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The theory of dielectric instabilities in high-permittivity glasses is extended to include the effects of
intrinsic glass softening on approach to the crystallization temperature T,~„.A number of marked dielectric
features can develop via the interplay of glass softening and dipolar sects. These are described for both
nonpolar and polar glass models and include anomalies both at and below T,~„which closely resemble
features which have been observed in high-permittivity glasses.

I. INTRODUCTION

Until very recently, materials which are ferro-
electric in their crystalline form were obtainable
as glasses only when the latter were prepared us-
ing an additional network-forming oxide such as
SiO, .' ' Although these glasses can be used to
study the appearance of ferroelectric properties as
a function of grain size on controlled crystalliza-
tion, the presence of the diluting SiO, network
ma, kes them of limited use in the study of possible
dielectric cooperative phenomena in the glassy
pha. se itself. However, with recent reports"' that
at least some crystalline ferroelectric oxides can
be directly quenched from the melt to produce a
glassy form without the use of any extraneous
glass-forming additive, the question of what, if
any, dielectric anomalies might be anticipated for
the resulting high-permittivity amorphous material
is now relevant.

In an earlier paper' the present author explored
the concept of a ferroelectric glass and, on the
assumption that basic dielectrically soft building
blocks (such as BO, units in ABO~ ferroelectrics,
for example) remained identifiable in a randomly
distorted form in the glassy matrix, examined the
possible consequences of the existence of strong
electric dipolar forces between these "units" on
the static dielectric response of the glass. The
possibility of a dielectric instability in the glassy
phase was specifically examined and the character
of the resulting polar phase discussed. In the ab-
sence of any experimental work the nature of the
earlier contribution was necessarily rather aca-
demic. However, with the recent publication of
the first dielectric measurements performed on
glasses formed directly from materials which are
ferroelectrie in their crystalline form, we are now
in a position to consider a little more closely the
applicability of the theory to real systems.

In the reported experiments"' a number of di-
electric features are seen both at and below the
crystallization temperature with values of dielec—

tric constant c in some cases exceeding 10' over
sizable temperature regions (values far in excess
of the corresponding crystalline equivalents). One
obvious extension of the earlier work' which is es-
sential for any understanding of the data is for an
allowance to be made for the existence of an intrin-
sic softening of any glassy material on approach to
the crystallization instability. The earlier theory
was relevant for a glassy matrix of dielectrically
soft units far removed in temperature from crys-
tallization. We shall argue below that the intrinsic
glass softening on approach to crystallization
at a temperature T „„is primarily a property
of local (i.e., short-range) forces in the glass
and thereby occurs relatively independent of
the presence or nature of the long-range interac-
tions. Thus, for example, we expect the basic
microscopic character of crystallization to be
largely unaffected by the presence of strong elec-
tric dipole forces at long range. In this case, the
effects of intrinsic glass softening as T —T„„„
from below are easy to add to the earlier formal-
ism. 'The details of this extension of the formal
theory are reported in this paper. In Sec. II we
derive the dielectric susceptibility }(=v/4s for a
glass in an insulating nonpolar phase including the
possible development of dielectric instabilities.
Section III describes the equivalent calculation for
a polar glassy phase. Finally, Sec. IV sketches
the qualitative dielectric anomalies both at and
near T„„,which can develop via the interplay of
intrinsic glass softening and cooperative dipolar
effects. We find that these anomalies do include
qualitative forms similar to those which have been
reported to occur in LiNbG„LiTaO„and
Pb,Ge,O„glasses. "'

II. NONPOLAR PHASE

In Ref. 6 a simple microscopic model was set
up describing the possible occurrence of a ferro-
electrie instability in an insulating glassy matrix.
This model. consisted of a random assembly of ar-
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bitrarily distorted dielectrically soft local-atomic
configurations interacting via electric dipole
forces. Each configuration or unit defines a local-
ly constrained random elementary electric dipole Poj

(E,P2=0) in the "paraelectric" phase which can
be perturbed at a dielectric instability to ~pj+p„
with Z, p, vO, if the angularly averaged long-range
dipole forces (which prefer a polar configuration)
are sufficiently strong.

In the concept of a unit we formally separate
interion forces into two groups, those involving
intraunit ions and those involving interunit ions.
'The former seek to stabilize the "prototype" sym-
metry of an undistorted unit (e.g. , possibly atetra-
hedron- or octahedron-based configuration in the
present context) and are expressed in terms of con-
figuration coordinates $ j ~ to define local potential
functions, while the latter are expressible as apoly-
nomial in $j, and $& „,. For an examination of di-
electric properties we restrict ourselves, for
simplicity, to a representation involving just those
three orthogonal local displacive mode variables
per unit (X= 1, 2, 3) which are potentially soft from
a dielectric standpoint and which are, in fact, de-
generate in the case of a high-symmetry proto-
type which we shall pursue in the present paper.
A representative "isolated" (i.e., in the absence
of interunit forces) unit is then represented by a
local Hamiltonian

g g (2 f 2+2+ hl 1 +Ahba')
}t

in which mj „ is the momentum coordinate conjugate
to $ j „, A is an anharmonieity parameter, 0 a lo-
cal mode frequency, and the local potential has
been assumed separable and of quasiharmonic
form. Neither assumption is essential and is tak-
en for reasons of algebraic simplicity alone.

Interunit forces are of two kinds; short-range
forces which involve all local degrees of freedom
and which are primarily responsible for the de-
tailed character and degree of stability of the glas-
sy phase; and long-range forces which are primar-
ily of electric dipole character and which dominate
the dielectric characteristics of the material. The
former we represent symbolically, as far as a
perturbation of Eq. (1) is concerned, by an effec-
tive strain field with components Ej,)t. , while the
latter is readily expressed (using the dipole-ener-
gy matrix v,&) as a simple bilinear coupling be-
tween unit variables $ j ~ and (& „,. The final-mod-
el Hamiltonian is then of the form

(2)

where S is an effective-charge parameter, and A

and X' refer to directions which are locally orthog-
onal at a particular site i or j, but which vary in a
random fashion with respect to coordinates fixed
in space on summation over the macroscopic num-
ber of different site locations.

On the assumption that the last term in Eq. (2) is
dominated by its long-range contributions, the
statistical problem defined by Eq. (2) was solved
in Ref. 6 in the mean-field approximation. In par-
ticular, the dielectric susceptibility was found to
take the form

X = X.',/[1 —v, (0}X'.,], (3)

X'„=o. —(12AS'RT/0'},

to lowest order in anharmonicity A, where

(4)

a = (S2/0')[I —12A(((„'}')„/0], (5}

in which ((g)')„ is the mean-square static local
coordinate displacement from prototype symmetry
produced by the random strain field.

In the earlier paper, both 0 and (($„')')„were
taken to be independent of temperature T, in which
case the glass susceptibility is always an increasing
function of 1/T and may diverge, defining a ferro-
electric instability within the glassy matrix if X„
ever becomes large enough to make v2(0}X,', = 1.
We shall now argue that in a real glass, and par-
ticularly on approach to crystallization, both 0 and
(($')')„are intrinsically temperature dependent as
a result of the softening of the glass as it ap-
proaches its crystallization instability. From Eqs.
(3)—(5) we see that the major perturbation of re-
sponse resulting from these effects will be via the
local frequency 0 and we shall concentrate on this
effect alone in the present work.

Physically, the point in question is to what ex-
tent is the local strain field E „' perturbed by the
dynamic motion of the ith unit itself. The strain
field is produced by the near-neighbor units which
are in local equilibrium under the influence of all
near -neighbor forces. In particular, since the
latter couple to some degree with the polar mode

$}, at each site, the local environment of the ith
unit will respond to a change in the value of dis-
placement $ j „. In other words, Ej'„' is a function
of $ j „and may therefore, in lowest order, be ex-
pressed in the form

(6)

in which Xg, is the isolated unit response configura-
tionally averaged over the random local strain
field, and v2(0) = ,'s. Explicitly, for the local
strained units defined in Eq. (2), the isolated unit
response is'
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We neglect correlations between E „' and $, „.,
(V e h) for simplicity only. We propose that the
local environment adjusts to the ith cell motion to
an increasing degree as the crystallization insta-
bility at T„„„is approached from below (i.e. ,
E „"is temperature dependent) and it is in this
sense we refer to the glass as becoming "soft" as

cnret '
If we use the relation Eq. (6} in the equation of

motion for the mode $, „we obtain

&q „—-0 $, „-4A(q „+S(E)'„'+E('~ $q „)

Using Hamilton's equations of motion, this form,
Eq. (I), results directly from the effective Hamil-
tonian

3c "=p {-,w', , ~,tg(T)c, +A(t, s(, ,z;;")
ie)t

(6)

in which the "effective" local frequency 0(T) is
given by

Q(T) = 0' SE'~~- (6)

the only changes from the Hamiltonian, Eq. (2},
solved in Ref. 6 to the new Hamiltonian, Eq. (8),
being the purely symbolic one E „' E, '„"and the
recognition of the temperature-dependent local
harmonic frequency defined by Eq. {9), where for
the high-symmetry prototype the subscript A, can
now be dropped.

The softening of local frequency 0(T) is a near-
neighbor force phenomenon and is therefore, in the
long-range mean-fie1d e~& approximation used to
solve the dielectric many-body problem in Ref. 6,
completely independent of the cooperative dipolar
aspects of the problem. We may therefore obtain
the solutions for mean-field dielectric response on
approach to crystallization in a glass by simply
substituting the temperature-dependent 0(T) for 0
in the earlier solutions Eqs. (3}-(5). First, how-
ever, we must ascertain the anticipated form for
0(T) as a function of T. From the correlated ef-
fective-field theory of structural or magnetic
phase transitions the general behavior of a local
correlated field parameter such as S )t' is
known. "' Starting from small values at tempera-
tures remote from the relevant instability (e.g. ,

T„„) it increases at a steadily increasing rate
as 7-T,»„ to approach a finite value with finite
slope at T = Tc»st The detailed form of this tem-
perature dependence is a function of the nature of
the driving forces producing the instability and

very little is known at this time about the molecu-
lar dynamics of the glass-crystal transition. We
have therefore chosen to use for the temperature
dependence of the local frequency 0(T) a simple
empirical two-parameter form which satisfies all
the qualitative criteria set out above, but which,
of course, we do not expect to be particularly
quantitatively- valid over a wide temperature range;
it is

0'(t}=0'(1 t —e '"-")-, (io)

(1+ac '" " bt)a-
x=

1 —v, (0)a(1+ae-'"-" —at)
(13)

III. POLAR PHASE

Equation (13) is valid only in a nonpolar phase
(for which the denominator is positive}. If for any
t this denominator goes to zero, then a polar in-
stability is precipitated within the model. In the
polar phase, the general character of which was
discussed in Ref. 6, the glass susceptibility is
still given by the form of Eq. (3), but where now

the single-unit response X' must be interpreted
as the differential susceptibility at the finite local
dipolar field Eo produced by the long-range dipolar
order. It is therefore necessary to work with the
finite-field single-unit response function

(E„)= a —12AS~k T/0 —12AS4E~/0, (14)

taken from Eq. (6.1) of Ref. 6. Substituting the
temperature-dependent local frequency Q(t) of Eq.
(10) in place of 0 in Eq. (14), and expanding to the
first order of smallness in b andA, gives

(E,) = a(1+ac 'u "-bt cE2), -(is)

in which a and b are again given by Eqs. (12), and

c = 12AS~/08a (16)

The two basic equations required from the for-

in which t= T/T„„„. The alternative procedure of
expanding 0(t) as a Taylor series in t could, of
course, be used, but mould necessarily involve
more parameters.

Substituting 0(t) of Eq. (10) in Eqs. (4) and (5),
and eanding to first order of smallness in b and

A, we obtain

Xs a{1+ae n(1 0) y-t)

where

a=S't/0'a, I =12&S'uT„.../ '0a,

with a, and b positive and small compared with
unity. The zero-field glass susceptibility follows
immediately from Eq. (3) in the form
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X'„(@)= 1/v, (o),

where the average ( ), is a spherical average
over the polar angle 8. Using the spherical aver-
ages (cos'8), = s, (cos'8), =-,', Eq. (17) reduces to

(18)

mal theory of Ref. 6 for the polar glassy phase are
those for the isolated unit glass response X'„(E)
and for the equilibrium value of local dipolar field
E, in the absence of applied field [Eqs. (4.3) and

(4.6) of that paper, respectively]. For the high-
symmetry prototype case these are

X' (E) =3&((1+ac 'u~' —bt) cos'8 —cE cos'8)s (17)

e =1+ac "j~' —gt. (26)

nX ' = -q dt/emc, nonpolar,

aX ' =2q dt/emc, Polar,

(29)

(so)

in which e~ is the value of e at the Curie point
t=t~, and

The phase transition occurs if ever the condition
o.'vs(0)e = 1 is reached; otherwise the glass can
exist throughout its range of metastability in ei-
ther the polar or nonpolar configuration. Writing
t= t~ at the ferroelectric Curie point and consider-
ing small deviations dt = t —t~ of temperature from
the instability, we find from Eqs. (26) and (27)

Xs (Z) (&[1+ae s(1 -t) -bt (ss),E'] (19} a~-P(1-t g) (sl)

Let us now consider the glass polarization in the
absence of an applied field but in the presence of
an infinitesimal loca/ perturbing field dS. In the
unperturbed case the spontaneous polarization P0
1s

P =X' (E )E,
while in the presence of the perturbing field it be-
cornes

P, +dP= X„(E,)+ " dE (E,+dz). (21)sX„(E)
eg g

0

Substituting Eq. (19) in Eqs. (20) and (21) we can
now explicitly relate dP to dE to define the differ-
ential susceptibility X„s=dP/dE in the form

Xs a(1+ac s(1 s& bt -s c-E2)

However, E0 as a function of t is known from Eq.
(18), viz. ,

We regain the familiar mean-field Curie-Weiss
finding for second-order transitions with the slope
of the reciprocal susceptibility in the "ordered"
phase being minus two times the equivalent prop-
erty in the "disordered" phase. However, the sign
of q is now no longer necessarily negative as in
conventional theories (the condition which requires
the disordered phase to be higher in temperature
than the ordered phase). If the glass-softening con-
tribution ap exp[- p(1 —tc)] outweighs the anharmoni-
city contribution b in Eq. (31), then the polar phase
can, at least within the model, occur at the
higher temperature. In fact, as we shall see be-
low, the equation for the existence of a dielectric
instability avs(0)e = 1 can have more than one so-
lution t =to so that the range of possible types of
dielectric phenomena predicted by the model is
quite varied. We shall examine these in more de-
tail in Sec. IV.

', ncE'o= a(1—+ae'u "-bt)-1/vs(0) .
Substituting into Eq. (22) gives the final form

(23) IV. POSSIBLE TYPES OF DIELECTRIC ANOMALY IN

GLASSES NEAR CRYSTALLIZATION

3/v, (0) —2c.(1+ac '""' bt-)-
2avs(0)(1+ac s"~' —bt) —2

(25)

More succinctly, the responses Eqs. (13) and (25)
for the nonpolar and polar phases, respectively,
may therefore be written

X.„=S/v, (O) 2a(1+ac su"' bt) .-(24)
Using this in place of X„ in Eq. (3) gives us, final-
ly, the response of the polar glass to an infinitesi-
mal applied uniform Maxwell field. It is

Far from crystallization, where glass-softening
effects are small, the present theory reduces to
that discussed in Ref. 6. In the present paper we
therefore focus on anomalies which can occur at
or near the crystallization temperature t =1 and
for which a of Eq. (12) is at least of the same or-
der of magnitude as b. Perhaps the most common
situation will be that of a glass which never be-
comes critically soft and remains nonpolar
throughout. Consider, for simplicity, the case
a»b in Eq. (13). Putting b= 0 and setting

X/a=e/(I -avs(0)e), nonpolar,

and

X/& = [1.5/a (0) —e]/ [&v,(0)e —1], polar,

in which

(26)
1 —(1+a)vs(0)a & 0, nonpolar, (32)

we generate susceptibility curves of the kind shown
in Fig. 1. The common feature is a cusp at T„„,
with a positive curvature as t- 1. The "soft unit"
polarizability & is directly determined by the val-
ue of the static susceptibility X far from T,z+y, t
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120 (e.g. , a,s t 0), where the response is approxi-
mately temperature independent. In this region
6=1 and
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1 —(1+ae ')u, (0)n & 0, polar .

For this case the model assumes the existence of
a single polar domain oriented parallel to the ap-
plied field and neglects all the complexities con-

(24)

The detailed nature of the cusp determines, within

the model, the parameters u and p which charac-
terize the glass softening.

The opposite extreme of having a polar phase
throughout is described by Eq. (25) when

0
0

I
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0.6 0.8 1.0
ta)

FIG. 1. Dielectric susceptibility as a function of re-
duced temperature t = T/T~t for a dielectrically soft
nonpolar glass, as calculated from Eq. (13) using pa-
rameters b=0, a=0.1, and (curve 1) v&(0)o, =0.8, p=l;
(curve 2) ez(0)0, =0.8, p=lQ; (curve 3) ez(0)a=0.9, p
=1; (curve 4) ez(0)o. =0.9, p=10.
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FIG. 2. Dielectric susceptibility as a function of re-
duced temperature t = T/T~~ for a dielectrically soft
polar glass, as calculated from Eq. (25) using parame-
ters b=O, a=0.1, and (curve 1) e&(0)n =1, p~l; (curve
2) vz(0)0. =1.05, p=10; (curve 3) e&(0)+=0.97, p=l;
(curve 4) a (0)o.=1.005, p=lO.

FIG. 3. (A) Two qualitatively different monotonic
forms which the function 8 of Eq. (28) can adopt as a
function of reduced temperature t (occurring when b

&ap and ape~ &b, respectively). Al@e shmvn in (A) are
three separate horizontal lines denoting different con-
stant values 1/ fv~(0)n], the intersection of 6 with which

produces a dielectric instability. The (full, dashed, and

dot-dashed) curves (B) indicate the qualitative forms of
static dielectric response X [from Eqs. (26) and (27)]
resulting for each of the correspondingly marked 1/
fo„(0)o.] lines in the associated (A) diagram above it.
In (B), P denotes aparaelectric phase, and the symbol f a
ferroelectric (or polar) phase.
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cerning possible domain formation and grow'th

strain anisotropy which would likely be important
in unpoled samples. Typical susceptibility curves
for the 5= 0 polar situation are shown in Fig. 2.
As can be seen from the figure, the trend in this
case is for X to be a decreasing function of t.

More generally, of course, we must consider
situations for which the parameter b is nonzero,
e.g., a- 5 « i. The qualitative possibilities re-
sulting from this situation are readily understood
by putting no~ (0) = 1 and 8 = 1 in the numerators
of Eqs. (26) and (27), viz. ,

considering the possible intersections of these
curves with the constant 1/v, (0) a (i.e., the possi-
ble dielectric instabilities) the qualitative forms of
the possible susceptibility curves are immediately
evident from Eqs. (35} and (36}. They are also
shown in Figs. 3 and 4 below the corresponding 6
curves. Wherever 8& [v, (0)n] ', the polar phase
is stable; wherever 8&[v, (0)o.'] ', the nonpolar
phase is stable.

Most intriguing are the situations for which two
instabilities arise, with a nonpolar phase sand-
wiched between two polar phases. This can arise

1/v~ (0)
nonpolar, (35)

0.5/v ~ (0)

8 [ (0)~] 1 l P (36)

and considering graphically the function 8
—[v, (0) a] ', where the last term is just a constant,
as a function of reduced temperature t. From Eq.
(26) which defines 8 we see that s+/sf2
= ap'exp[-p(1 —f] is always positive. The qualita-
tively different forms which the function 8(t) can
have, therefore, are shown in Figs. 3 and 4. By
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FIG. 4. Same as Fig. 3 but for parameter values a p
&b &a pe~ which allow e of Eq. (28) to be double valued
as a function of reduced temperature t = T/T~, &.

FIG. 5. Dielectric susceptibility as a function of re-
duced temperature t = T/T~& as calculated from Eqs.
(13) and (25) for two cases which show a double suscept-
ibility divergence. The curves are both for parameter
values a = 0.1, b = 0.09, p = 1, but with curve 1 having
v&(0)o, = (1+a —b), the condition which produces a di-
electric divergence at the crystallization temperature
itself, and curve 2 having the slightly larger value
e& (0)0, = (1+a —b)"~+ 0.0003.
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when ap&b&ape '&p(a-b) for suitable v'„(0)n
values and we examine this situation more quanti-
tatively in Fig. 5. %e note that a dielectric in-
stability can even result at T „itself if

v~(0) e-e '„,=(1+a b) ', (37)

where 8, „is the value of 8 at the crystallization
temperature. In this instance the location of the
second singularity is particularly simple to evalu-
ate analytically. Substituting Eg. (37) in Eq. (26)
we find

y/a=ee „,/(e „„-e),
whichdiverges whene=e „„,viz. , when

ae~" "-bt=a —b.

(36)

(39)

For sr@all values of 1-t we can expand the expo-
nential to obtain, in second order,

(1-t)lap - hap*(1- t) —b) = o,
with solutions

t =ten'= 1, t= tee'= 1 —2(ap —b)/ap2.

(40)

(41)

However, since these findings are based only upon
the empirical form assumed for local-mode glass
softening, i.e., Eg. (10), too much significance
should perhaps not be attached to the precise ana-
lytic forms at this time.

V. DISCUSSION

The important conclusions from the above analy-
sis age the qualitative predictions of Figs. 3 and 4
namely, that a cooperative dipolar mechanism,
coupled with a local lattice vibrational softening
on approach to a glass to crystalline instability,
can give rise to possible dielectric anomalies of
varied forms both at and below the cry.stallization
temperatm e itself.

Experimentally, the three dielectrically soft
glasses Pb,oe3Qyg LiTaQg and LiNbp, for which
we already have susceptibility data each exhibit
qualitatively diff erent behavior on approaching to
T „,. The first (Pb,Ge,O») appears to be para-

electric throughout and the susceptibility rist s
monotonicagy with increasing T to exhibit a sharp
cusp at T„„,of the form shown in Fig. 3(B) for
ape '&h. LiTaQ, has a similar response as a
function of T except that the magnitude of the di-
electric constant is much larger and the anomaly
at T„„„is more rounded' and may peak below the
crystallization instability. If so, this could indi-
cate the existence of a polar glassy phase (i.e., the
f curve of Fig. 4(B) for ae '& (a —b) F.inally, and
most intriguingly, LiM&O, glass exhibits a double-
peaked anomaly' like curve 1 of Fig. 5, again with
extremely high values (&10') for the dielectric con-
stant. This implies, within the present model not
only the existence of a polar glassy phase but
actually of a polar glassy phase transition.

In each of the above three cases, good quantita-
tive fits to the susceptibility data can be obtained
using Eqs. (26) and (2V) with appropriate parame-
ters. However, no great significance should be
attached to this at the present time since there is
evidence' that at least a significant (and perhaps
dominant) contribution to the dielectric constant
close to crystallization may be due to inter-
facial polarization caused by Li -ion motion
in the lithium-containing glasses. This facet
of the problem has not been included in the
model of this paper. However, an increasing ionic
conductivity on approaching T „„would not seem to
account for the double-peaked character of the
LiNbO, response, and the possibility that the
lower-temperature peak does indeed mark a ferro-
electric Curie temperature Tc remains an intrigu-
ing possibility. The glass can be poled' and shows
quite a strong pyroelectric effect at room temper-
ature after poling. This response persists at least
for several days but is lost on heating above Tc.
This is consistent with the existence of a spon-
taneously polarized glassy phase below T~ but is
not conclusive because the "transition" at Tc is
not sharp and the polar nature could result merely
from electget formation on poling due to the ex-
tremely large values of dielectric constant at the
poling temperature.
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