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Calculations of the electronic structure of transition-metal hydrides are applied to the cohesive energy of 3d
and 4d monohydrides, and the single-particle lifetime of states in nonstoichiometric Cu and Pd hydrides: A
simple formula is presented which delineates the principal contributions to the cohesive energy of the
hydrides: (i) the formation of a metal-hydrogen bonding level derived of states of the pure metal band
structure which have s symmetry about the site of the added proton, (ii) a slight increase in binding of the
metal d bands due to the added attractive potential, and (iii) the addition of an extra electron to the metal
electron sea. The calculations, corrected for Coulomb repulsion at the hydrogen sites, qualitatively reproduce
the experimental trends of the heats of formation of the transition-metal hydrides. The single-particle lifetime
calculations are in quantitative agreement with Dingle-temperature measurements and they correctly predict
the existence of essentially undamped states on the hole sheets of the a-phase PdH Fermi surface.

I. INTRODUCTION

This paper discusses the systematics of the
trends in the heats of formation for the 3d and 4d
transition-metal hydrides. These are perhaps
the simplest example of disordered interstitial
metallic compounds in which one sublattice, cor-
responding to the metal, is ordered and the other
sublattice, corresponding to the hydrogen, is
disordered. The techniques developed for this
purpose will be applicable to other systems gen-
erally containing appreciable vacancy concentra-
tions such as many of the refractory compounds.
Also discussed are the complex band structures
of the nonstoichiometric, disordered, interstitial
compounds. The results illustrate the evolution
of the electronic level structure as hydrogen is
added to the host metal.

The results for the heats of formation to be
presented here put previous phenomenological
models into perspective. These models are of
three types: (i) the hydride-anion model®* which
is exemplified by the alkali hydrides such as LiH
in which an electron is transferred from Li to H.
Since LiH is an insulator, the general applic-
ability of this model to the transition-metal hy-
drides is questionable; (ii) the covalent-hydrogen
model® in which it is assumed that the hydrogen
atoms are covalently bonded to the metal atoms;
and (iii) the screened-proton model® in which the
hydrogen enters the metal as a proton and con-
tributes its electron to the unfilled states in the
metal d bands, the screening effects being treated
within the Thomas-Fermi approximation. Be-
cause of its simplicity, this model has received
considerable attention. However, screening ef-

fects are treated in an oversimplified fashion,

and predictions, such as the existence of con-
centrated hydrides in the middle of the transi-
tion-metal rows correlated with peaks in the density
of states,® are not consistent with the experimental
situation. The presentcalculations indicate the for-
mation of ametallic and largely nonionic bond between
the metal and hydrogen, similar to that involving the
d electrons in pure transition metals. However,
they are not inconsistent with the notion that some
ionicity should be present on the left-hand side of
each row.

Switendick® previously calculated the band struc-
ture of a large number of ordered transition-
metal hydrides using the Xo method.® The pre-
sent calculations are based on the renormalized-
atom approach,” a technique that has shown itself
to be useful for the calculation of transition-
metal cohesive energies® because it permits the
ingredients contributing to binding to be delineated
in a transparent physical fashion. The present
band results are in substantial agreement with
those of Switendick. None of the previous calcula-
tions, however, considered either complex en-
ergy bands of the nonstoichiometric hydrides or
the heats of formation, which are the principal
topics of this paper.

The complex energy bands are calculated using
an extension of the average f-matrix approxima-
tion® to interstitial alloys. Detailed results are
presented for PdH, as a function of hydrogen con-
centration. For small x a discrete level is
formed which lies below the palladium d-conduc-
tion-band complex.!® This level is associated with
the formation of a Pd-H bond. With increasing x
this level broadens into a band. The d bands are
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substantially unaffected but shift slightly downward
in energy, an effect which is important in stabiliz-
ing the hydride particularly when the d bands are
appreciably filled. The upper conduction-band
levels, which are unfilled except for the noble-
metal hydrides, are depressed. States having
wave functions with finite amplitude at the hydro-
gen site are broadened by the disorder with a
width essentially proportional to the square of the
amplitude, With increasing concentration the
impurity band grows at the expense of the host
band, in this case, portions of the conduction
band. The calculations are in agreement with

de Haas—van Alphen '3 and photoemission mea-
surements® on PdH, and CuH,.

The heats of formation are calculated for stoi-
chiometric monohydrides placed on an NaCl lat-
tice. The metal atoms are assumed to form a
face-centered-cubic (fcc) configuration with the
lattice constant chosen to yield the Wigner-Seitz
radius of the pure metal. The detailed numerical
results may be summarized by an empirical for-
mula [cf. Eq. (4) below ] which clearly delineates
the contribution of three principal ingredients to
the heat of formation: (a) the formation of the
metal-hydrogen bonding band; (b) the downward
shift of the d bands; and (c) the placement of the
extra electron associated with the hydrogen at
the Fermi energy. These one-electron results
must, however, be modified to take into account
the effects of Coulomb repulsion associated with
the fact that more than one electron may be lo-
cated on a hydrogen site. These Coulomb cor-
rections are estimated within the framework of
the Hubbard model.

The present results for stoichiometric mono-
hydrides are expected to reflect the general trends
of the heats of formation of hydrides over the en-
tire concentration range for the following reasons.
The complex band calculations for the nonstoichio-
metric hydrides indicate that the same physical
effects contribute to the binding as in the stoi-
chiometric case. In addition, Switendick’s cal-
culations® for ordered Pd ,H show that the d shift
is localized around the hydrogen atoms and will
be roughly the same, per hydrogen atom, in-
dependent of the concentration. Except in the case
of the noble metals, the contribution associated
with placing the extra electron at the Fermi en-
ergy will be approximately independent of hydro-
gen concentration because of the large d-band
density of states. The empirical formula may
therefore be used to interpolate reasonably be-
tween the dilute and stoichiometric limits. Ex-
perimental determinations of the partial molal
enthalpy of formation of nonstoichiometric hy-
drides also indicate that the heat of formation per
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gram atom of hydrogen varies slowly as a func-
tion of hydrogen concentration.'* Finally, it
should be noted that the strength of the binding
is underestimated by considering monohydrides
in place of polyhydrides, for those metals that
form the latter.

While it is possible to perform the proper cal-
culations for the nonstoichiometric case, the
degree of complexity is much greater than is
warranted for this preliminary survey and by the
sparsity of available experimental information.
The only systematic compilation of the strength
of the metal-hydrogen bond covering the full 3d
and 4dperiods is that of the heat of solution of
hydrogen at very great dilution. The calculated
trends mirror the observed behavior. They show
that on the left-hand side the hydride is most
strongly bonded. The Coulomb corrections are
also dominant in that part of the row. By con-
trast, on the right-hand side the heats of forma-
tion are largely endothermic and as a result the
hydrides are unstable. In particular, the cal-
culations account for the anomalous position of
Pd in producing very weak bonding. (It is this
feature that accounts for the usefulness of Pd as
a catalyst.) The shape of the curve representing
the heat of formation as a function of valence
across the row is determined largely by the be-
havior of the Fermi energy as it traverses the
d band. While the trends are satisfactorily ex-
plained for the 4d row, the agreement for the 3d
row is somewhat less satisfactory, particularly
as it pertains to the region around Co and
Ni.

The general approach of this paper then is not
so much to achieve results having quantitative
accuracy, but rather to delineate the principal
factors giving rise to the trends of the heats of
formation and from these to deduce empirical re-
lations that can be simply applied for predictive
purposes. The relation developed here differs
from those characterizing previous simpler
theories in that it has been induced from detailed
results based on a reasonable picture of the elec-
tronic energy-level structure rather than on in-
tuitively appealing, but largely oversimplified
models.

Section IT is concerned with technical details
involved in the band calculations. This discussion
may be skipped by the reader interested only in
the results, which are presented in Sec. III. Sec-
tion IV is concerned with the calculation and dis-
cussion of the heats of formation for the 3d and
4d metal hydrides. A derivation of the averaged
t-matrix approximation for a lattice with a basis
is given in Appendix A. Appendix B discusses the
accuracy of the calculated heats of formation.
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II. FORMAL MATTERS

While the transition metals and their hydrides
form a variety of crystal structures,! for purposes
of simplicity and intercomparison, the fcc struc-
ture has been assumed for the transition metals
and the rocksalt structure for their hydrides. The
extensively studied hydrides PdH and NiH have
this structure. Experience indicates that the
structure-independent contribution to the pure
transition-metal cohesive energy is heavily pre-
dominant.!® The same may be true for the hy-
drides. The replacement of polyhydrides by mono-
hydrides (e.g., TiH, by TiH) implies that the cal-
culations should underestimate the exothermic
heat of formation per hydrogen atom.!¢1"

The metal potentials were generated by means
of the renormalized-atom method’ from free-
atom d"s! configuration Hartree-Fock wave func-
tions.”® This electronic configuration is nearly
self-consistent with the d and s number count re-
sulting from transition-metal band calculations®
and leads to cohesive energies that agree well
with experiment,® For the heat of formation cal-
culations in Sec. IV, the renormalization radius
for the metal sites, R, is chosen to be the pure-
metal Wigner-Seitz radius for both the metal and
the hydride. Since the renormalized-atom method
assumes a full Wigner-Seitz correlation hole at
each atomic site,’ the neutral hydrogen renormal-
ized-atom potential is simply that of a proton. As
a result, it is unnecessary to define R, for
hydrogen. However, it is still necessary to
specify a hydrogen muffin-tin radius,

The choice of muffin-tin radii Ry for a lattice
with a basis presents some difficulties. In the
usual prescription for an fcc lattice, the metal
spheres touch along the (110) direction to maxi-
mize sphere volume, leaving an octahedral
sphere of radius 0.15a for the hydrogen atom.
Switendick® has noted that the hydrogen atom is
very poorly represented by such a small sphere
since it accommodates only a fraction of the
electronic charge of a hydrogen atom. Asa
reasonable alternative to metal “touching spheres”
radii, Switendick suggests metal and hydrogen
sphere radii which are respectively 65% and 35%
of the metal-hydrogen separation. The resulting
“65-35" radii reduce the metal-sphere volume by
28% and nearly double that of the hydrogen sphere.
This choice, used here in the calculations for the
nondilute hydrides, also reduces the discontinuity
of the muffin-tin potential between the surfaces of
the metal and hydrogen spheres by as much as
0.5 Ry. “Touching sphere” muffin-tin radii have
been used in the case of the dilute nonstoichio-
metric hydrides (e.g., PdH, and CuH,). The poten-

tial in the muffin-tin flat, %y, is taken to be the
average of the metal potential in the region be-
tween R, and the “touching spheres” metal Ry
in both the metal and hydride calculations.

The band structures for the transition metals
and their stoichiometric hydrides were calculated
using the symmetrized augmented-plane-wave
(APW) method.?° The nonstoichiometric hydrides
were treated as a disordered alloy, with hydrogen
atoms and vacancies randomly distributed on one
of the fcc sublattices and metal atoms located on
every site of the second sublattice. The complex
band structures were obtained using the average
t-matrix approximation °(ATA) in conjunction with
the Korringa-Kohn-Rostoker?! (KKR) method as
generalized to a lattice with a basis (see Appendix
A and Ref, 17).

The Brillouin-zone integrations needed to obtain
the sums of one-electron energies were computed
by means of the method of special points in the
Brillouin zone introduced by Baldereschi®*® and
extended by Chadi and Cohen.® By using ten
special points, this technique leads to Fermi en-
ergies and sums of one-electron energies of pure
transition metals that are in good agreement with
the corresponding quantities obtained from the
Hodges’s interpolation Hamiltonian,'?-2*

III. COMPLEX ENERGY BANDS IN NONSTOICHIOMETRIC
HYDRIDES

The modification of the metal band structure due
to the addition of hydrogen to the interstitial
sites of the lattice is qualitatively similar for all
3d and 4d transition metals.?®> Pd is used as an
illustrative example here since Pd and PdH have
been extensively studied experimentally.?® The
complex energy spectrum of disordered non-
stoichiometric PdH, has not previously been ob-
tained for the full range of hydrogen concentra-
tion. Earlier efforts have centered around stoi-
chiometric PdH,° ordered Pd H and PdH,,* and
PdH, treated by the tight-binding coherent-
potential approximation,?” and the augmented-
plane-wave virtual-crystal method.2? ®

Figure 1 shows the energy bands of PdH, cal-
culated with a concentration-independent lattice
constant ¢ =7.32 a.u. along the [100] and [111]
directions for several values of the hydrogen con-
centration x ranging between 0 and 1. The re-
sults for Pd and PdH [Figs. 1(a) and 1(e)] are in
qualitative agreement with those of Mueller
et al.®® for Pd and Switendick® for PdH.?°* Com-
parison of the Pd and PdH band structures shows
that: (i) the average energy of the lowest (valence)
band in PdH is substantially lower than the lowest
(valence) band in pure Pd; (ii) the unhybridized d
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states are not markedly affected by hydride forma-
tion; (iii) conduction-band states such as those

in the upper A, band are shifted slightly down-
ward in energy; and (iv) the state X2, which lies
above the d bands in Pd [out of range in Fig. l(a)],
is 0.537 Ry lower in PdH.

Two features of particular interest in the non-
stoichiometric alloys are the evolution of the low-
est metal band into the lower-lying metal-hydride
band and the damping of the states. Figs. 1(a) and
1(b) reveal two prominent changes in going from
the pure metal to a hypothetical dilute hydride with 5
(at. %) hydrogen (beyond the a-phase boundary of
PdH). These are the appearance of a new hydro-
genic level lying below the muffin-tin zero and
the damping of the metal conduction states. [The
damping is associated with the electronic life-
time due to scattering from the randomly occupied
hydrogen sublattice, which is givenby -7~ ImE (k). |
In Fig. 1 the width of the shading represents
2| Im[E(K)]|. Preliminary calculations® of the
spectral density of nonstoichiometric PdH, demon-
strate that -7~ ImE(E) corresponds to the half-
width of the peaks of the spectral density function

PdHo10

Xe¢

(e)

FIG. 1. Complex energy bands of (a) Pd, (b) PdH,, s,
(c) PdH,, 59, (d) PdH, g5, and (e) PdH along A and A.
Energies are given in Ry with respect to vacuum.
Where it has been calculated, the Fermi energy e is
indicated. The dashed line corresponds to the muffin-
tin zero Vyy. The width of the shading corresponds to
2|ImE®)|. In assigning symmetry labels, the origin
of the unit cell is the Pd site.

A(k,E), which are centered about ReE (k).

1n the dilute limit, the flat impuritylike hydro-
genic band [Fig. 1(b)] is not damped because with-
in the ATA levels located below Vyq have purely
real energies. However, as the dispersion in-
creases with increasing hydrogen concentration,
the states in the vicinity of the point L rise
above Vyp [Fig. 1(d)] and exhibit damping.

Figure 1(c) shows that the metal conduction
states become more strongly damped with in-
creasing x. For x=0.95 [Fig. 1(d)] the damping
is so large and the associated spectral weight so
small that these states can no longer be found
numerically. As the spectral weight of the con-
duction states decreases, that associated with
the states in the hydrogenic level becomes
larger, until at x =1 the metal conduction states
are replaced by the lower-lying metal-hydride
band. We note that for intermediate x neither of
the two bands in question has full spectral weight
and hence each contains less than two electrons.

The panels of Fig. 1 show that electronic states
having different symmetries are differently af-
fected by the disordered H sublattice. For the
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FIG. 2. (a) Pd and (b) PdH wave functions along the [100] direction for the symmetry states T'y, X }, Xy Loy and

Ly. The label refers to the symmetry about the metal atom.

ordered hydrides, Switendick® has noted that only
states having s symmetry about the proton are
shifted appreciably. Typical of these at high-sym-
metry points are I';, X,, and L,. (denoting the
state by its symmetry about the metal site). Wave
functions for these states in Pd and PdH along the
[100] direction are shown in Fig. 2. (The lattice
constant for g-phase PdH, a=7.62 a.u.,?® has been
used for both.) The wave functions of these states
in Pd are seen to have finite amplitude in the
vicinity of the interstitial site. This amplitude is
increased in PdH and resembles that associated
with a H 1s state. On the other hand, the X,. and
L, wave functions, also shown in Fig. 2, exhibit

a node, consistent with their p character about
the interstitial site, in both Pd and PdH. Refer-
ring to Fig. 1, we note that the former states are
strongly shifted and damped (in the nonstoichio-
metric hydride), whereas the latter remain
relatively unaffected by the hydrogen alloying.
The unhybridized d states are also affected only
slightly. The damping of various states can also

be shown to correlate well with the fraction of the
charge of the state with s symmetry about the
center of the octahedral hole of the pure metal
lattice.'”

The concentration dependence of the damping
for the two types of states is illustrated in Fig.

3. For those having s symmetry about the inter-
stitial site (e.g., I';,X,, L,s), the damping in-
creases monotonically over the concentration
range (x < 0.2) that could be numerically explored.
For the others (e.g., X,/, L,) the damping is far
smaller and can be calculated over the entire con-
centration range. In the latter case, the damping
is essentially parabolic in x increasing until x

=~ (0.5, then decreasing again as electrons scatter
from smaller concentrations of H vacancies.

A second-order perturbation estimate can be
used to obtain insight into the magnitude and sign
of the metal band energy shifts resulting from
the introduction of the hydrogen perturbing poten-
tial Vy(r)=—-2/r - Vyp into the octahedral sites of
the lattice. The energy shift for dilute concentra-
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FIG. 3. =Im E(E) (Ry) for the states (a) T’y and L,
and (b) X, plotted against hydrogen concentration.
Note the compressed concentration scale for the X,
panel.

tions x is given approximately by
AE () =x [ W0V Wi)ay

| 3ir ) Vi ) ) a2

+x(1 = x) 7 F ,
i—ky

(1)

where ¥, and E; are the metal wave function and
energy corresponding to the state 7, Yy is a
hydrogenic wave function, E is the associated
energy (-0.842 Ry in dilute PdH), and the inte-
grals extend over the octahedral muffin-tin
sphere. The first term represents an energy
lowering due to the presence of the attractive
hydrogen potential and the second a repulsion be-
tween the metal and hydrogenic states. The fac-
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tors involving x result from configuration aver-
aging.

To evaluate the integrals, ¥ (r) is approximated
as (née/E7R%)'?, where nbe is the amount of
Pd charge associated with the state ¢ in the octa-
hedral sphere of radius Ry, and $,(r) <ni/?e™,
the normalization being chosen such that
flsz(r)Pd’r:nH, the charge due to the hydrogen
level contained in the octahedral sphere.

The results are showh in Table I, which gives
values of ni: for X%, X2, X,,, and L,.(x=0.05),
the estimates of AE,, and the calculated values.
The estimates predict the sign of the energy shifts
correctly. For states lying far above E, (X,
X,,L,:), AE; is negative. The first-order term
dominates since the repulsive interaction is
small due to the large energy denominator in the
second term of Eq. (1). For levels lying closer
to E, the repulsive term dominates and AE; is
positive. More generally, the higher-lying states
are lowered with increased hydrogen concentra-
tion, whereas lower-lying states are raised.

The magnitude of the damping of the states in
the lowest metal band in the hydride can be esti-
mated with the help of the sum rules for the
imaginary part of the self-energy = (K, E) derived by
Velicky et al®! for a single-band model. A mea-
sure of the strength of the scattering in the single-
band case is a=x(1 - x)8%/1.{°), where 6 and ul”,
second moment of the unperturbed density of
states, are defined by Eqs. (3.7) and (3.27) in
Ref. 31. Approximating the density of states of
the lowest band in the metal by a semicircular
band of width AE =0.2 Ry, and taking & to be the
difference between the center of gravity of the
lowest metal band and the hydrogen level (6
=0.2 Ry), one finds o« =0.2 for x=0.05, which lies
within the virtual crystal region (o < 1). In that
case, the self-energy sum rule®! implies

AE ImX)~ f ImZ(E +i0) dE =-mx(1 - x) 52

TABLE I. Comparison of the PdH,, o5 energy shifts of xt, x3, Xy, and Ly, as obtained from
a perturbation estimate (third column) and the band calculation (fourth column). All energies
are in Rydbergs. The number of Pd electrons contained in the octahedral sphere associated
with each state i, nf,ct, is given in the first column. Calculated using the touching spheres
muffin-tin radii, and the lattice constant of pure Pd (a=7.321 a.u.).

E; (metal) AE; (x=0.05) AE; (x=0.05)
(relative to (perturbation (band-calculation
State ni atomic zero) estimate) result)
X} 0.053 —-0.720 +0.025 +0.008
x? 0.108 0.640 —0.006 —0.004
X4 0.107 0.120 -0.001 -0.002
Ly, 0.116 -0.099 -0.001 -0.003
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This predicts ImZ)=-0.03 Ry as compared with
the KKR-ATA result (ImZ)~-0.02 Ry. The split-
band limit, which should underestimate the damp-
ing in the present case, predicts that the average
value of Im¥ over the metal subband is —0.008 Ry.
The damping of the states on the Fermi surface
can be measured in de Haas—-van Alphen experi-
ments. The Dingle temperature T, for a parti-
cular orbit is related to the average Fermi-sur-
face damping of that orbit by (ImE)=-nkgT ;.
The calculated anisotropy of the belly orbit
damping in PdH, and CuH, is shown in Fig. 4. The
curves for the two materials are similar, The
greatest damping occurs near the [111] direction
where the metal Fermi-surface electrons have
significant s-like character about the hydrogen
site. The magnitude of the damping is larger for
CuH, because the Fermi level lies higher in the
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FIG. 4. Anisotropy of the Fermi-surface damping
for (a) PdHg.q (electron orbit), and (b) CuHy.;.

conduction band and the admixture of s character
about the hydrogen is greater. The ratio of the
damping in the [110] direction to that in the [100]
direction is greater than one for CuH,, while for
PdH, it is less than one. For states along [100],
the higher the Fermi energy the smaller the
damping because the states become less s-like
as they approach X,,, which has pure p character
about the hydrogen site. There is no similar
symmetry restriction for the zone-boundary
state along [110]. The higher Fermi energy in
Cu thus leads to the observed damping ratio.

The Pd Fermi surface also contains d-band
hole pockets centered at X and L, and the open
“jungle-gym” orbit. The damping of these states,
which have almost pure metal d character, is too
small to determine (<0.0001 Ry) for 5% hydrogen
content. As was predicted on the basis of these
calculations,'® the de Haas-van Alphen signal
from the hole orbits can be measured experiment-
ally in samples with as much as 3% hydrogen, the
limit of a-phase stability.!!

The Fermi-surface damping in CuH, has been
investigated by Lengeler and Wampler,'? who loaded
Cu samples with several hundred parts per mil-
lion of hydrogen. The calculated Dingle tempera-
tures for several orbits®® are compared with ex-
periment in Table I1.*®* The measured damping
anisotropy for CuH, is in excellent agreement with
the results in Fig. 4(b). Measurements of the
damping on the belly orbits of Pd have not been
carried out to our knowledge.

Experimental information relevant to other
physical features emerging from the present band
calculations is relatively sparse. Eastman and
co-workers! have observed a low-lying peak in
photoemission studies of B-phase PdH. This band
was found to lie 5.4 eV below the Fermi energy
and to have a width of about 3 eV. The present
calculations, which yield 8.2 and 3 eV for these
quantities, are in reasonable agreement. Addition-
al experiments performed on Ti indicate®* that
the hydrogen level found in the dilute limit
broadens into a band as the hydrogen concentra-
tion is increased. This is consistent with the
concentration-dependent broadening of the hydro-
genic level shown in panels (b)-(e) of Fig. 1.

TABLE II. Average damping (in units of 10" Ry) per
percent hydrogen for several orbits on the Cu Fermi
surface. The experimental values are from Ref. 33.

Orbit Experiment Theory
Neck 2.25+ 0.12 2.3
(100) belly 0.76 + 0.06 0.84
Dog’s bone 1.53+0.14 1.43
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TABLE III. Average energy of each band in Pd (first column) and PdH (second column).
The difference (PdH average energy-Pd average energy) is indicated in the third column. The
band energies are in Rydbergs and given with respect to vacuum. The number of d and non-d
electrons per band contained in the metal muffin-tin sphere of Pd (first column) and PdH
(second column). The PdH-Pd charge difference is indicated in the third column. All columns
are for the Pd and PdH calculations of Fig. 1.

Metal non-d charge

Average band energy Metal d charge per band per band
Band Pd PdH Difference Pd PdH Difference Pd PdH Difference
1 —0.627 -0.950 -0.323 1.49 0.46 —1.03 0.12 0.25 0.13
2 -0.575 —0.616 —0.041 1.58 1.60 0.02 0.09 0.07 -0.02
3 —-0.474 -0.496 —0.022 1.68 1.65 —0.03 0.08 0.09 0.01
4 -0.421 -0.456 —0.035 1.74 1.79 0.05 0.07 0.03 -0.04
5 —0.339 -0.348 -0.009 1.86 1.91 0.05 0.04 0.01 —0.03
6 -0.011 -0.231 -0.220 0.73 1.56 0.83 0.58 0.08 -0.50

In connection with the hydride heats of forma-
tion to be considered in Sec. IV, it is useful to
compare the average over the Brillouin zone of
the energies of the pure metal and stoichiometric
hydride bands. These average energies for Pd
and their shifts (PdH average energy)-(Pd aver-
age energy), calculated by using ten special
points,*® are given in Table III. The most con-
spicuous changes occur in the lowest valence band
(band 1) and the d-hybridized conduction states
composing band 6.

These energy shifts are associated with changes
in the metal charge distribution. Table III shows
the amount of d and non-d charge contained in
the metal muffin-tin sphere for each band in Pd
and PdH and the difference (PdH charge minus
Pd charge). As is apparent, the lowest Pd band
(band 1) is a d band with a small amount of con-
duction-band character. The next four higher
bands are substantially unhybridized d bands,
while band 6 is a d-hybridized conduction band
with much greater conduction character than band
1. In PdH, the d admixture of band 1 is reduced
by approximately one electron with respect to
band 1 of Pd. The charge decomposition of the
d bands 2-5 is essentially unaltered. The d
admixture of band 6 increases by nearly one d
electron over the Pd value.

To understand these changes, we note that,
because band 1 lies 0.24 Ry further below the d
bands in PdH than in Pd, the s-d hybridization
is reduced and the number of d electrons in that
band is diminished. The missing charge (the sum
of the metal d and non-d charges is less than 2)
is located in the intersphere volume and in the
hydrogen muffin-tin sphere and gives rise to the
molecular Pd-H bond characterizing band 1 of the
hydride. The increased d character of band 6 in
PdH is due to the fact that the high-lying conduc-

tion states are brought, on the average, 0.2 Ry
closer to the d bands, thereby increasing the s-d
hybridization.

The much smaller energy shift of bands 2-5 is
associated with weak s-d hybridization and small
wave-function amplitude at the hydrogen sites.
States at points of low symmetry in the Brillouih zone
contain a non-negligible s admixture which re-
sults in an energy lowering in the hydride pro-
portional to the amount of s admixture. Thus, the
states in band 3 are shifted more than those in
band 5 in accordance with the relative amounts of
non-d charge. These shifts have not, to our
knowledge, been discussed previously. Although
small, they play an important role in hydride
formation to be discussed in Sec. IV.

IV. HEATS OF FORMATION OF STOICHIOMETRIC
MONOHYDRIDES

The heat of formation per unit cell AE is de-
fined by the reaction of metal M with hydrogen gas
to form the hydride MH,:

M (solid) + 3 xH, (gas) -~ MH (solid) - AE, (2)
where
AE=E(MH,) -E(M) - 3xE(H,), ®3)

and E(MH,) and E(M) are, respectively, the total
energies per unit cell of the hydride of concentra-
tion x and the pure metal. E(H,)=-2.266 Ry is
the Hartree-Fock energy required to separate a
hydrogen molecule into its constituent electrons
and protons.3®

The present calculations pertain only to stoi-
chiometric hydrides x=1. The reasons for
attributing a broader applicability to these re-
sults were discussed in Sec. L.

In this section we discuss the hydride heat of



1948 GELATT, JR., EHRENREICH, AND WEISS 17

formation purely on the basis of one-electron con-
siderations by approximating E(MH) - E(M) by
AE,, the difference between the sums of one-elec-
tron band energies of the pure metal and the
hydride. The contribution of other effects, such
as repulsive Coulomb contributions associated
with the occupancy of the hydrogen site by more
than one electron and strain effects, are esti-
mated in Sec. V.

Detailed calculations of AE, using band-struc-
ture results for the stoichiometric hydrides of
Ti, Cr, Mn, Fe, Co, Ni, Cu, Y, Nb, Tc, Ru,
Pd, and Ag suggest that AE, can be represented
accurately by the formula

AE, = 2((e!{l) = (e¥p)) +ni P (MY - (¥ + €. (4)

The first term in Eq. (4) represents the difference
in average energy of the lowest band (LB) of the
hydride (¢¥}) and metal (e{s ) each of which con-
tains two electrons. The second term describes
the shift of the d bands. The quantities (e¥) and
(e¥H) are, respectively, the average energies of
the occupied d states lying above LB in the metal
and hydride. The average energy of the eleventh
electron which occupies the s-d hybridized states
above the top of the d bands in the noble metals is
included in (e¥) and (¢¥"). The quantity »¥¥ is the
number of d electrons in the hydride. If the metal
has N, valence electrons, n¥" is equal to N, — 2.
The Ny +1 electrons per unit cell of the hydride
are allocated as follows: two in the lowest band,
one at the Fermi level, and N¥! in the d bands.
Note that the value of n¥" is one smaller than the
nominal d-electron count N, -1 of a pure transi-
tion metal. The third term approximates the con-
tribution of the additional electron per unit cell
due to the hydrogen atom which is added on at
the Fermi energy €. Because €¥ is referred to
an absolute energy scale, AE, will be sensi-
tive to the choice of the zero of the crystal poten-
tial. Since the renormalized-atom method*® has
been used to calculate the potentials for all of the
hydride systems, this sensitivity should not affect
the calculated trends of the heat of formation but
it could affect the overall magnitude. One cannot
use the metal work function to place the energy
levels relative to vacuum because in hydride
formation a neutral hydrogen atom passes through
the surface and thus the heat of formation is in-
dependent of the surface dipole layer contribution
to the work function.

When the Brillouin-zone averages in Eq. (4)
are evaluated utilizing the ten special points
averaging techniques, >*?° the values of AE, thus
obtained agree to within 0.02 Ry with those re-
sulting from more detailed Brillouin-zone integra-
tions calculations. Equation (4) is therefore seen

to be both physically transparent and numeri-
cally useful.

The behavior of the three terms of Eq. (4) across
the 3d and 4d rows is illustrated in Figs. 5 and 6,
respectively. The plots of the corresponding
Wigner-Seitz radii Rys [Figs. 5(d) and 6(d)] are
helpful in understanding the calculated variations.
The behavior of Rys for the transition metals has
been discussed by Gelatt et al.® The initial de-
crease of Rys with increasing nuclear charge Z
is to be associated with the filling of bonding d orbi-
tals, whereas on the right-hand side of the rows the
increase in Ryg is due to the filling of antibonding
d orbitals. The overall asymmetry, most clearly
exhibited for the 4d series in Fig. 6(d), arises
from a monotonic reduction of atomic size with
increasing Z.
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FIG. 5. Variation across the 3d vow of (a) the upper
and lower d-band edges, the average energy of the
occupied d bands (), the average energy of the low-
est-metal valence band (eﬁs) , and the metal Fermi
energy; (b) the shift in energy of the occupied d bands;
(c) the occupation-weighted shift in average energy of
the lowest band; and (d) the Wigner-Seitz radius Ryg.
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FIG. 6. Variation across the 4d row of (a) the upper
and lower d-band edges, the average energy of the
occupied d bands (e¥), the average energy of the
lowest metal valence band (e #3), and the metal
Fermi energy; () the shift in energy of the occupied
d bands; (c) the occupation-weighted shift in average
energy of the lowest band; and (d) the Wigner-Seitz
radius Ryg.

Figures 5(a) and 6(a) refer to the pure transi-
tion metals. The mean d-band energy rises and
the bands broaden with decreasing Rys on the
left-hand side of the row. The increased energy
difference between bonding and antibonding states,
respectively, marking the lower and upper d-band
edges, is due to the greater compression of charge
on forming the renormalized atom. This effect is
counteracted by the increasing nuclear charge Z.
Of the two effects, the former dominates on the
left-hand side of the row. On the right-hand side,
the two effects are in the same direction. Thus,
after an initial rise and broadening, the d bands
shift downwards and become narrower. The be-
havior of €¥ is determined by the preceding ef-
fects as well as by increased d band filling. The
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latter is relatively less important for the transi-
tion metals on the right-hand side and hence, after
rising at the beginning of the period, €¥ drops
until the d bands are completely filled. At this
point, €¥ enters the relatively low density of
states associated with the conduction bands and
rises rapidly.

Hydride formation causes the d bands to shift
downward, as indicated in Figs. 5(b) and 6(b).
This shift correlates with the fraction of the
charge of these states in the pure metal which
has s symmetry about the center of the octahe-
dral sites. This charge will sample the hydro-
gen potential V(r) most strongly. The perturba-
tion estimate of Eq. (1) yields a d-band shift
which to lowest order is proportional to n8ct(Vy),
where (V) is the potential averaged over the
octahedral sphere.

The rather weak variation of AE,=n¥"((e¥")

- (e¥y)=n¥"Ae, with Z, shown in Figs. 5(b) and
6(b), can be understood in terms of the following.
In the first half of the period, AE, results from
the energy shift of primarily bonding d orbitals.
The shift of each bonding d orbital is nearly con-
stant because the competing effects of: (a)
greater wave-function overlap as Ryg decreases;
and (b) greater wave-function localization as Z
increases, combine to produce a nearly constant
amount of octahedral charge and hence a con-
stant energy shift for each bonding level. As a
result, the initial slope of AE, is proportional to
n¥H. The increase and change of slope of AE,
occurring after the middle of the period results
from two factors. First, the magnitude of each
d-level shift decreases due to the effects of
greater wave-function localization and reduced
wave-function overlap associated with, respec-
tively, increasing Z and Rys. Secondly, the anti-
bonding d states, which have highly localized wave
functions, and hence make a small contribution to
AE,, are filled in this part of the period. These
effects result in a net increase of AE,;. The sharp
decrease for the noble metals is associated with
the lowering of the hybrid d-conduction-band states
of the sixth band in the hydride, a more important
effect in Ag than in Cu.

It is clear from Figs. 5(c) and 6(c) that the
nearly linear shift in the average energy of the
lowest band is the dominant and most rapidly
varying contribution to the heat of formation ex-
cept for the noble metals. Figure 7, illustrating
the average energy of the lowest metal band (e} )
and hydride band (¢¥}) for the 3d row, shows
that the variation of (¢{f3) is three times as great
as that of (e¥l). As a result, the Z dependence of
(41 — (efh ) is determined largely by the varia-
tion of (el ).
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FIG. 7. Variation across the 3d row of the average
energies of the lowest metal band (e#) and the lowest
hydride band (e M) .

The weak Z dependence of (e¥5) can be under-

stood qualitatively using a simple model for the
alloy in the low-concentration limit., The band
results show that in this limit a H-M bonding level
forms below the conduction bands whose mean en-
ergy is insensitive to hydrogen concentration. We
model the potential giving rise to this level by
averaging the impurity potential over the metal
unit cell, thus forming a dilute substitutional al-
loy. The energy of the split-off states €, (cor-
responding to (ef5))is determined by the condi-
tion®

Re[Fo(GLB)]Zl/G; (5)

where F,(€)=(0|G(€)|0), G(e) is the unperturbed
host Green’s function, |0) refers to a Wannier
function associated with cell 0, and 6=€" - ¢,
characterizes the strength of the impurity poten-
tial. Specifically, €, is the mean host metal band
energy, and €' = (Nyell + Nye,)/(Ny +N,) represents
the energy level of the hydrogen-modified unit
cell. Ny and N, are the number of electrons in a
muffin-tin sphere associated, respectively, with
the hydrogen and metal charge. For the present
qualitative purposes it suffices to assume e!!
=~1Ry. €" thus consists of a weighted average
specifying the effectiveness with which an electron
samples the hydrogen impurity.

We solve Eq. (5) assuming a simple model for
the host density of states [=—7"'ImF,(E)], shown
in Fig. 8 for Cu and Ti which are located roughly
at opposite ends of the 3d row. In the former case
the d band is lower and narrower than in the lat-
ter. This state density determines ReF,(E), and
its intersection with the line 57*, the solution €,
of Eq. (5). Figure 8 shows this intersection to
occur at about the same energy in the two cases.
The near constancy of €,; for Cuand Ti is a

—— Re F, (E)
.......... -Im Fo (E)
3 - /8

(RYDBERGS)

-20 56 00 10
ENERGY (Ry)

FIG. 8. Plot of the real and imaginary parts of Fy(E)
and 6" ! for Cu and Ti. Fy(E) is the trace of the metal
Green’s function and 6 is the scattering strength of the
hydrogen impurity.

result of the tradeoff between the magnitude of

6 and the position of the mean energy of the metal
band structure. ¢, for Cu is lower than for Ti and
6 is correspondingly weaker. These limited re-
sults suggest that (e¥H) will be approximately con-
stant across the entire row.

To calculate AE,, the metal-related quantities
appearing in Eq. (4) should be evaluated using a
“touching spheres” metal radius (cf. Sec. II) and
the hydride-related quantities using “65-35" radii
to better represent the hydrogen site. However,
comparisons of band calculations done with both
types of radii indicate that the average energy of
the individual pure metal d bands is 0.02-0.04 Ry
lower for the “touching spheres” radius than for
the “65-35” radius. Since the lowering of the
individual d bands in going from the metal to the
hydride is of order 0.04 Ry, the hydride d band
shifts are completely obscured by use of “touching
spheres” metal radius for the metal calculations
and “65-35” radii for the hydride. As a result,



17 TRANSITION-METAL HYDRIDES:

+0.1 T T T T T T T T T —
4+20
. x 4
§ 0o ——— o
s Fe Co Ni Cu
& 4-20
=~ e—o Theory _
w ~OI+
< e--o Coulomb Corrected -40
Theory
x  Experiment (a-phose)
—oz2k 4-60
a  Experiment (hydrides)
t -1-80
2 -
+0lrg -
] P ]
£ P\ . 1+20
(=] s \Y
2 2
w x PR Ag
0.0 t % +— O
2 Ru Rh Pd\
£ ]
Q
- _20 —
£ =
-0+ W 4 %
| 40 €
4 3
X
-0.21 4-60 ¥
4 <
--80
-0.3r- N
1 1 1 1

FIG. 9. Calculated heats of formation per hydrogen
atom AE for stoichiometric hydrides without (solid line)
and with (dashed line) Coulomb energy corrections.

The experimental points represent enthalpies of forma-
tion of dilute (Ref. 28) and nondilute (Ref. 39) 34 and 4d
hydrides. The open circles indicate elements for which
the components of Eq. (4) have been interpolated from
those of the neighboring elements.

both (e¥) and (e¥"'y were evaluated using “65-35"
metal radii.’®* The remaining terms of Eq. (4)
which refer to the pure metal were calculated
using the “touching spheres” metal radius.

The heats of formation of the stoichiometric 3d
and 4d monohydrides obtained from Egs. (4) and
(3) are shown in Fig. 9.3 These calculations used
the equilibrium Wigner-Seitz radius of the pure
metal since much of the existent experimental
data pertains to dilute hydrides where lattice-
expansion effects are negligible. The points
representing AE for Ti, Cr, Mn, Fe, Co, Ni, Cu,
Y, Nb, Tc, Ru, Pd, and Ag were obtained by cal-
culating the components of Eq. (4) directly from
the band-structure results. Those representing
Se, V, Zr, Mo, and Rh are the result of inter-
polating values of (e¥), (e¥Fh, (e¥), (ef"), and
€¥. For the noble metals, it was necessary to
modify Eq. (4) by substituting for e the explicit
energy (~e¥H) at which the extra electron is
added. This modification is required because for
these metals the hydride Fermi energy can be
substantially lower than the pure-metal Fermi
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energy, a cansequence of the lowering of the up-
per conduction-band states in the hydride. These
states are occupied only in the noble metals.

In the absence of systematic studies of mono-
hydrides, we show in Fig. 9 a collection of experi-
mental points for dilute hydrogen solutions®® and
nondilute hydrides.3®

In view of the approximations made here, com-
parisons between theory and experiments should
be limited to an examination of general trends
across the periods. The gross features of the
AE curve reflect the general experimental situa-
tion, namely, that with the exception of Pd and Ni
stable concentrated hydrides form only on the
left-hand sides of the period. The results shown
in Figs, 5 and 6 indicate that the shape of the
solid curve is determined by the variation with
Z of both the Fermi energy and the lower band
shift. The large magnitude of the latter in the
first part of each period is responsible for the
associated relatively large formation energies.
The drop in the theoretical curve near Pd and the
shoulder near Co are attributable to the Z depen-
dence of the Fermi energy shown in Figs. 5 and 6.
Although B-phase palladium hydride is stable at
room temperature and pressure, its heat of
formation is very small compared to that of the
hydrides of Y and Ti and when viewed on the scale
of the hydrogen dissociation energy, 1.13 Ry. The
characteristic weak binding of PdH is also evident
from the theoretical curve for AE, even though
the computed value of AE is slightly positive. The
experimentally observed increase in binding of
hydrogen by the metal near Ni in the 3d row is
not reproduced by the calculations. Comparing the
behavior of the Fermi level in the 3d and 4d rows,
shown in Figs. 5(a) and 6(a), one observes that
the difference is the result of the bands dropping
less rapidly with increasing nuclear charge in the
3d row. It should be noted that the calculated
d band width for Ni is almost 2 eV larger than
that observed in photoemission experiments®** a
problem which is unique to Ni.

A comparison of the computed and experimental
values of AE for the early transition metals (and
Ag) indicates that the one-electron calculation
overestimates the stability of these hydrides.
This results from a neglect of the Coulomb en-
ergies arising from the presence of more than one
electron on a H site. Corrections associated with
these effects are estimated in Sec. V. The calcu-
lated heats of formation including the corrections
are indicated by the dashed curves in Fig. 9.

V. CORRECTIONS TO BAND RESULTS

This section will deal with the hydrogen Coulomb
energy resulting from occupancy of a hydrogen
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TABLE IV. Integrated muffin-tin sphere charge for the metal site in the pure metal, the
metal hydride, and their difference; the integrated muffin-tin sphere charge for the hydrogen
site in the pure metal, the metal hydride, their difference, and the lattice constant used in
the calculations. The “65-35" prescription is used for the muffin-tin radius.

Ti Cr Fe Ni

Y Nb Ru Pd Ag

N4 (M) 2.80 4.53  6.57 8.76
N (MH) 2.76 4.64 6.74  8.95

9.85 1.82 3.42 6.31 8.74 9.82
9.95 1.61 3.39 6.40 8.76 9.79

Aan -0.04 +0.11 +0.17 +0.19 +0.10 -0.21 -0.02 +0.09 +0.01 -0.03
NgT(M) 0.22 0.28 0.27 0.22 0.21 0.26 0.32 0.30 0.21 0.20
NET(MH) 1.14 1.04 0.98 0.89 0.98 1.45 1.22 1.08 1.00 1.17
AN&T +0.92 +0.76 +0.71 +0.67 +0.77 +1.19 +0.90 +0.78 +0.79 +0.97
a (a.u.) 7.81 6.83 6.78 6.61 6.77 9.77 7.82 7.12 7.32 7.67

site by more than one electron, an effect which
has not been considered in the estimate of the
hydride heat of formation based on AE,.

For convenience, we shall monitor the amount
of charge associated with the hydrogen site by
considering the charge contained in the relevant
muffin-tin sphere. While it would clearly be
better to define a more realistic hydrogen sphere
radius, perhaps in analogy with the Wigner-Seitz
radius associated with the metal atom, it is dif-
ficult to define this radius unambiguously.*

Table IV indicates that the amount of charge con-
tained in the hydrogen muffin tin is greater than
unity for some systems. The question arises
whether this effect is to be associated with charge
transfer from the metal to the hydrogen site or
can be accounted for in some other way.

There is much speculation in the hydride litera-
ture on the nature of the chemical bond between
hydrogen and metal atoms.!> Although there is
no conclusive experimental evidence, it is argued
that in the hydrides of the early transition metals
some of the metal charge is transferred to hydro-
gen, thereby producing a partially ionic bond.
Estimates of charge transfer based on the present
calculations are complicated not only by the dif-
ficulties associated with partitioning the charge
in the unit cell, but also by the accuracy with
which the average charge decompositions are
computed. The accuracy of the present calcula-
tions is such that the total charge contained in
metal and hydrogen muffin tins, respectively, is
estimated to be correct to about 0.05 electrons.
Since the charge transfer effects themselves are
likely to be of that order, we cannot arrive at an
unambiguous view as to whether charge transfer
effects are indeed important. While not excluding
the presence of charge transfer except possibly
in the case of early-period metals and Ag, it will

be argued that the charge densities contained in the
two muffin-tin spheres can be accounted for with-
out invoking the notion of charge transfer. The re-
sults shown in Table IV are useful in this respect.
By inspecting the changes in total charge con-
tained in the metal muffin-tin sphere and the octa-
hedral site in a metal upon forming the hydride,

it appears that the metal is acquiring charge at

the expense of the hydrogen in the middle of the
rows in contrast to the prevailing views that the
charge transfer is in the opposite direction. This
effect can be explained without invoking inter-
atomic charge transfer by recalling that on hydride
formation an electron is transferred from the
lower metal band to the Fermi energy, that is,
from a diffuse bonding state to a localized anti-
bonding state. The metal d-charge density thus
becomes more localized and more charge is con-
tained within the metal muffin-tin radius. This
viewpoint is consistent with the fact that ANy,
increases across the rows to Ni and Pd. The ef-
fect, however, is not present for Cu and Ag,
where the d bands are already filled in the pure
metal and the transferred electron lies in the
conduction-band complex. That AN¥r is less than
zero for Ti, Y, Nb, and Ag indicates that charge
transfer may be important in these hydride sys-
tems.

The behavior of the quantities ANy and AN};
can also be explained by invoking an intuitive argu-
ment to the effect that the charge present in the
hydrogen muffin-tin radius can be represented
approximately as

o(r)=py +apy(r), (6)

where p, is the average charge density in the octa-
hedral sphere in the pure metal, and py(r)=7"1e™?"
is the charge density of a free hydrogen atom. In
the present context, a is to be interpreted as a
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TABLE V. Components of the calculation of the Coulomb energy correction. The rows
contain the hydrogen-site muffin-tin radius, the average charge density in the hydrogen-site
sphere in the pure metal, the fraction of the charge of a hydrogen atom contained in a sphere
of radius RYy, the parameter a from Eq. (6), the Coulomb integral defined by Eq. (8), and the

Coulomb energy correction given by Eq. (7).

Ti Cr Fe Ni

Cu Y Nb Ru Pd Ag

Rz @.u) 1.37 1.20 1.19 1.16
po (el. a.u™)  0.020 0.039 0.038 0.035
Ny 0.51 0.43 0.42  0.41
@ 1.80 1.76 1.68 1.64
F° (Ry) 0.65 0.59 0.53 0.46
AE (Ry) 0.05 0.01 0.0 0.0

1.19 1.71 1.37 1.25 1.28 1.34
0.030 0.013 0.030 0.037 0.023 0.020
0.42 0.66 0.52 0.45 0.47 0.50
1.83 1.79 1.74 1.72 1.68 1.93
0.54 0.88 0.73 0.62 0.52  0.70
0.0 0.29 0.10 0.03 0.0 0.07

renormalization parameter. The appropriateness
of this argument rests on whether the calculated
charge density can indeed be fit by this parame-
trized expression across the entire row for a con-
stant value of . Table V shows that this is true
to fair approximation. Figure 10 illustrates the
parametrized form, The approximate validity of
this superposition again suggests that it is pos-
sible to account for the increased charge around
the proton without invoking a significant amount
of charge transfer.

The increased charge associated with each pro-
ton does lead to a repulsive Coulomb energy which
decreases the heat of formation. The neglect of
this effect in AE, is predominantly responsible for
the discrepancy between theory and experiment on
the left-hand side of each row. We shall estimate
this effect by assuming that the charge to be as-
sociated with each proton is that contained in the
hydrogen muffin-tin sphere and by adopting a
band theoretic viewpoint within the spin-restricted
Hartree-Fock approximation which postulates that
the occupany of spin-up and spin-down states is
the same. Within the context of a Hubbard-like
approach, these Coulomb energies result from the
repulsion between spin-up and spin-down elec-

Pilr)

Pota pyulr)

FIG. 10. Schematic representation of the decomposi-
tion of the hydrogen charge density (solid curve) into
a constant metal component p,, and an atomic hydro-
gen component py(r) scaled by the factor o (dashed curve).

trons. We approximate the associated energy by
the expression

AE =3Ny(Ny-1)F°, 7

where Ny is the charge ascribed to the hydrogen
sphere and F° is the Slater-Coulomb integral
evaluated in the muffin-tin sphere

- 2 SN
Fo=ff po(rl)zp_a(rz)drldrz. 8)

The charge density py(r)=3p(») is the charge as-
sociated with spin-up electrons, p, that associated
with spin-down electrons, and p(r) is the total
charge density. The factor of 3 in Eq. (7) is in-
troduced to prevent double counting of the elec-
tron-electron interaction. We observe that this
expression reduces correctly to the Hubbard re-
sult in the case of a nondegenerate filled band
and vanishes if the band is half occupied. The
results for the range 1 <Ny, <2 depend on the
model chosen and would differ from those sug-
gested by Eq. (7) in an unrestricted Hartree-Fock
viewpoint. They should suffice, however, to ex-
hibit the trends that we are trying to explain in
connection with Fig. 9. Table V presents the re-
sults of the calculation of AE for the 3d and 4d
metal hydrides. Because of the larger values of
NH: on the left-hand side of the periods, the
hydrogen associated Coulomb energies are lapger
there and diminish as one proceeds to the right
across the row. The addition of these corrections
to the heats of formation calculated from one-elec-
tron energy differences, shown by the dashed
curve in Fig. 9, is seen considerably to improve
the agreement of the calculated heats of forma-
tion with experiment,

The Coulomb correction given by Eq. (7) is a
rough correction for the lack of charge self-con-
sistency in the present calculations. In cases
such as Y and Nb, where the correction is large
on the scale of the calculated heat of formation,
this simple estimate of the Coulomb correction
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is less reliable. It might also be argued that the
large Coulomb energies of the early transition
metals are conducive to polyhydride formation
which is characteristic of that part of the transi-
tion-metal rows since the inclusion of more than
one proton per unit cell can be shown to reduce
the Coulomb penalty because fewer electrons are
associated with each proton.’
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APPENDIX A: TWO ATOM PER UNIT CELL AVERAGE
+-MATRIX APPROXIMATION

The derivation of the average f-matrix approxi-
mation (ATA) for a muffin-tin model of an alloy
with more than one atom per unit cell follows
that for the single atom per cell case.’ The sin-
gle-particle Hamiltonian in atomic units is

H=p2+z Z Vi(E). (A1)
n i

Atoms are located at R, +7;, where R, denotes
a crystal lattice vector and 7; a basis vector
within a unit cell. The potentials V}(¥) are as-
sumed to be spherically symmetric and to vanish
for |¥|>Riir, the muffin-tin radius for atoms at
the ith site within a cell.

The equilibrium properties of the alloy are most
conveniently discussed in terms of the configura-
tion averaged single-particle Green’s function

GE)=((E-H)"), (A2)

where (- --) here and in the following denotes con-
figuration averaging over the occupation of the
sublattice sites. It is convenient to introduce the
average total-scattering operator T(E), which is
related to G(E) by

G=6,+G,TG,, (A3)

where G, is the free-particle Green’s function.

T can be expressed in terms of #, the atomic
scattering matrices, which are related to the sin-
gle-site potentials by

B=vi1-G,vH™. (A4)

The resulting multiple scattering series for T is

T=Z<t;>+ >

n,i
n',i’=n,i

(tiGtE )y +- . (A5)

Neglecting fluctuations in the average, the cen-
tral approximation of the ATA, allows one to
replace the average of products by products of
averages. Equation (A5) becomes

T=% (h+
ot n’ ,i"’.:n.i

NGB+ -+, (AB)

where, if sublattice i consists of atoms A and B
with concentrations x and 1 - x,

{hy=xtAW L (1= x)t8D (A7)

Equation (A5) has the same form as the equation
for the total scattering operator of a pure crystal
with a basis with effective atomic scattering
matrices (¢!). The multiple scattering series in
Eq. (A6) can be summed in an angular momentum
representation. The momentum representation of
the atomic ¢-matrices has the form

AR =(n)*Y Y ®)E (R RY ().
L

Just as in a pure crystal, the complex energy
bands, i.e., the locus of poles of the diagonal
matrix elements of T in the momentum represen-
tation, depend only on the energy-shell matrix
elements of ¢ (the case |K|=|Kk’|=E!/2 =) which
can be expressed in terms of the phase shifts
A3 pB) | of the single-site potentials. For
example,

t;.(i)(K’ K) = —kleim(R sin[n,(K)]- (A8)

Following the crystalline derivation,*! the complex
energy bands are determined by the condition

lix(cot[ni () )or} . + ALY (K, x)|| =0, (A9)
where
w(cot[ nf (k) ]y = =(t,(k, k)Y +ik, (A10)

and the AlY, are the KKR structure factors for a
“complex” crystal, extended here to complex
energies, The matrix in Eq. (A9) is not
Hermitian (except for 2 real and negative),
thus the eigenenergies are complex.

APPENDIX B: DETAILS PERTAINING TO THE
HEAT-OF-FORMATION CALCULATIONS

The calculations of the heat of formation of
metal hydrides reported in Sec. IV are, to our
knowledge, the first systematic attempt to cal-
culate heats of formation for an entire family of
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compounds. A number of parameters, such as the
lattice constant, muffin-tin radii, and the muffin-
tin zero of the potential had to be selected with-
out the benefit of prior experience. We have not
attempted to optimize the choice of these para-
meters, rather we chose one convenient scheme
(described in Sec. II) for selecting them and used
it systematically for all calculations. In this
Appendix we discuss checks of the sensitivity of
the results to the choice of parameters.

A. Lattice constant

The density of metal atoms in the stable metal
hydrides is usually less than that in the pure
metal. Since our calculations included systems
which do not form stable hydrides, we chose to
use the same density for both the metal and the
metal hydride rather than to guess the most favor-
able density for each system. Calculations have
been carried out for TiH, NiH, and CuH with the
lattice constant expanded by 5.6%. The qualitative
effects of increasing the lattice constant are: (i)
the metal d bands narrow and become more tightly
bound, thus approaching the case of the isolated
atom; (ii) the Fermi energy, which rides the d
band, drops; (iii) the sixth band, primarily a
conduction band, falls, reflecting the decreased
kinetic energy due to the reduced electronic den-
sity; and (iv) the bottom band lowering between
the metal and the metal hydride is reduced be-
cause the d bands in the metal fall more rapidly
than the metal-hydrogen level in the hydride. The
heats of formation of the hydrides calculated from
the electronic energies in the expanded lattice
metal and expanded lattice metal hydride using
the methods of Sec. IV are greater (more exo-
thermic) by 0.014, 0.061, and 0.069 Ry/(unit cell)
for TiH, NiH, and CuH, respectively. To this
difference should be added the energy cost of ex-
panding the pure metal lattice which can be cal-
culated from the bulk modulus of the metal. The
net result is an increase in the strength of the
binding of the expanded lattice hydride relative
to the normal lattice hydride of 0,001, 0.046, and
0.058 Ry/(unit cell), consistent with the observed
decrease in metal density which accompanies
hydride formation in these systems.

B. Muffin-tin radii

The calculated heat of formation is quite sen-
sitive to the relative sizes of the metal and hydro-
gen muffin-tin spheres. The calculations in Sec.
IV used the “touching spheres” (see Sec. II) muffin-
tin radius for the pure metal (but the “65-35”
prescription for the metal d-band average energy),
and the “65-35” prescription for the hydride. A
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calculation of the heat of formation using touching
spheres for both Pd and PdH gives AE,=-0.94 Ry/
(unit cell) compared to -1.13 Ry/(unit cell) used
in Sec. IV. A calculation using the “65-35" radii
for both Pd and PdH yields AE, =-1.22 Ry/(unit
cell). Reducing the size of the hydrogen sphere,
as in the touching spheres prescription, reduces
the binding of the metal-hydrogen level by 0.06 Ry,
and increases the binding of each of the metal d
bands by about 0.02 Ry in both the metal and the
hydride so the effect on (A¢,) is small, Using the
“65-35" prescription for the pure metal results
in a less tightly bound lowest band, thus increasing
the lowering of the bottom band when the hydride
is formed, and increasing the heat of formation.
The damping of the bands in the nonstoichio-
metric hydrides is also affected by the size of the
hydrogen muffin-tin sphere. The Fermi-surface
damping calculations in Sec. III used the touching
spheres prescription. Using the “65-35” pre-
scription decreases the damping by about 25%.
The change is essentially independent of the nature
of the state. Thus, the shape of the curves re-
presenting the Fermi-surface damping in Fig. 4
would not be affected by using the “65-35” pre-
scription, but the magnitude would be in poorer
agreement with experiment,

C. Shifts in the Muffin-tin zero

The potential in the region between the muffin-
tin spheres was assumed to be the same in the
metal hydride as in the pure metal for lack of an
easily implemented calculation of its shift when
the proton is added to a unit cell. A calculation
for CuH with a depressed muffin-tin zero veri-
fies the expectation of first-order perturbation
theory: the shift of a one-electron level d¢;
when the muffin-tin zero is shifted by 6Vyr can
be approximated as e, =nf¥6Vy; , where nf¥ is
the fraction of the charge density of the state
which resides in the intersphere region. This
expression is found to be accurate to within about
5%. One expects V; to be more negative in the
hydride than in the pure metal because an attrac-
tive potential has been added to the unit cell. If
it is assumed that this shift in V};; is the same for
all elements in a period, the resulting increase
in the binding of the hydride will be proportional
to the total amount of charge in the intersphere
volume in the hydride. This quantity is of order
1.1 electrons per unit cell for Ti and Cu and in-
creases to 1.35 electrons per unit cell in the cen-
ter of the row. Thus, a 0.1-Ry decrease in Vg
would result in a uniform increase in hydride
binding of about 0.1 Ry, but trends would be af-
fected very little.
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FIG. 1. Complex energy bands of (a) Pd, (b) PdHj, g5,
(c) PdHy, 9, (d) PdH,, g5, and (e) PdH along A and A.
Energies are given in Ry with respect to vacuum.
Where it has been calculated, the Fermi energy e is
indicated. The dashed line corresponds to the muffin-
tin zero Vyr. The width of the shading corresponds to
2|ImEe()|. In assigning symmetry labels, the origin
of the unit cell is the Pd site.



