presence of o-H, molecules.

II. EXPERIMENTAL

Figure 1 is a schematic drawing of the lower
portion of the cryostat which includes the cell
into which the H, was condensed and solidified.
This cell was made of stainless steel (0.952-cm
diameter, 0.018-cm wall thickness, 5.0-cm
height) which was soft soldered to a copper base.
The top of the cell was also copper and had a
germanium resistance thermometer and an evan-
ohm heater H, (R, =987.5 ) mounted on it. The
resistance thermometer had been calibrated with
a standard traceable to the National Bureau of
Standards Provisional Scale of 1965. This cali-
bration was checked periodically during the course
of the experiments and found to be accurate to
within 0.005 K from 1.5 to 20 K. Special care was
taken to insure that the electrical leads were
thermally anchored at the cell top as well as at
other positions in the cryostat.

Since the two-heater method as described by
Bohn and Mate? was to be used for the measure-
ments, copper fins spaced 1.137 cm apart were
mounted in slots cut in the stainless-steel cell.
Evanohm heaters (R ,=981.7 @, R;=982.1 Q) were
then wound on these fins. A radiation shield (not
shown) surrounded the sample cell.

A temperature controller, based on a design
by Tominaga,’ was used to control the tempera-
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FIG. 1. Cryostat schematic. A—sample heater H ,;
B—sample heater Hz; C—sample heater H,; D—sam-
ple thermometer; E—thermometer for temperature
controller; F—heater for temperature controller; G—
helium reservoir; H—helium reservoir heater; I—me-
chanical heat switch; J—hydrogen fill line.

ture of the sample-cell base. The temperature
controller sensing element was mounted in the
sample base along with a germanium resistance
thermometer that had been calibrated previously
between 1.21 and 4.2 K.® This calibration was
extended to 17 K by calibrating it against the
germanium thermometer at the top of the sample
cell. Where they overlap, the two calibrations
agree. By recording temperature as a function of
time, it was estimated that the stability of the
sample cell base AT /T was approximately 0.1%
at 1 K.

The rest of the cryostat is of a somewhat con-
ventional design. The helium reservoir was filled
through a needle valve with liquid helium from the
‘He Dewar when the measurements below 4.2 K
were taken. Above 4.2 K, a combination of the
“He exchange gas in the reservoir, a mechanical
heat switch, and electrical heaters allowed us to
maintain a temperature anywhere between 4.2
and 20 K.

A four-wired dc method was used to measure

the resistance of the two germanium resistance
thermometers. By using a Leeds and Northrup
K-5 potentiometer, a Keithley 147 nanovolt null
detector, and a Keithley 225 constant current
source, a precision of one part in 10° was attain-
able in the resistance measurement at 1.5 K. A
potentiometric method was also used to measure
the dc power inputs to the sample-cell heaters
since the two-heater method of measurement re-
quires that the power inputs are the same.

The majority of the data were taken in a single
continuous experiment lasting 196.5 h. Data from
previous experiments had been collected for
solid hydrogen as well as for the stainless-steel
sample cell. The hydrogen data from two differ-
ent experiments agreed to within the experimen-
tal error.

Hydrogen gas® which had a purity of 99.995%
was condensed into the cryostat at its saturated
vapor pressure from a room-temperature gas-
handling system. By monitoring the amount of
hydrogen remaining at room temperature, it
was possible to determine when the lower part
of the fill line and cell were filled with liquid.
This process took approximately 45 min. The
temperature of the cell base was then lowered
and the solid-liquid phase boundary was allowed
to move up the sample cell at a rate that was de-
termined by the power input to the heaters. The
solidification process was completed within about
2 h. The crystal was grown rather slowly to min-
imijze the number of physical imperfections and
to insure good thermal contact with the heaters
and sample cell base. By using the heaters H,,
H,, and occasionally the heater at the top of the
sample cell individually, a one-heater, one-ther-
mometer method (see Appendix) could be used
to determine the thermal conductivity between
the cell base and the cell top. The data obtained
from this method were consistent with that ob-
tained from the two-heater method. Thus, it
would appear that the crystal quality was the same
over the whole length of the sample. No special
annealing was attempted because of our desire to
obtain data for o-H, concentrations near 75%.

The first data point was taken 5 h after one-half
of the hydrogen had been condensed (¢=0). The
first set of data consisted of measurements above
4 K. Low- (1.5-4.2 K) and high- (4.2-12 K) tem-
perature data were then taken on alternate days.
A series of temperatures that spanned the approp-
riate temperature range were chosen and data
were collected at these selected temperatures
only. The two-heater method (with temperature
differences of ~0.1 K) was the primary source of
the data. This technique was checked for each
measurement with the one-heater method. The
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time at which each data point was taken was also
recorded.

The conductivity was then determined and cor-
rected for the stainless-steel sample cell. These -
data are shown in Fig. 2. Since each point was 0015
taken at a different time (hence, a different con-
centration), the curves do not represent the con-
ductivity at constant concentration. Using
Schmidt’s value for the rate constant [7=19.0 =
x 107 (% h™)], the concentration for each data n
point was determined. (Although this value for
the rate constant differs somewhat from that
given by Ahlers,° we feel that the resulting un-
certainty in the concentration is less than 4% and
is a result of the uncertainty in the rate constant.)
One could then choose those data points that were
taken at one of the previously selected tempera-
tures, and make isothermal plots of conductivity 0.005 |~
versus concentration. In particular, a logarith- -
mic plot yielded a series of straight lines for
temperatures less then 7.2 K. The conductivity
at constant o-H, concentration could then be de-
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FIG. 3. Thermal conductivity of hydrogen at constant
o-H, concentration vs temperature. The temperatures
that were used to obtain these curves are indicated
by the solid circles. The figure also includes error
estimates and some of Hill and Schneidmesser’s results
(Ref. 1). A: 70%; B: 60%; C: 50%; D: 40%; E: 30%
(this paper). From Ref,1: —-+-— 29%; — +— 55%; — — —
72%.

o

termined. It should be mentioned that the low-
temperature-high-concentration portion of the
curves in Fig. 3 required an extrapolation rather
than an interpolation of the data. While there is
a danger in doing this, a similar extrapolation
for data points at higher temperatures (T<7 K)
produced agreement with data that were obtained

K(w/cMm DEG )

for ¢ = 0.50.
0001 ’g — Estimates of the relative error were made.
These range from 2.4% at 1.5 K to 11% at 13 K
—— and are indicated in Fig. 3. The major source of
T (K) error for increasing temperatures was the de-

creasing sensitivity of the carbon resistance

FIG. 2. Original thermal-conductivity data vs tempera- thermometer used in the temperature controller.

ture. Each symbol represents a sequence of measure-

ments. The open symbols are for the one-heater method
and the solid symbols are for the two-heater method. III. RESULTS AND DISCUSSION
Since the o-H; concentration is time dependent, each

point in a sequence is at a different concentration. The t f 1 ortho-hvd trati R
dashed line is for the stainless steel of the sample cell. ure for severa. ortho-hydrogen concentratlons in

The range of 0-H, concentrations for each sequence is: Fig. 3. It can be seen that the conductivity in-

D : 19.8%—-20.4%; A: 21.7%—22.5%; V : 23.9%—24.5%; creases as the ortho-hydrogen concentration de-
O 26,9%—-28.2%; o 30.6%—35.7%; (: 36.2%—37.9%; creases. This is also the general trend obtained
O: 41.8%-45.2%; O: 51.0%—57.2%; 0: 64.8%-70.0%. in previous measurements.!"?

Thermal conductivity is plotted versus tempera-
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Generally, one would assume that the total ther-
mal resistance could be written in the form (all
thermal resistances will be in units of cm K/W)

W=pT=3+bT*5+dT"e™®' 5T 4 W, - (1)

The terms, considered in reverse order, are due
to the presence of 0-H, molecules, phonon scat-
tering by umklapp processes, scattering by point
defects (if any), and boundary scattering. For
classical boundary scattering in a single crys-
tal, p is determined by the size of the crystal.

If this is true in our case, the T term would
make a very small contribution to the total ther-
mal resistance (diameter of sample ~1 cm).
However, if p were determined by the size of a
crystallite, then it is conceivable that there
would be an effect on the thermal resistance.
During the course of the curve fitting procedures
it was determined that a constant value for p
would not give a good fit to the data and that this
was independent of the form of W,,,,,. In addition,
letting p vary and setting W, =0 did not give a
good fit to the data. Thus, we feel that the effects
of normal boundary scattering are small and are
being masked by the term W, .

Several forms for W, were chosen and at-
tempts were made to fit the data. Although some
were rejected on the basis of chi-square tests,
others described the data equally well (within the
experimental error), so that there resulted no
unique fit.

For instance, if ¢ is the 0-H, concentration, one
can use the form

W, papo=7C™T™" (2)

o

in Eq. (1) with 5=0. The values of the parameters
would be

r=2.88x10%, m=1.60, n=2.35,
d=6.25%10°, ©/3=59.7,

and this could provide a reasonable description of
the data (reduced chi-square=x2~1).!' Although
this form for W, is perhaps the simplest, the
physical justification for its use is not apparent
since there is at present no theory to describe the
conduction process in solid hydrogen with high
o0-H, concentrations.

The value for n in the above suggests that an-~
other form for W, might be

ortho

Wotno =8 T2+ h, T3, (3)

[

where g; and &; are to be determined for each
o-H, concentration. During the preliminary fitting
procedures it was discovered that g, «<c? and that
hy<c to within the experimental error. Thus, the

total thermal resistance could be written
WT=th-3+gcz T2+ le.5+dT-fe(-59-17/ T) , (4)

where &, g, b, d, and f are to be determined.

The values obtained from the fitting program are,
h=16593, g=13900, b=0.35, d=1.64x 10%, and
f=1.87. Let us consider each term in the above
equation in reverse order. The umklapp term

was chosen with ©/3=59.17 K. A simple isotropic
model'? for umklapp processes predicts a maxi-
mum value for 8 of 2. However, this does not
take such things as anisotropy and dispersion
into account and one finds that in practice g may
be less than or greater than 2.!® If we assume
that s=2, then®=118 K, which is.within the range
of Debye temperatures obtained from specific-
heat measurements.!*"'® The value of f is usually
about 2 or 3 and the value obtained from the fitting
procedures agrees reasonably well. The value for
d depends on the crystal structure and the specific
model for the interatomic forces.

An attempt was made to compare the umklapp
term in Eq. (4) to that obtained in other experi-
ments.* 217 A different fitting procedure was
tried in which an attempt was made to separate
the umklapp resistance from the other terms in
the thermal resistance. The umklapp resistance
that we obtained was

W, = 2.49 X 1057257/ T) | (5)

and the results are shown in Fig. 4. This figure
also shows the umklapp term obtained from Eq.
(4). Systematic differences between the data from
different experiments might be expected since the
thermal conductivity in the umklapp region is
anisotropic.!®* Thus, Eq. (5) is descriptive of the
data in general, but additional data is required

to specifically relate W, to crystallographic ori-
entation.

The point defect term has a coefficient of 0.35.
This corresponds to an impurity concentration of
approximately 0.2% if the impurities are D, or
0.005% if they are N, impurities. This can be
compared to the 0.005% impurity concentration
claimed by the gas supplier. One should also note
that impurity concentrations determined by ther-
mal-conductivity measurements are often an or-
der of magnitude higher than those obtained by
mass spectrograph analysis.

The second term gc?T"2 is the same form as
that proposed by Ebner and Sung.®* The coefficient
g in Ebner and Sung’s theory is related to the
parameter €2, Now the interaction responsible
for the phonon-o-H, scattering is the difference
of interactions between a p-H,+p-H, pair and a
p-H,+0-H, pair. The strength and form of this
interaction has not been accurately determined,
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FIG. 4. Reciprocal of umklapp resistance vs tempera-
ture. O, Data (this paper); ®, Bohn and Mate (H,) (Ref.
2); A, Hill and Schneidmesser (H,) (Ref. 1); A,Daney (D)

(Ref. 17); —, W, =2.49x 108 T~ 2%~ 5%/ T; _ _ _ w, =164
XIOGT- 1.87e_ 5%2/ T'

but is usually given as an exponential-6 model
modified by the angular dependence of the hydro-
gen molecules under consideration.*!®!® Van
Kranendonk and Sears!® use the form

Ho-p o [Ve[-n(R-a)/a] -e(a/R )G]Yzo(w) , (6)

where a is the nearest-neighbor distance, V and
€ are the strengths of the anisotropic overlap and
dispersion forces, respectively, n gives the range
of the overlap forces, and w describes the orien-
tation of the o-H, molecule with respect to the
intermolecular axis. The values of V, 7, and €
are not well known. In addition, Eq. (6) is for a
static crystal. The interaction must be suitably
averaged over the zero-point motions of hydrogen.
This average does not change the form of Eq. (6),
but it does give effective values for the coeffi-
cients, in particular € for €. Thus, €, and there-
fore &2, are directly related to the difference in
interactions between p-H,+p-H, and p-H,+ 0-H,.
In practice ¥, 7, and € are fit to the data under
consideration.

The coefficient of our ¢27-2 term, 1.39 x 10*
K3 cm/W compares to the value of 2.7x10* K3 cm/W
that Ebner and Sung used to fit Bohr and Mate’s
data. The value of 2.7 X 10* K® cm/W is approxi-

mately three times larger than the value pre-
dicted by Ebner and Sung’s theory. Constable
and Gaines® obtained a coefficient of 1.82

X 10° K® cm/W. Thus our value of 1.39 X 10*

K% cm/W is closest to Ebner and Sung’s theory.
This may be only a coincidence. Their theory is
for concentrations smaller than 10% o-H,, while
our measurements were at a concentration of 20%
or greater. It should be reemphasized that Ebner
and Sung’s prediction of W « ¢2T2 does not fit
Bohn and Mate’s data well.

The coefficient of the ¢7T™® term, 1.66 x 10%, is
large compared to that of Bohn and Mate. Since
this becomes the dominant term as one goes to
lower temperatures (below the thermal-conduct-
ivity peak), it might be expected that an extrapo-
lation of these results to lower concentrations
would disagree with those of Bohn and Mate. This
does occur, with the extrapolation of the conduct-
ivity being a factor 2-5 less than the data obtained
for concentrations of ¢ < 0.05. [A similar difficulty
exists with the data of Hill and Schneidmesser,!
but here one cannot extrapolate their own high-
concentration data (c > 0.05) and obtain the con-
ductivity of their ¢ =0.005 curve.] Clearly, how-
ever, one must be careful here since a true com-
parison should be made at low temperatures, away
from the thermal-conductivity peak. Since the
peak occurs at about 3 K for ¢ ~0.005, additional
data are needed (at all concentrations) at lower
temperatures (7T< 2 K).

Recognizing that the low-concentration data®
(c <0.05) and the higher-concentration data were
obtained under different experimental conditions,
one might offer a possible explanation for this in-
consistency. In their work on solid ‘He, Lawson
and Fairbank'® observed that the umklapp term
was anisotropic and noted that the thermal-con-
ductivity peak was extremely sensitive to impur-
ities. A similar situation might exist for hydro-
gen with the 0-H, molecules acting as impurities.
A rather dramatic suppression of the peak might
occur as the o-H, concentration increased. Since
the low-temperature side of the conductivity peak
is apparently not governed by boundary scattering
(as in the case for “He), one would not expect the
curves for different 0o-H, concentrations to ap-
proach a common asymptote at low temperatures.

One might also argue that the failure of our re-
sults to extrapolate to the lower-concentration
results might be due to a multicrystalline sample.
To test this, the term hcT™® wasreplaced in Eq. (4)
by (A+ hc)T™3, where AT is a standard boundary-
scattering term. However, no value of A was
found that improved the fit, so the original hcT™3
term was kept.

One cannot compare these results to calculations
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for thermal conduction in solid hydrogen for ¢
>0.1. However, calculations have been made for
the interactions of a phonon field and isolated
singles and pairs of o-H, molecules (¢ <~0.05).%°
In order to extend this to higher concentrations,
one would have to include triangles of o-H, molec-
ules as well as higher-order clusters. Miyagi®®
has calculated the energy levels of triangular
clusters of o-H, molecules due to the electric
quadrupole-quadrupole (EQQ) interaction for a
rigid lattice. For each geometrical arrangement
of the three molecules, there can be 27 energy
levels. The interaction of the phonon field with
these (and other) energy levels is obviously a com-
plex problem but hopefully additional model cal-
culations will be forthcoming.

Thus, while there is no really unique fit to the
data, at least one fit is suggestive of some of the
processes taking place in thermal conduction.
Until an appropriate model or theory is advanced
to describe these processes, it is difficult to
choose one fit over another. In the future we ex-
pect to extend these measurements to lower tem-
peratures and the other hydrogen modifications.
We also hope to reconsider the Bohn and Mate
data in terms of the techniques used in this paper.

The authors would like to thank the Research
Corporation for their support during this work and
Dr. John Johnson for his assistance with the com-
puter program.

APPENDIX

In order to discuss the one-heater method let
us assume that the crystal is in good thermal
contact with the base and that the base is a heat
sink of constant temperature 7,. Turn on heater
H with power Qr After a steady state is reached

the thermometer at the top of the sample cell T,
is at temperature 7, and one can write

@ =K A(T, - To)/l ’

where A is the cross-sectional area of the crystal,
and [ is the length from the base to the heater.
Now increase the power in heater H, to @, and
wait for steady-state conditions. If the new tem-
perature of T is T,, we can write

Q,=K,A(T,-T,)/1.

If we assume that T, - T, is small enough so that
K,=K,=K, we can subtract the equations to obtain

Q,-Q = (KA/INT,-T,).
Solving for K gives
K= (l/A)(Q 2 —éq)/(Tz - Tl.) .

This method (like the two-heater method) has the
advantage of requiring only one thermometer,
plus the additional advantage of needing only one
heater. Again any heat generated in the sample
and any effects due to the geometry of the heater
placement are subtracted out. The major dis-
advantage of this method is that it requires good
thermal contact of the crystal with the base. If
there is thermal-contact resistance at this point
it will cause the conductivity to appear smaller
than it is. If there is good contact with the base
the two-heater method is, in effect, two one-
heater methods (with ¢, =0). If contact is not good,
the combination of the two methods will give the
contact resistance. For all the measurements
presented in this paper, the thermal contact of
the crystal with the base was good as there was
no noticeable difference between the thermal con-
ductivities obtained using the two methods.

*Present address: Institute of Gas Technology, Chicago,
111. 60616.

IR. w. Hill and B. Schneidmesser, Z. Phys. Chem.
Neue Folge 16, 257 (1958).

’R. G. Bohn and C. F. Mate, Phys. Rev. B 2, 2121
(1970).

33. H. Constable and J. R. Gaines, Phys. Rev. B8,
3966 (1973).

4C. Ebner and C. C. Sung, Phys. Rev. B 2, 2115 (1970).

5. B. Kokshenev, J. Low Temp. Phys. 20, 373 (1975).

SF. Schmidt, Phys. Rev. B_1_0_, 4480 (1974).

"A. Tominaga, Cryogenics 11, 389 (1971).

®R. G. Bohn, J. Appl. Phys. 45, 2133 (1974).

®Matheson Gas Products, East Rutherford, N.J. 07073.

9G. Ahlers, J. Chem. Phys. 40, 3123 (1964).

1p, R. Bevington, Data Reduction and Evvor Analysis

for the Physical Sciences (McGraw-Hill, New York,
1969).

123, M. Ziman, Electrons and Phonons (Clarendon, Ox-
ford, 1967).

13p, T. Lawson and H. A. Fairbank, J. Low Temp. Phys.
11, 363 (1973).

“R. W. Hill and O. V. Lounasmaa, Philos. Mag. 4, 786
(1959).

15G. Ahlers, J. Chem. Phys. 41, 86 (1964).

18R, J. Roberts and J. G. Daunt, J. Low Temp. Phys. 6,
97 (1972). -

D, E. Daney, Cryogenics 11, 290 (1971).

183, Van Kranendonk and V. F. Sears, Can. J. Phys. 44,
313 (1966).

15T, Nakamura, Prog. Theor. Phys. 14, 135 (1955).

%Y. Miyagi, Prog. Theor. Phys. 40, 1448 (1968).



