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Theory for the Brst-order vibrational spectra of disordered solids
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Expressions are derived in the harmonic approximation which relate the first-order Raman and infrared
spectra of a disordered solid to a common set of vibrational densities of states. The calculations assume no
periodicity, and using standard approximations lead to expressions involving explicitly defined matrix
elements. The results extend those of Shuker and Gammon from Raman to infrared response, and show that
the matrix elements involved must be frequency dependent.

I. INTRODUCTION

In 1970 Shuker and Gammon' (SG) presented a
calculation which related the Raman scattering
intensity l(u) of an amorphous material to the
density of states p, (~) in various vibrational sub-
bands b. Their expression. for the Stokes inten-
sity may be written in the form

I((u) = [n(&u), T)+ I](u ' Q C,p, ((o),

where n(v, T) = [exp(it+/kT) —1] ' is the Bose-
Einstein occupation number, (d is the magnitude
of the Raman frequency shift, and C, is a polar-
ization-dependent coupling constant. ' Experi-
mentalists have found the SQ result extremely
useful for producing a reduced Raman spectrums
(&u[n(u&, T)+ 1] 'I(&o)) free of spurious structure
due to thermal population effects. Nevertheless,
some deficiencies have become evident. For ex-
ample, Kobliska and Solin4 have noted the absence
of an expected fourth-power dependence on ~„
the frequency of the scattered photon. The SQ
method provides no procedure for theoretically
investigating the magnitude of the C~ or their as-
sumed l.ack of dependence on &. This situation
comes about because SQ make an ad hoc assump-
tion that the product A(j)A', is frequency indepen-
dent ovep all the modes j of a subband, where
A( j) is the "optical-coupling tensor" and A',. is the
"mode volume. " It automatically follows from
this assumption that the C~ are frequency indepen-
dent. Perhaps more importantly, from a con-
ceptual point of view, SQ proceed by analogy with
the crystalline case and define the vibrational
eigenmodes to be exponentially decaying periodic
plane waves involving an unknown correlation
length A,. which must be assumed to be quite
small. 5

In this paper we outline the steps in a first-
principles calculation which we believe avoids
these limitations and assumptions. Our intention
is to improve upon the SQ result while retaining

its partition of vibrational modes into "bands";
to set it on a firmer mathematical foundation; and
to derive an analogous result for application to
infrared (ir) data. We obtain explicit expressions
of a similar form for both the first-order Raman
scattering intensity I and for the imaginary part
of the ir dielectric constant c,. We find in both
cases that the coupling coefficients may be strong-
ly frequency dependent, and that their frequency
dependence follows from that of the vibrational
eigenvectors of the unperturbed system. The
method also leads naturally to calculation of
second-order spectra and treatment of anharmonic
perturbations, as will be elaborated elsewhere.

II. VIBRATIONAL PROBLEM

From the beginning we assume the complete
absence of long-range order in atomic positions.
Since there is therefore no periodic reciprocal
space, we do not attempt to label. eigenstates
with a "quantized" reciprocal-space vector of the
sort encountered in studies of crystalline mate-
rials. In effect, the sample is treated as a giant
molecule having no translational or rotational.
symmetry and consisting of N atoms, each
vibrating harmonically about its own equilibrium
position. ' At first sight it may seem foolhardy
to treat such a large system; however, in this
way we obtain results whose generality has not
been masked by the imposition of unnecessary
assumptions. These results allow for subsequent
practical approximations and treatment of specific
structures.

The Hamiltonian of this system is

H = — p. , Ui + — A, U, U
1 2 1

i i, nc

where the U, are the 3N Cartesian displacements
of the atoms from their equilibrium positions.
The p, , are the atomic masses and the A, „=—S~e/
aU, eU, where 4 is the potential function account-
ing for all harmonic restoring forces. The deriva-
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tives of 4 are to be evaluated at complete equili-
brium (U, =0).

In order to solve the equations of motion as-
sociated with p', we assume

U (t) u e-(tat
u I/2B e-Itdt

and obtain a set of equations which in matrix
notation takes the familar form

[g "A,„iI. '' (u'-5 ]{B}=0 (2)

Solution of this eigenvalue problem involving the
dynamical matrix [u, 't'A, u '~'] yields 3N eigen-
frequencies &, ~ 0, each associated with a 3N
component displacement eigenvector {uIj
={uP+Bt}. The eigenvectors of the dynamical
matrix {B,'} are not assumed to be plane waves,
so they are orthonormalized according to the re-
lations

8,' B

and

3N

BrB

The solutions of Eq. (2) completely define the
harmonic vibrations of the unperturbed sample.

In order to parallel the approach of SG, we
assume that there are groups of eigenvectors
which are related to each other in some useful
way, perhaps because they involve similar mo-
tions of atoms. Following SQ, a particular group
might be identified with a certain kind of vibra-
tion of a moleculelike unit whose frequency is
spread over a band due to varying interactions
with neighboring units of the structure at differ-
ent sites. A simple example would be the breath-
inglike motions of tetrahedral units. More gener-
ally, a group of eigenvectors may have some more
abstract features in common, analogous to those
shared by the eigenvectors of a band in a crystal. -
line solid. There may even be a wavevector-
like parameter relating the eigenvectors in a
band, but the relationship will. not be of the form
of plane waves in Cartesian coordinates. In any
case, we label each group of eigenvectors as to
band index b = 1, 2, ... , B, and let N~ be the num-
ber of eigenvectors (and corresponding eigen-
frequencies) in each band, The frequencies in

band b are listed in order of increasing value and
are then labeled (&o~},.=—&g», where j= 1, 2, . . . , N~

Intuitively, one expects a disordered sample zoith-
out long range order to exhibit no exact degener-
acies. We can therefore expect a one-to-one rela-
tionship between eigenf requencies and eigenvectors,
and can label each eigenvector component u, ~ by

III. INFRARED RESPONSE

Based on this formulation of the vibrational
problem7 we can proceed to calculate the ir con-
ductivity tensor associated with excitation of
vibrations in the sample. We assume the dis-
ordered solid is constitutively isotropic, so that
the conductivity tensor o„„ is diagonal, o„,(&o)

=o(e)6„,. Then, using linear response theory, '
and applying e, = 4wo/&u, we write

2W -1e, (u)) =
~ u '((u, T)

r+~
dt e ' '(M(t)M(0)), (4)

where M(t) is the Heisenberg representation oper-
ator for the sample dipole moment induced in the
direction of the etectric vector of the tight wave.
Procedures for calculating M(t} from first prin-
ciples are outlined in the literature. ' Evaluation
of M(t) depends on treatment of the electrons in
the disordered solid, which we will not attempt
in this work. The angular brackets in Eq. (4)
indicate an average in the canonical ensemble
described by the Hamiltonian of the unperturbed
system. ' Adopting Placzek's procedure we ex-
pand the induced dipole moment in powers of the
nuclear displacements

M (t) = g M, U, (t) + ~ ~ ~ (5)
1=1

and keep only the terms linear in U, (t) Sub-.
stituting Eq. (5) into Eq. (4), and using an ex-
pression given by Maradudin" for the displace-
ment correlation (U, (t)U (0)), one obtains

e, ((g) =2w'vu '(~, T) Q M, M

x u Iu ~(d( [u;5(h& —(d()

+ (n, + 1)5((u + (u, ) ], (6)

its corresponding eigenfrequency: u,'~ =u', (&g»).
In this convenient and important step, each dis-
placement eigenvector component is represented
as a function of the vibrational eigenfrequencies
in the band. Clearly, eigenfrequenctes belonging
to several different bands may coexist in the same
small frequency range. Keeping this in mind, we
define the density of states of vibrations in band
5 by the equation

1
g, ((u) =— lim Q ((o —(o»),

Atty 0

where the sum is over the range (~) ~ &u» ( u&+ n, ru).
The number of states per unit sample volume
which are in band b and in frequency range d & is
given by p, (&u)d&o =g, (&u)d&o/v, where v is the
sample volume.



1930 F. L. GALKKNER AND P. N. SEN

where n, = n(&u„T) and u ', is the 1th-component
of the ith displacement eigenvector determined by
Eq. (2). The sum over i ean be written in a form
involving sums over the bands defined earlier

ut((dy»)u~((dyg)(dy» nyg5((d —
(clyde) p (7)

the anti-Stokes spectrum. The quantities
n ~„(k =1, 2) are Cartesian components of two
mutually perpendicular unit vectors, both per-
pendicular to the scattering direction, and g„
and E~ are Cartesian components of the incident
electric field. " The Raman tensor is given by

where we have used the fact that terms involving
5(v+ &u, ) vanish because &u and v; are positive.
For any reasonable function it can be shown that

hence, Eq. (7}becomes

Q u ', (~)u '
(&u)(u

' n ((u, T)g, ((u) .
b= j.

Using this in Eq. (6), one obtains the final result
that

(6)

IV. RAMAN RESPONSE

Having calculated the first-order contributions
to the ir dielectric constant, we shall next use
similar methods to calculate the first-order
Raman spectra. The energy which is scattered
from an active volume v, per unit of time and
solid angle, can be written in the form~'

1(~„Q)- ~ Q Q n n,
((o, +Q)'

k=1,2 as, y &

xi
» si(~0 Q)E»~i

where

D,((q) = Q M, u ', ((u} '. (10)

The quantity I, plays the role of an effective
charge and is essential. ly independent of &, as
indicated; the frequency dependence of the u', (~)
will be discussed later. Although M, and u', (&u)

are both real, we have used the absolute value
sign in Eq. (10) in order to emphasize that D, is
positive-definite. The sum in Eq. (10) does not
diverge as 3/ increases because of the normaliza-
tion conditions previously imposed on the eigen-
vectors of Eq. (2). Accordingly, the sum does not
have to be carried out over the entire sample,
merely over a sufficiently la.rge region to obtain
satisfactory convergence.

i
» ~~((o„Q)= 2

die '"'(PB„(t)P~»(0)),
77 ~ on

(12)

where P8~ is the operator for the electronic
polarizability tensor. " As in the case of M(i),
procedures for calculating PB„ from first prin-
cipl. es are outlined in the literature. ' In order to
obtain the Raman scattering, we again use
Placzek's procedure and expand Pe~ in U, (t)
keeping only first-order terms":

PBX(t) g P 8k~i( }&

where l denotes the 3N Cartesian coordinates of
the atoms in the excited volume v. Proceeding as
in the case of &„ the final result is

B

i „,„((o„Q}=)fo Q CPs'((u„(u}p, ((o), (14)
b= 1

where

CP» ((u (u) =Q P' P$"u'(&u)u'((o)

and Q has algebraic sign, as defined earlier,
while + = ~Q[ is the corresponding vibrational fre-
quency. The P &„are essentially independent of
u, but they may depend appreciably on cd,.

%hen one assumes the disordered solid to be
constitutively isotropic, the electronic-transition
polarizability tensor [P z„( is found to contain
only two independent quantities: the diagonal
elements P «and the off-diagonal elements, de-
noted P„'~ It is these two quantities which are
probed in the usual 90' scattering experiment: the
polarization p of the experiment is VV when the
incident (h, ) and scattered electric fields are
parallel, and is VH when they are perpendicular.
Using this notation, one finds that

b= j.

(16)

(11)
where &, is the frequency of the incident light and
Qp (A)p + Q is the frequency of the scattered light.
Thus, 0 is the Raman shift, and Q &0 corre-
sponds to the Stokes spectrum while Q &0 gives

where

Cf((o„(o)= Q P~u', ((o) '.

Here again, we note that Q &0 gives the Stokes

(17)
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spectrum, involving u& '[n(&u}+1], while Q&0
gives the anti-Stokes, involving &u ~n(+). 10

I I I I

f

I I I

V. DISCUSSION

Equations (9) and (16) allow for a meaningful
comparison of the intensities of Raman and ir
response. Each of these equations contains an

expression of the type Q,C, (u&) p&(~} where the

coupling coefficients C~(ur) are derived from a
frequency-independent linear combination of the
eigenvector amplitudes u,'(&g). That is, the M, and

the P~ are both independent of vibrational fre-
quency +. Therefore, Baman and ir spectra of
disordered solids can be compared on an equiva-
lent basis by cont asting the reduced Raman
spectrum
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Figure 1 illustrates such a comparison for vit-
reous SiO, . The curves were computed from data
reported elsewhere. " We will not attempt to
analyze these spectra in detail here, as additional
information is needed to proceed very far. For
example, it one knows the relative number of
states in each band b, or their actual density

p, (&u), one can extract the relative strength of the

coupling coefficients Db and C~b from plots like
those in Fig. 1.

From Eqs. (10}and (17) it is clear that the first-
order coupling coefficients D,(+) and C f(&u„&o)
derive their vibrational frequency dependence from
that of the displacement eigenvector components
u', (&u) of the band involved. lt is important to note
that the u', (&u) cannot be assumed to be independent
of u since the prior assertion of nondegeneracy
would be violated. In fact, the & dependence will
be strong if the localization of eigenmodes changes
rapidly with eigenfrequency, as has been reported
to be the case by Dean and Bell in computer cal-
culations on linear chains" and vitreous silica. "
Thus, for the full span of cases covered by Eqs.
(9) and (16) we cannot specify a priori the fre-
quency depen'd'ence of u, (&u). Answers for this de-
pendence will require theoretical analysis of
individual structures or classes of structures. We
note that the p~(&u) can be obtained from a purely
vibrational calculation, while the motion of the
electrons must be considered in order to compute
the I, and the coupling coefficients.

The ir and Raman-coupling coefficients given
by Eqs. (10), (16), and (17) involve sums over

FIG. 1. Comparison of the reduced Baman intensity
with the infrared values of ~&2 for fused silica. It
shows that the band of frequencies centered at 1065
cm is strongly infrared active, but weakly Baman
active. It appears to show that the strong Baman modes
at 450 em ' are also moderately infrared active; how-
ever, it is more likely that the 450-cm ~ Baman-active
modes are. even weaker in the infrared spectrum than
appears to be the ease, by analogy with the results for
vitreous germania shown in Fig. 2.

displacement eigenvectors associated with the

equilibrium positions of the atoms in a specific
sample. Since these sums should not differ from
sample to sample, they may ultimately be calcu-
lated as average values over an ensemble of sta-
tistically identical samples. Similarly, the
densities of states p, (&g) should not vary among
sufficiently large samples and may be replacedby
quantities averaged over a suitable ensemble.

The general form of the results presented in

Eqs. (9). (10), (16), and (17) holds whenever the
system can be described from the point of view
of a harmonic-oscillator Hamiltonian. Therefore,
the disordered-sample counterpart of local-field
effects and of transverse and longitudinal modes"
are covered by appropriate explicit forms of the
dynamical matrix" to be used in Eq. (2). Con-
tributions from highly anharmonic systems such
as the two-level tunneling model discussed by

Anderson, Halperin, and Varma' are not covered
and must be calculated separately.

We remark that while ~e, is the appropriate
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peak at 980 cm ' in the lowest part of Fig. 2 in-
dicates the existence of a band of longitudinal-
optical phonons having this energy. These are
also seen in Raman scattering as shown in the

uppermost part of the figure, and are apparently
weakly excited in the near-normal incidence in-
frared ref l.ectivity experiment, as indicated by the
shoulder at-980 cm ' in co~, .

%e are not certain how to write the Hamiltonian
that includes the Coulomb interactions accounting
for LO-TO spl. ittings, so we have not attempted
to include such terms forma1ly in the present
treatment. " It is clear that in first order the TO
and LO vibrations will be harmonic and that the
problem can be put in the form of Eg. (2} so that
relations of the form of Eqs. (8) and (19) will
stil. l hold.

VI. CONCLUDING REMARKS
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FIG. 2. Comparison of the reduced Haman intensity
with infrared derived values of mq 2 and -coIm g/e) for
vitreous germania. It is clear that the infrared active
modes centered at 857 cm ' in cd e2 are weakly Raman
active and have little longitudinal character, while
those in the shoulder at abaut 980 cm ~ are also weakly
Raman active but are strongly longitudinal. The
strongly Raman active modes seen in the reduced
Raman spectrum at 420 cm ' appear weakly (or not at
all) in the data for coq2, while the moderately infrared
active modes seen at 280 cm" ~ in co&2 are seen to be
very weak in Raman activity. It seems that these two
different kinds of modes occur at about the same fre-
quency (450 cm ) in vitreous Si02, according to Fig.
l.

measure of the response of the system to trans-
verse electromagnetic waves, the quantity
-u&Im(1/e) is the analogous measure of response
to longitudinal waves. Figure 2 illustrates the
comparison of Raman, transverse, and longi-
tudinal ir response for vitreous QeO, . The curves
were computed from data reported by Galeener
and Lucovsky, " who discuss the nature of longi-
tudinal-optical vibrations in glasses. The strong

In summary, we have derived simple expres-
sions for the dielectric constant and Raman scat-
tering intensity due to harmonic vibrations in a
macroscopically isotropic disordered sample
which has no long-range order, and have shown

how both quantities are related to a single set of
densities of vibrational subband states. %e have

pointed out that in general the coefficients measuring
coupling to these bands cannot be independent of
vibrational frequency; they may vary enormously
over a given subband. In some cases, the shape
of a peak in the Raman or ir spectrum of a glass
may actuall. y ref l.ect the frequency dependence of
the coupling coefficients C~(&a) much more than

that of the subband density of states p~(&u).

Nevertheless, partition of the problem into
subbands appears to be advantageous because
some coefficients wilj. be only weakly dependent

on frequency, and because the behavior of the

separate coupling coefficients C~(m) will be more
easily understood than that of the coefficient
C(&u) defined by

C((u) p((v) -=Q C,((o)p, ((u),
b

where p(&u} =Q, p, (&o) is the total density of vibra-
tional states.

Our method of derivation avoids any quasi-
crystalline assumptions and, except for the asser-
tion of complete nondegeneracy within bands, in-
volves no approximations other than those nor-
mally encountered in treating coupled vibrational
systems in the harmonic approximation. The ir
dielectric constant result is entirely new. The
Raman scattering results extend those of Shuker
and Gammon but require no rest i ctions on the
correlation length other than the absence of long-
range order. The same approach is being used to
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calculate multiphonon effects, and it should be
appl. icable to calculation of other phenomena in
disordered solids, both vibrational and electronic
in origin.
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