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A self-consistent calculation of the band structure of diamond has been performed using the method of
linear combination of atomic orbitals with a wave-vector-dependent optimized orbital basis set. Nineteen
points in (1/48)th of the Brillouin zone were used to determine the charge density in each of the 11 iterations
needed to reach self-consistency. The resultant self-consistent band states are then used to predict such
ground-state properties as Compton profiles and x-ray structure factors.

I. INTRODUCTION

Among the group-IV materials, diamond occu-
pies a unique position from the theoretical stand-
point due to the fact that the covalent bonds are
well defined.! Since the covalent-bond model
plays an important role in the understanding of
silicon® and the other group-IV materials, dia-
mond is a frequent candidate for theoretical in-
vestigations.® Additionally, diamond has an un-
usually small core with two-thirds of its electrons
participating in valence states. This small core
is of advantage not only in reducing the overall
computational complexity but is also advantageous
from the experimental point of view in that such a
small core does not tend to dominate such ground-
state property measurements as Compton profile
and x-ray structure factors.

This paper presents a self-consistent Hartree-
Fock-Slater calculation for diamond using the
method of linear combination of atomic orbitals
(LCAO).*> The method of LCAO has now been
successfully applied, self-consistently, within the
Hartree-Fock-Slater formalism to both metals®
and insulators.” In addition, the method of LCAO
has recently been employed in a self-consistent
Hartree-Fock calculation of diamond.® In per-
forming these calculations self-consistently and in
evaluating associated bulk properties, the extent
of variational freedom permitted must usually be
balanced against the need to economically evaluate
the band states at a large number of low-symme-
try points within the Brillouin zone. The LCAO
calculation presented here introduces a generaliza-
tion of the concept of optimized orbitals® which
provides a high degree of variational freedom
while maintaining a manageable secular equation
for rapid evaluations of the band states throughout
the Brillouin zone. This generalized optimized
orbital approachisthen extended into a self-consis-
tent framework and applied to diamond with speci-
fic emphasis on the valence-band structure and

such associated ground properties as Compton pro-
file and x-ray structure factors.

II. DIAMOND SYMMETRY

The diamond structure can be viewed as the
superposition of two face-centered-cubic (fcc)
arrays of carbon atoms each having the same lat-
tice constant a, chosen here to be 6.728 a.u. The
edges of the face-centered cubes for these two
arrays are parallel but displaced from one another
by 14,V 3 along the cube main diagonal. In this
calculation, the origin is placed at the center of
inversion which is located on this main diagonal at
a point midway between the atoms of these two
interpenetrating sublattices and with coordinate
axes parallel to the cube edges. With this choice
of coordinates, the positions of the carbon atoms
are given by

Tui=ﬁu+gi, i=1,2, (1)
where

f,=-3a,1,1,1) ==t,,

R, =3, + 1,3, + 1d,,
and where v,, 1,, v, are integers and the primitive
lattice vectors a,, 4,, 4, are given by

a,=3a,(1,-1,0),

i,=2a,0,1,-1), (2)

a,=a,0,0,1).

The volume of the Wigner-Seitz cell centered at
the origin is designated by £, has the value iaf,
for its magnitude, and contains two atoms located
at positions Fl and .

The reciprocal lattice for this periodic structure
is body-centered cubic (bcc) with lattice vectors
K, given by

K,=vb, +v,b, + v,b,, (3)

where
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b, =27(2, 0, 0)/a,,
b, =27(2, 2, 0)/a,, 4)
b, =2m1,1,1)/a,.

The Brillouin zone associated with this lattice is
designated by , and has the value (27)°/Q for its
magnitude.

In addition to translational symmetry, the dia-
mond structure has rotation-reflection symmetry
which, when adjoined with translation, produces a
nonsymmorphic space group with point group O,.
As a consequence of this rotational symmetry,
the wave functions and eigenvalues associated with
any point in the Brillouin zone can be obtained di-
rectly from knowledge of the wave functions and
eigenvalues of that portion of the Brillouin zone
called the irreducible wedge (IW). A segment of
the Brillouin zone is said to constitute an irre-
ducible wedge if its volume is £,/48 and if the
segment generates the entire Brillouin zone under
the application of the 48 operations of 0,. The ir-
reducible wedge chosen here consists of all points

[}

. - >
K=Kb, + Kb, + Kb, ,

which lie within the Brillouin zone and for which
K,, K,, and K, are all greater than or equal to zero.

In an analogous manner, an irreducible volume
(IV) of the Wigner-Seitz cell with volume-5Q can
be constructed such that any band-state wave func-
tion can be constructed throughout the entire cry-
stal from knowledge of the behavior of the wave
functions within the irreducible volume.

Substantial use is made of both the irreducible
wedge and irreducible volume in order to elimin-
ate redundant computations.

III. BAND-STATE HAMILTONIAN

The energy of the nth band at point K in the
Brillouin zone E,(k) and the associated wave func-
tions with degeneracy label i, gb,,,,-(ﬁ, T), are ob-
tained by solving the equation

[_ %Vz + V(;)]zpn,i(iy ;) =E,|(E)Zp,, ,i(E’ F) ’ (5)

for all points of interest in the Brillouin zone. In
the above expression, V(T) is the effective Har-
tree-Fock-Slater potential® and is invariant under
the diamond space group. The potential V(¥) can
be expressed as a simple sum of a Coulomb term
Veow () and an effective “exchange” Vi (¥) as

V(F) = Veou (F) + V, (F), (6)

where Veou () and Vi (¥) are expressible in terms
of the absolute value of the electronic charge den-
sity p(F) and the atomic number of carbon Z; as

VBVCM(f-)=4nchZ;é(F-Tue)—4wp(f), )

Ver (F) = =3(3/m*3p13(F), (8)

where p*/3(F) is the positive cube root of the abso-
lute value of the electronic charge density eval-
uated at T.

Since the LCAO method as used here deals ex-
clusively with the Fourier coefficients of the cry-
stal potential, it is convenient to reexpress V(¥)
and o(T) as

V(F) = D [ Voou (K) + Vex KN cosK, 7, (9)

p(F) =Y p(K,) cosK, - F, (10)

where use has been made of the inversion symme-
try at ¥=0. The Fourier coefficients for potential
are given by

= 1 -> = -
Voou(®) = 3o~ [ Veon (F) cosk, - Far,  (11)

- 1 - > .
v, &) = an Vr (F) cosK, - Fdr, (12)
N

where N represents, symbolically, the number of
unit cells of the crystal. These coefficients of
potential can be related directly to charge density
by use of Egs. (7) and (8), yielding

K2Veou=-41(2Zc/Q) cosK, - T, - p(K,)], (13)
Ve B,)) = =3(3/m'/3p' 3(K,), (14)

where p(K,) and ot/ 3(ﬁ,,) are the Fourier coeffic-
ients of p(¥) and p!/3(F), respectively. Thus the
V(K,) needed to produce the band structure and
associated bulk properties can be obtained directly
from knowledge of charge density.

IV. LCAO BAND CALCULATION FOR DIAMOND

The LCAO approach to crystalline materials as
utilized here is basically an application of the
method of linear variation of parameters, where
the individual members of the basis set are so
constructed as to satisfy the Bloch condition. Two
types of basis sets are used in this calculation and
are designated as basis set I and basis set II.
Basis set I consists entirely of single Gaussian
Bloch sums 4% and contains 112 members. Basis
set II consists of 18 Bloch sums each of which is
a carefully selected linear combination of Gaus-
sians from basis set I (contracted Gaussian orbi-
tals). The procedure used for selecting this con-
tracted set will be discussed further in Sec. V.
For the present we will confine our development to
basis set I since the contracted orbitals are simply
a projection of the more general single Gaussian
orbital basis.

The single Gaussian Bloch sums are of the form
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b4, (&, F)=N""214

x Y et Rugdp F-R,), (15)
v
where
azsypx;py’px:
A=+1, -1,
. 1 for a=s

I;=—zlu=§ ’

i for a=p,, by, .,

and where X5 (8, ¥) is a linear superposition of
Gaussian orbitals centered at £, and f, given by

Xa(B, F) =Xal(B F-T,) +oxo(8 T-1,). (16)

The Gaussian orbitals X (8, ¥) have orbital expon-
ent B and are given by

- _Br2
X{B,F)=eB",

X,x(B! F) =xe” Brd ’

am

etc. The set of B used in this calculation are the
14 exponents 4232.61, 634.882, 146.097, 42.4974,
18.1557, 14.1892, 5.14773, 3.9864, 1.966 55,
1.142 93, 0.49624, 0.35945, 0.15331, and 0.1146
obtained by Huizinga'® for the free carbon atom.
Since the Bloch sums formed from atomic orbi-
tals produce reasonable band structures,’! such

a single Gaussian expansion should adequately
allow for the relaxation of these “tight-binding”
orbitals in the crystalline environment. However,
these new orbitals will now vary both with the band
index # and the point K within the Brillouin zone.
This matter will be discussed further in Sec. V in
connection with the choice of the contracted orbi-
tals for basis set II. Using the Bloch basis

b%,&, ¥), the wave functions; ¢, ;(k, ¥) and associ-
ated band energies E,,(E) for the Zth degeneracy

of the nth band at point X in the Brillouin zone
are obtained from solutions of the matrix
equation

[H(K) - E,(K)SK)E(n, i/]K) =0, (18)

and the orthonormality condition

f" & F Y (R, ) dr =0, 0, (19)

where the w,,_i(l?, T) are given in terms of the com-
ponents of the column matrix a(», i|k) by

Yna(K, T) = EZA)Z; al(n,i|R)6S (K, F). (20)

As a result of the choice of basis 45,(k, T) given in
Eq. (15), and the presence of inversion symmetry
at the origin, the components of matrices H(k) and
S(K) are real and are given by

Hafwp® = [ O5E D=4 +V ()
x bl (K, T)dr, (21)
Siar ® = [ 0380, &, F)ar.
Due to the rotational symmetry inentioned ear-
lier, if Ryis a member of O, and 7,is the non-

symmorphic translation associated with R, such
that

V(R,F+7) =V(T), (22)

A(R,F+T)=p(F), (23)
then, from symmetry considerations,

E,(R,K) = E,(K), (24)

lpn,i(R)‘E’ R )’F + -7’-)) = ZJ: CI'J' (7, E)zpn,j(ﬁy F) ’ (2 5)

and the eigenvectors a(n, ¢|R .,E) at points outside
the irreducible wedge are related to the a(n, 7|k)
within the irreducible wedge by

A(n, i|RK) = U(v, K)d(n, i|K), (26)

where the matrices U(y, k) and C"(y, k) are unitary.

The relationships given in Eqgs. (23), (25), and
(26) greatly simplify the computation of bulk prop-
erties such as x-ray structure factors and Comp-
ton profile since they permit the required inte-
grals over the Brillouin zone to be folded back into
the irreducible wedge.

V. SELF-CONSISTENT LCAO

The self-consistent procedure is initiated by an
initial guess, zeroth iteration, of the absolute
value of the electronic charge density p°(T), where
the integer superscript labels the iteration. In
this calculation, the initial guess for p(¥) was
chosen to be that produced by associating free-
atom electronic charge densities p,,,, (), with
each atomic site of the diamond lattice. This
yields the analytic expression

PoF) = 22 Puom(F=T0i) @7

with Fourier coefficients given by

&

a2 cosK, - t,

°(K,) =

X J‘” Prrom(P)o(K¥) 72 dr . (28)
o

The zeroth-iteration crystal potential V°(K,) can
then be obtained directly from Eqs. (13) and (14).
The numerical procedure for evaluating pt/ 3(K,)

will be discussed in Sec. VI. Solution of Eq. (18)
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for the zeroth-order band states zp,‘:';(l?, T) yields a
first iteration charge density p*(¥), which can then
be employed, as discussed in Sec. III, to create
VYK,), 9Lk, ¥), and so produce a second itera-
tion charge density p%(¥). This process is con-
tinued, using an iteration-averaging stabilizing
technique'? for the first few iterations, until the
p(f(.,,) have stabilized to at least three significant
figures.

Each iteration involves the evaluation of charge
density and this in turn entails a numerical inte-
gration over 912 uniformly spaced mesh points
within the Brillouin zone (19 points in the irreduc-
ible wedge). Since these points are, for the most
part, without symmetry, solution of Eq. (18) in-
volves a 112 X 112 secular equation. In addition to
the difficulties normally associated with such large
secular equations, the problem is further exacer-
bated by the fact that the overlap matrix elements
formed from one or more of these single Gaussian
Bloch sums can to a high degree of accuracy be
expressed as a linear combination of the overlap
matrix elements of the remaining Bloch sums.

In order to remove these difficulties, the overlap
matrix associated with each point Kk in the Brill-
ouin zone must be examined and the redundant
Bloch sums removed from the secular equation.
Although a high degree of variational freedom is
desired, it has been found® that considerable ac-
curacy can be obtained more economically using
a small basis set of contracted Gaussian orbitals
called optimized orbitals. Obviously, the accur-
acy obtained with this projected basis set is highly
sensitive to the method by which the contracted
orbitals are chosen. The procedure employed
here for selecting this contracted set is based
upon solution of the general single Gaussian prob-
lem [Eq. (18)] at points of high symmetry in the
Brillouin zone. This technique is best presented
by first using Eqgs. (15) and (16) to rewrite Eq.
(20) as

Ui, F)=N"1/2 Y R ZZA I4%%n, i|K, 7),
(29)

where
$ﬁ(ﬂ, llﬁs F) = ¢aA’(n, ilﬁy F_-t.l)
+ A¢’<XA'(", ZIE’ F—t’z) ’

and where the ¢ a(n, i|K, ¥) are contractions of the
original single Gaussians given by

ban(n, ik, )= ;aﬁ',m, i|BXa(By ).  (30)

The ¢4a(n, ilk, 7) are called optimized orbitals® and

are found to be sensitive to the energy E,(K) of the
state ¢, ;(k, ¥) in which they participate. For ex-
ample ¢, _(4,1|T,¥) and ¢,,.(5, 1|T, ¥) which par-
ticipate in the top of the valence band and the bot-
tom of the conduction band, respectively, differ
only slightly from one another with the lower-en-
ergy orbital being slightly more localized or
“tightly bound” than the higher-energy optimized
orbital of the conduction band. The variation with
energy of the self-consistent optimized p orbitals
within the valence band is shown in Fig. 1 and
clearly shows a trend toward greater localization
with decreasing energy. As a general rule we find
that the s-type and p-type optimized orbitals of the
valence band tend to become more localized (tightly
bound) as the energy decreases.

Since in a self-consistent calculation the occu-
pied orbitals are of primary interest, we choose
our contracted set to be optimized orbitals from
the bottom, middle, and top of the valence-band
energy range. In particular, the contracted set
for the Ath iteration is

o MF)=¢a(1,1|T,F) (core state at I),

$2(F) =2:(3, 1|1, F)

(bottom of valence band at I'),
$a(F) =94 (2, 1[X, F)

(bottom of valence band at X)),
$2(F) = b5, (2, 11X, F)

(bottom of valence band at X),
$3(F) = 95, (4, 1|1, F)

(top of valence band at I'),
ba(F) =yo)F)/x, ONF) =y (F)/x,
Pa(F) =20 (F) /%, @g(F)=29]NF)/x. (31)

It is important to note that although only nine
distinct orbitals are used in constructing the
charge density for each iteration, these orbitals
are reoptimized directly from the original single
Gaussian set at each step in the iterative proce-
dure. This has the effect of allowing the contracted
basis to relax to the new potential V)‘(F) of each
successive iteration. An illustrative example of
how these ¢ ,)‘(F ) change from iteration to iteration
is presented in Fig. 2, where the converged and
first iteration values of ¢, are presented along
with the free atom 2p, orbital. The results given
in Fig. 2 indicate the importance of allowing the
contracted basis to change from iteration to itera-
tion and the inadequacy of a simple atomic-orbi-
tal basis set to reflect the relaxation of the atom
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FIG. 1. Variation of self-consistent optimized p or-
bitals with energy. The dashed curve is the orbital
from bottom of valence band at X point, the dotted
curve is the orbital from top of the valence band at X
point, and the solid curve is the orbital from top of
valence band at T point.

in the crystalline environment.

Using the above set of contracted Gaussian orbi-
tals ¢ N¥) the variational wave function for the
Ath iteration is given by

Ioi(E, ) = Z}; A)n, i|[R)BY (K, F) (32)

=Ny SRR NR F-R),  (33)
v

oA

ol

ol 0.2 03 04 05 0.6

FIG. 2. Illustration of relaxation of optimized orbitals
to the crystalline potential. The dashed curve is the
atomic 2p orbital, the dotted (solid) curve is the p or-
bital from top of valence band at I point as obtained
during the first (last) iteration.

where
BXIA(E, F) =N_1/211} E elk-ﬁ,_,hp}(?_ﬁu_t’l)
v

+Ap(F-R, -t,),
(39)

and where the A} are the 18 variational coeffic-
ients obtained by solving the appropriate secular
equation.

The self-consistent band structure for diamond
is presented in Fig. 3. Since we are interested
here in the conduction band as well as the valence
band, additional variational freedom was provided
by including optimized X-point orbitals at the bot-
tom of the conduction band. Since, as discussed
earlier, ¢,, ¢,, and ¢, are essentially optimized
orbitals for the bottom of the conduction band at
T, the band structure for the lower portion of the
conduction band should be fairly accurate. This
calculation predicts an indirect band gap of 5.2
eV in excellent agreement with the experimental
value®® of 5.4 eV. The associated minimum of the
conduction band is calculated tolieat 27(0.68, 0, 0)/
a, as compared with an experimental value™ of
27(0.75, 0, 0)/a,. The Hartree-Fock indirect band
gap, on the other hand, has been found to be 13.7
eV.® This lack of agreement between Hartree-
Fock and experiment is attributed to correlation.
For the remainder of this paper, comparison with
Hartree-Fock will be restricted to ground-state
properties where correlation plays a lesser role
and agreement between Hartree-Fock and experi-
ment is substantially better. The width of the
valence band as calculated here is 21.1 eV which,
while in excellent agreement with the experimental
result of 21 eV reported by Gora et al.,*® is in
substantial disagreement with the result of 24.2
eV reported by McFeely et al.'®

VI. CALCULATION OF CHARGE DENSITY AND X-RAY
STRUCTURE FACTORS

A. Evaluation of charge density in direct space

Using the notation previously developed, the ab-
solute value of electronic charge density for the
Ath iteration p)‘(F) can be expressed as an integra-
tion over the Brillouin zone of the form

pNF) = Z—SZ- fn Z! WY (B, F)um, (K, F)d®k,  (35)
R M

where the summations over z» and j are over all
occupied states at K and the integration over the
Brillouin zone is performed numerically by eval-
uating the integrand over the uniform mesh
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ENERGY (units of Ry)

FIG. 3. Self-consistent
band structure of diamond
using optimized
orbital basis.

were performed on a powdered sample and do not

Ay
N
L VAN r A X p> r
- _2my+1 2my+1+ 2my+1
K= 2N, 1+ 2N, I+ A 1,. (36)

In Eq. (36), the vectors 1, 1,, and T, are equal to
zbl, 8 b2, and b3, respectively, and form the
edges of the irreducible wedge. Due to the sym-
metry relations of Eq. (25), the ¥, {(%n, ') need
only be calculated for those points %, which lie
within the irreducible wedge.

B. Multipole fit of p(r) and p!/3(r)

A natural extension of Eq. (27) to the more com-
plicated task of obtaining an analytic expression
for pX(¥) of the Ath iteration is

pé\t (F)=ZZ fl)\(_f";fui)’ (37)

where f)MF) is a parameterized analytic function
with parameters so chosen that Eq. (37) consti-
tutes an accurate least-squares fit to p*(¥). An
analysis of the accuracy of this fitting procedure
will be presented later in this section. The inver-
sion symmetry of diamond is satisfied by the re-
striction

FIE) =f(-F). (38)
The additional rotational symmetry implied by Eq.
(23) would be automatically satisfied by requiring
the f;(¥) to be spherically symmetric. However,
such a restriction would produce a null value for
the “forbidden” reflection K, =27(2, 2, 2)/a,, while
experiment measures a nonzero value for this
reflection. Additionally, the fact that the experi-
mental structure factors associated with different
stars of the same magnitude are often reported as
equal is simply due to the fact that the experiments

imply that single-crystal measurements would
predict equal structure factors. These points have
been discussed in detail by Dawson.'” As a result
of these considerations, the f;"(?) are not re-
stricted to be spherically symmetric but rather are
expanded in a multipole expansion of the form

FNF) = Z &Y CrYT @), (39)

where the summation on [ is truncated after I =4.
The tetrahedral site symmetry excludes /=1 and
1 =2 and allows only one combination for each of
the terms /=0, 3, and 4 identified as monopole,
octopole and hexadecapole, respectively. As a
result of these symmetry restrictions, the fitting
function is of the general form

FNF) =g0(r) +&} () (xyz/7?) +gN7)
X(x*+y*+2*=3r*/5)/r3. (40)

For the purposes of this calculation, the g,)‘(r) are
chosen to be of the form

8 12
A - N -
g = ool rmieTH 48,, ) onrmie T, (41)
i=1 i=g

where the sets {n;} and { 1;} are {0, 1,2, 3,4, 5, 6,
7,0,0,0,0} and {3, 3, 3, 3, 3, 3, 3, 3, 10, 20, 35, 100},
respectively. The linear coefficients o ,", are de-
termined by a least-squares fit to p (r) as tabu-
lated within the irreducible volume of the Wigner-
Seitz cell. To evaluate the convergence of this
multipole expansion, the self-consistent Fourier
coefficients of the charge density obtained using
only the =0 term, p,(K,), both the =0 and =3
terms, po.a(f('u), and the /=0, 3, and 4 terms,
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Pos A(I-{.#) are presented in the second, third, and
fourth columns of Table I. In this calculation, the
tabulated p(¥) are obtained from Eq. (35) using a
six-point numerical integration over the irreduc-
ible wedge. Examination of Table I shows satis-
factory / convergence and also tends to indicate
that the radial fitting functions » "ie~*i" are ade-
quate.

For the evaluation of the p! / 3(I?u), a similar
multipole expansion is used to fit the positive cube
root of charge density as tabulated over the irre-
ducible volume of the Wigner-Seitz cell.

C. Evaluation of p in reciprocal space

In order to further test the multipole conver-
gence and, in addition, to test the validity of a
six point integration over the irreducible wedge,
an alternative procedure for evaluating the px(f(’u)
without recourse to a multipole expansion was de-
veloped. In this procedure, the wave functions
zp,,):,(l?, T) for the Ath iteration are expressed in the
form of Eq. (33). Using this expression and Eq.
(25), the Fourier components of charge density,
p*(K,), can be shown to be

- 2 > =
PNE,) = -Q—\; Zyj fm Z)(& B ,)d%, (42)

where 7 is summed over all occupied bands at
point E, the summation on y is over all 48 opera-
tions R, of the cubic point group O,, and the inte-
gral is over a single irreducible wedge. The inte-
grand Z,,(k,K,) in Eq. (42) is given by

-

Zn).\Y(E’ K#) = Z Z!: ei(RyEu)‘Ty
v

> >

x ENJ(K, K - R/(K, +K,)
x €y (K, E-RK,), (43)
where the f,ﬁ,(ﬁ, K) are related to the E,,):,(E, T) by
E)E, ©)=(2m /2 f ENE, Fre T dr,  (44)

and where the relationship between ?yand R, is
given by Eq. (23). As before, the integration over
the irreducible wedge is performed numerically
using the uniform mesh of Eq. (36). The p(f(’,,)
which results from a six-point [p(K,); and a 19-
point [p(K,)],, integration over the irreducible
wedge are presented in the last two columns of
Table I. Comparison of [p(K,)]s with the corre-
sponding multipole expansion again supports the
conclusions that truncation after / =4 is justified.
Comparison between the six-point and the 19-point
integration schemes shows that they agree well
for all Ku and that the agreement improves with

TABLE 1. Self-consistent Hartree-Fock-Slater
Fourier coefficients of charge density for diamond; a
comparison of various computational techniques.

hkl %on %on,s 5990,3,4 %Q[P]sa %Q[P]m

111  -2.357 -2.356 -2.356 -2.356 -2.368
220 -2.013 -2.018 -2.017 -2.017 -2.022
311 -1.231 -1.234 -1.235 -1.235 -1.236
222 0.0 0.071 0.072 0.071 0.075
400 -1.621 -1.590 -1.589 -1.589 -1.590

331 1.101 1.105 1.105 1.104 1.106
422 1.457 1.451 1.452 1.452 1.452
511 0.993 0.994 0.991 0.991 0.991
333 0.993 0.988 0.986 0.986 0.986

2[plg and [plyy correspond to 6-point and 19-point in-
tegrations, respectively, over the irreducible wedge.

increasing magnitude of ff,,. The improved agree-
ment with increasing K, is easily understood since
at large K, the major contribution to px(f{’u) comes
from the core states which, being tightly bound
and relatively insensitive to the crystalline envi-
ronment, produces an integrand which is essen-
tially constant over the volume of the irreducible
wedge. Although the errors introduced by a six-
point quadrature are minor even at small K,, the
possibility of cumulative reinforcement with suc-
cessive iteration is obviated by calculating the
first nine p"(ﬁu) for each iteration directly from
Eq. (42) using the 19-point quadrature. The re-
maining p)‘(f(.u) are evaluated for each iteration
using the multipole expansion and six-point inte-
gration over the irreducible wedge.

D. X-Ray structure factors

The self-consistent Hartree-Fock-Slater x-ray
structure factors Fig§ (K,) for the limit of rigid
lattice are presented in the second column of
Table II and are related to the Fourier coefficients
of the self-consistent charge density p(K,) pre-
sented in the last column of Table I by

FSCF(K,) =402p(K ). (45)
The corresponding self-consistent Hartree-Fock
structure factors FF (K,) of Euwema® are given
in column 3. The experimental structure factors
of Gottlicher and Wdofel corrected for the effects

of isotropic thermal vibration are given in column
4. Comparison of column 2 with column 4 shows
good agreement between the present theory and
experiment with the exception of the 400 reflection
which is in significant disagreement. Interestingly,
the largest disagreement of experiment with the
Hartree-Fock results of Euwema is again the 400
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reflection. With the exception of this reflection,
these two theoretical results are in substantially
equivalent agreement with experiment. For quan-
titative comparison, it is useful to employ the
agreement factor R defined in the usual way as

R= E'Fexpt—Ftheory l/ Zlﬂxpt' .

The agreement factors for Hartree-Fock-Slater
and for Hartree-Fock are 3.4% and 2.7%, respec-
tively.

In addition, the Hartree-Fock-Slater form factors
are seen to be predominately larger in absolute
magnitude than those of experiment. This obser-
vation is consistent with the suggestion by Daw-
son'® that the experimental results of G&ttlicher
and Wofel must be multiplied by a scale factor
somewhat larger than 1.007 in order to renormal-
ize to absolute intensity. The scale factor which
produces the best agreement between the present
self-consistent Hartree-Fock-Slater form factors
and those of experiment can be obtained by mini-
mizing the agreement factor. The scale factor so
obtained is determined to be 1.008 and is in ex-
cellent agreement with Dawson.

VII. COMPTON PROFILE
A. Computational procedure

In order to make a direct comparison of the ex-
perimental Compton profiles®®?! with the self-con-
sistent Hartree-Fock-Slater results of this work,
a method for calculating the theoretical Compton
profiles using the impulse approximation®? has
been developed and applied to diamond. Within
the impulse approximation, the Compton profile
J (4, B) is related to the band states by the expres-
sion

(g, B)= [ dg-k-TIp(R) %, (46)

where p(k) is the momentum density per atom
given by

p(i)=sz;‘fg Z;z/):.,(i,ﬁw,,,(l?,k)dak, (47
R n

and where the summations on 7 and j are over the
six occupied band states at each point k in the
Brillouin zone. The ¥, (K, %) of Eq. (47) are the
band states in the momentum representation and
are related to the ¥, ,k, ¥) by

Vo (E, B) =(2m) 372 f Vo & Fe~ R T ar.  (48)

If the wave functions are written in the form of
Eq. (33), then explicit use of the translational

TABLE II. X-ray structure factors for diamond.

hkl FSCE FXF? Fopt®
111 -18.945 —18.657 —18.787
220 -16.181 —~15.445 —-15.778
311 —9.886 —9.456 —9.405
222 0.601 0.689 1.206°¢
400 -12.718 —~12.359 -11.836
331 8.847 8.637 8.932
422 11.615 11.339 11,547
511 7.926 8.023
333 7.884 8.023

2Reference 8.

bReference 18.

¢Weiss and Middleton in private communication to
B. Dawson (Ref. 19).

symmetry of the Bloch sum reduces the expression
for the momentum density, p(), to the simple an-
alytic expression

pm=22; [E, (%72, (49)

where the £,(%, £) are given by Eq. (44) with the
understanding that the [£, /%, ¥)|? are to be con-
sidered periodic in k, i.e.,
[0, /K +K ,, B2 = |8, (K, B2
In t‘\he procedure adopted here for evaluating
J (g, &) from the theoretical band states, the inte-
gral over reciprocal space in Eq. (46) is reex-

pressed as a sum of integrals over the Brillouin
zone having the form

J(cz,k)=2”:[n 5g—~ k- (%+K,)

x p(k+K,) d*«. (50)

Using the symmetry relationship of Eq. (25), the
expression for momentum density given in Eq.
(47) yields the relation

oR %) = p(R) (51)

for all operations R, of the point group O,. Com-
bining Egs. (50) and (51) permits the Compton
profile to be expressed as an integration over the
irreducible wedge of the form

J(q,k) = Z;}y:[w 5~ (R - (R +K,)
x p(k+K,)d%k. (52)

The interpretation of Eq. (52) is that the Compton
profile is expressed as a sum of integrals over a
family of planes which intersect some portion of
the irreducible wedge.
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The evaluation of J (g, 13) from the band structure
is facilitated by rewriting Eq. (52) as

I(g,8)= 3. Y Bula~(RE)-K,, R k)
Ty

xA(g-(R,R) Ky, RE), (53)

where A(), 1) is the area of the segment of the
plane ¥ * =X which lies within the irreducible
wedge

A\ 7) = Iw 6(A =7+ R)doxk, (54)

and B,(1, 1) is the average of p(k +K,) over this
same area segment. In evaluating the Compton
profiles for diamond, the A(X, 7%) are evaluated an-
alytically, while the p, (2, #) are evaluated numeri-
cally by first evaluating p(% +ﬁu) over the uniform
mesh

&, =(n,b, +n,b, +nb,)/N, (55)

where n,, n,, n, are integers so chosen that k. lies
within or upon the surface of the irreducible wedge
and the integer N controls the density of points
within the irreducible wedge. Using this numerical
procedure, the Compton profiles for all five direc-
tions of £ and all values of ¢ reported here can be
obtained from a single evaluation of the p(?& +K i)
over the mesh k,. The calculations of J(g, k) for
the five directions k of the scattering vector were
performed for different choices of the density
parameter N. High-symmetry directions such as
k=(1,0,0) were found to be suitably converged for
N equal to ten due to the large separation between
planes and the correspondingly high density of
points per plane, while low-symmetry directions
such as £=(2,2,1)/3 were somewhat noisy for N
equal to ten due to the lower density of points per
plane. The final calculations were performed for
an N value of 20 for which all five directions
were found to be well converged.

B. Results and comparison with experiment and Hartree-Fock

The self-consistent Hartree-Fock-Slater Comp-
ton profile for 2=(1, 0, 0) is presented in Fig. 4
by the solid line. Selected data points are indi-
cated by filled circles. For comparison, the ex-
perimental measurements of Weiss and Phillips,*°
open circles, and the self-consistent Hartree-
Fock calculations of Wepfer, Euwema, Surratt,
and Wilhite,? triangles, are included in Fig. 4.

In like manner, the Compton profiles for four
lower symmetry directions are given in Fig. 5.
The agreement of the present work with experi-
ment is quite good. More surprising is the excel-

lent agreement between the present Hartree-Fock-
Slater calculation and that of Hartree-Fock. In-
deed, for all five directions of the scattering vec-
tor investigated, the agreement between Hartree-
Fock and Hartree-Fock-Slater is even better than
is the agreement of either theory with experiment
with the Hartree-Fock-Slater results lying be-
tween those of Hartree-Fock and experiment.

Another definitive test of theory with experiment
is to examine the anisotropies in the Compton
profile associated with different scattering vector
directions 2. These anisotropies have been mea-
sured and reported in graphical form by Reed and
Eisenberger.?! These experimental results are
reproduced approximately in Fig. 6 by open circles
connected by straight lines. The reader is re-
ferred to the original paper for a more accurate
presentation of the experimental anisotropies. The
self-consistent Hartree-Fock-Slater results are
given in Fig. 6 by the filled circles and the self-
consistent Hartree-Fock results of Ref. (23) are
presented as triangles. Considering the fact that
the observed anisotropies are more than an order
of magnitude smaller than the individual Compton
profiles, the overall agreement between theory
and experiment is quite good. Again, as with the
Compton profiles themselves, the agreement be-
tween the present theory and that of Hartree-Fock
is exceptional.

VIII. SUMMARY AND CONCLUSION

In this paper we have presented a method for
obtaining an accurate self-consistent Hartree-

" L 1

[o] 05 10 15 20

FIG. 4. Compton Profile J (g, for k= (1,0,0). The
open circles are the experimental results of Weiss
and Phillips (Ref. 20), the triangles are the self-
consistent Hartree-Fock calculations of Wepfer et al.
(Ref. 23), and the dots connected by the solid curve are
the self-consistent Hartree-Fock-Slater results of the
present work. Values of ¢ and J are given in atomic
units.
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Fock-Slater evaluation of ground-state properties
using a contracted Gaussian basis set comprised
of optimized orbitals which span the energy range
of the occupied band states. The progressive re-
laxation of these optimized orbitals to the crystal-
line environment was allowed by reevaluating these
optimized orbitals for each iteration and the effect
of this relaxation upon the individual members of
the basis set has been demonstrated. The basis

so obtained combines all the advantages of a small
basis set for performing accurate integrations
over the Brillouin zone and the Wigner-Seitz cell,
while still retaining most of the important features
of a much larger basis set. Use of this basis set
has permitted the economical estimation of the
convergence of charge density, both with regard
to multipole expansion and to the number of quad-
rature points used in integrating over the Brillouin
zone. This investigation shows that the multipole

expansion is highly converged when truncated after
the hexadecapole term (I =4) and that while an in-
tegration over the Brillouin zone using six points
within the irreducible wedge is satisfactory for
those Fourier coefficients of charge density of
small wavelength, the accuracy decreases with
increasing wavelength. For these long-wavelength
contributions, a 19-point quadrature is employed.
The resultant self-consistent Hartree-Fock-
Slater calculation predicts an indirect band gap
which is in good agreement with experiment both
as to its magnitude and as to the position of the
minimum in the conduction band. While the self-
consistent x-ray structure factors agree reason-
ably well with the experimental results of Gottli-
cher and Wifel, R factor of 3.4%, the presence of
systematic trends in the residuals tends to support
the conclusion of Dawson’s exhaustive studies on
diamond that the measurements of Géttlicher and

q

FIG. 5. Compton Profiles for lower symmetry directions. The open circles are the experimental results of
Weiss and Phillips (Ref. 20), the triangles are the self-consistent Hartree-Fock calculations of Wepfer et al.
(Ref. 23), and the dots connected by the solid curve are the self-consistent Hartree-Fock-Slater results of the
present work. Values of g and J are given in atomic units.
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FIG. 6. Anisotropy of Compton profile. The open circles connected by solid lines are the experimental results
of Reed and Eisenberger (Ref. 21), the triangles are the self-consistent Hartree-Fock calculations of Wepfer
et al. (Ref. 23), and the solid circles are the self-consistent Hartree-Fock-Slater calculations of the present work.

Values of 7 and J are given in atomic units.

Wbofel are not normalized to absolute intensity, but
rather need to be multiplied by a scale factor
somewhat greater than 1.007. Considering the
unique character of diamond with its small core
and strong covalent bonds, a definitive reevalua-
tion of the experimental x-ray structure factors
would be most welcome. In addition, the theoreti-
cal Compton profiles have been calculated for the
five high~-symmetry directions of the scattering
vector for which experimental results have been
reported. In all cases, the agreement with ex-
periment is excellent. The calculated anisotrop-
ies of the Compton profile are also in excellent
agreement with experiment.

Since diamond is one of the few crystalline ma-
terials for which a self-consistent Hartree-Fock
calculation of band structure, x-ray scattering
factors, and Compton profiles is available, it is
instructive to make direct comparison of these

two different approaches. Perhaps one of the
most surprising results of this investigation is
that for both x-ray structure factors and Compton
profiles the agreement of self-consistent Hartree-
Fock-Slater with self-consistent Hartree-Fock

is even better than is the agreement of Hartree-
Fock-Slater with experiment. The Hartree-Fock
results being in somewhat better agreement with
experiment for x-ray structure factors while the
situation is reversed for the Compton profiles.
This agreement tends to indicate that despite the
considerable conceptual differences between the
local and nonlocal “exchange” operators of Har-
tree-Fock-Slater and Hartree-Fock, respectively,
both procedures produce quantitatively similar
predictions of ground-state properties when they
are carried to self-consistency. This is not to
imply that the two procedures are identical in all
respects, since the actual band structures, for
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example, differ considerably from one another.
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