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The triplet superconducting transition temperature T, for l = 1 paramagnon-induced pairing is computed

within a Matsubara formulation of conventional strong-coupling theory, as a function of the interaction

parameter I. Using the scattering amplitudes of Fermi-liquid theory to fix I for 'He at each pressure, we

apply our results to 'He. The computed values of T, differ by less than a factor of 5 from those measured

experimentally but the (slight) pressure dependence and the effective mass ratio Z = rn*/m are incorrect. If
Z is adjusted to be in better accord with experiment, we then obtain reasonable agreement with the

measured magnitude and pressure dependence of T, over the entire pressure range. General features of the

paramagnon model are (i) T,(I) has a .maximum value of 10 ' —10 ' of the Fermi temperature TF at

I =0.995; it seems doubtful that even under the most ideal conditions the paramagnon mechanism can be

used to obtain high-temperature superconductors; (ii) T,(I) vanishes by I = 1. (iii) Below I —0.97, the

exponential form T, = co,e "' is obtained where b is close to unity, co, is a constant of order TF/10, and X

is the renormalized coupling constant X /Z. The previously proposed analogous expression involving the spin-

fluctuation frequency co,f, T, = co,f e ", is inconsistent with our results over the entire range of I. Strong-

coupling corrections, deriving from the mass ratio Z, are extremely important in 'He: They reduce the size

of T, by nearly two orders of magnitude and help make it relatively pressure insensitive. While the

paramagnon model is undoubtedly an oversimplified description of 'He, a strong-coupling calculation within

this model represents a significant improvement over previous approaches in which theoretical values of T,
have differed from experiment by orders of magnitude or in which either co, or X have been chosen to fit the

T, data.

I. INTRODUCTION

Recent studies of the'nature of the pairing me-
chanism in superfluid 'He have been along two
main lines: phenomenological treatments' ' of
quasiparticle-quasiparticle interactions (as in
Landau Fermi-liquid theory) and microscopic the-
ories of specif ic pairing mechanisms —in particu-
lar, paramagnon induced superfluidity. ' ' The
former approach, because it incorporates results
of a number of different experimental measure-
ments (of normal-state properties) probably gives
a better estimate of the pairing coupling constant

However, because it is valid only for low-fre-
quency phenomena it cannot be used to compute the
superfluid transition temperature, which may. be
written T, = ~,e ' ~, without introducing an arbi-
trary expression for the characteristic frequency

The latter approach, because it is based on an
oversimplified description of the quasiparticle in-
teractions, is not able to predict ~ from first prin-
ciples. However, because it is microscopic, it
contains information about the dynamics of the in-
teraction and can be used, together with conven-
tional strong-coupling theory to compute the char-
acteristic frequency ~,.

It is the purpose of the present paper:to set up a
conventional strong-coupling theory for paramagnon
induced pairing. In this way we obtain T, as a func-

tion of I (the paramagnon interaction parameter)
or, equivalently, we derive the characteristic fre-
quency &u, (I). Using the scattering amplitudes of
Fermi-liquid theory to obtain I, our results are
then applied to 'He. The values of T, so obtained
differ by less than a factor of 5 from those mea-
sured experimentally but, the pressure dependence
(although slight) is incorrect and the effective-
mass ratio too large. Both of these shortcomings
stem from the fact that the paramagnon model
overestimates the frequency-dependent quantity
Z(~) twhere m*/m —=Z(0)]. If the mass ratio Z
=Z(0) is adjusted to be in better accord with ex-
periment we then obtain semiquantitative agree-
ment between theory and experiment for both the
magnitude and pressure dependence of T, over the
entire pressure range.

The formalism used to compute T,(1) (s the con-
ventional strong- coupling (Eliashberg) theory. '
The mass renormalization parameter Z =m*/m is
derived from the Doniach-Engelsberg'-Penn' (DEP)
expression. While vertex corrections are known'

to be important for the paramagnon model, we
justify the application of the usual Eliashberg the-
ory (in which these corrections are ignored) to this
problem by viewing I as a phenomenologically de-
termined parameter. In this way, we hope to in-
clude some Of the important effects which derive
from vertex corrections. Using the Matsubara
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representation of the gap equation, we reduce the
solution of the Eliashberg equations to that of an
eigenvalue problem" which is then solved numeri-
cally. %e use the full Lindhard function in our
computations; all the integrals are evaluated nu-
merically. It was found that the usual approxima-
tions"' to this function led to large overestimates
of the "bare" coupling constant ~~ which resulted
in order of magnitude errors in T, .

The general features of the function T,(I) are as
follows: (i) because of strong- coupling effects,
which lead to a small renormalized coupling con-
stant &=—& /Z, the exponential expression T,
= v,e '~' (with b -1 and &u, a constant of order one-
tenth of' the Fermi temperature Tz) is found to be
valid for a large range of I, I &0.97. We will often
write T, in the form T, =(d,e ' ', where ~,
= e,e" ~' ~ for I &0.97; (ii) at I =0.995, T, reaches
a maximum; and (iii) it falls to zero by I = 1.0.

In addition to computing T,(I) we also compute
the symmetric and antisymmetric Landau Fermi-
liquid scattering amplitudes A' and A' as a function
of I. This calculation is relevant to our discussion
of 'He.

To apply the paramagnon model to 'He, we use
Fermi-liquid theory to obtain the parameter I as
a function of pressure. Since the pairing intera. c-
tion and the Fermi-liquid scattering amplitudes
(A' and A') derive from the same vertex function,
we base our choice of the parameter I on the ex-
perimentally measured A. 's." We have done this in
two ways which' gave very similar results: (i) with-
in paramagnon theory we find A. = —', A', . This rela-
tion holds for any model in which the effective in-
teraction is of the form —Js s. Therefore, in
this procedure we chose I so that A,' was equal
to its experimental value at each pressure; (ii)
within the s-p approximation, ~ is equal' to
—

& Z, (
' 1)'(A;+A;). ln this'second approach we se-

lected I so that & was given by this experimental
value at each pressure. It should be noted that in
both approaches the magnitude and pressure de-
pendence of ~ is determined by the A' s, which are
of order unity and relatively pressure insensitive.
The experimental values of the X's determined in
the two ways differ by less than 7/o for pressures
above 3 atm. We find X is of order 10 ' and fairly in-
dependent of pressure. The associated values of Iare
in the exponential limit of Tc(I ), providing that (as
notedabove) the effective mass ratio is computed by
scaling down slightly the 'DEP result to give better
agreement with the experimental values of m*/
~ »» We find T = ~ e-'~) with ~ =0.yT eo »)

C C C ' P )
which is weakly dependent on pressure, over the
narrow range of I from =0.92 to 0.97 which, we
find, is appropriate to 'He. These values are close
to those obtained by fitting I to the magnetic sus-

ceptibility. 4

Among the most detailed previous studies of the
paramagnon contribution to T, is that of Anderson
and Brinkman. ~ These authors (along with Layzer
and Fay') were the first to propose that paramagnon
exchange may be the source of the pairing interac-
tion in 'He. While they and their collaborators'
demonstrated that paramagnons could explain the
stability of the A state and the A -B transition in
the superfluid, they had difficulty explaining the
magnitude and pressure dependence of the transi-
tion temperature T,. The exponential limit of our
more general theory differs from theirs in several
ways: (i) These authors guessed on the basis of
spin fluctuation theory that ur, =(1—I)Tz, which we
show to be incorrect for the paramagnon model.
(ii) The authors of Ref. 4 used an approximate
form for &~ which we find, using numerical tech-
niques, to be correct only for (1 —I)~ 10 '. This
approximation to &~ leads to orders of magnitude
errors in T, . (iii) Most importantly, the authors
ignored strong coupling effects. Because of (ii)
and (iii) their estimate of the paramagnon contri-
bution gave a value for T, which was two orders
of magnitude too large (when the corrected para-
magnon value for &u, is used); it was therefore
necessary to cancel most of the attractive interac-
tion by introducing a phenomenological repulsive
term.

It should be noted that strong-coupling correc-
tions which arise because of the mass renormali-
zation factor Z =en*/m are very significant. They
have two'important consequences in 'He and their
inclusion is essenti. al in order to understand the
phase diagram. First, because Z is large (it var-
ies from 3.0 to =5.5 over the entire pressure
range'-'"), it leads to a reduction in the size of the
effective pairing constant &(=&~/Z) relative to its
"bare" value by about half an order of magnitude.
This will reduce the estimated values of T, by
about a factor of 50. Secondly, because Z is
strongly pressure dependent it will compensate for
much of the pressure dependence of ~~, leading to
a T, which, as observed, varies by less than a
factor of 3 over the entire pressure ringe. The
importance of the effective- mass renormalization
factor was recognized by Layzer and Fay.' How-
ever, these authors took an assumed form for (d,
and other parameters which can be calculated ex-
actly. As a consequence of these approximations
and their choice of a repulsive "pseudopotential"
the authors obtained rather poor agreement between
their calculated values of T, and experiment.

The application of strong-coupling (Eliashberg)
theory to the paramaghon model was first discussed
by Berk and Schrieffer' who considered singlet
pairing, for which the paramagnon interaction is
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repulsive. Layzer and Fay' extended their work to
the triplet case. In contrast to the authors of Refs.
5 and 14, who assumed a particular form for ~, we
treat the dynamics fully and can thus derive the
cutoff frequency as well as the form for T,(I) away
from the exponential region. Our solution of the
Eliashberg equation is closely analogous to that of
Allen and Dynes" who studied phonon induced pair-
ing. In the same spirit as the authors of Ref. 14
we view' I as renormalized by vertex corrections.

In contrast to the authors of Ref. 4 (who fixed co,
and fitted &), Patton and Zaringhalam' were able
to fit the phase diagram by taking co, as a, free pa-
rameter and determining & from the s-p approxi-
mation of Fermi-liquid theory. They found a rea-
sonably good fit to experiment for +, =0.06T~,
which differs from our calculated value of the cutoff
frequency by about a factor of 6. We will discuss
the results of the s-P approximation to T„using
our values for ~, in Sec. IV.

An outline of the paper is as follows. In Sec. II
we review the singlet and triplet vertex functions
derived from paramagnog. exchange. These quan-
tities are then used to compute the triplet-pairing
interaction and the scattering amplitudes of Landau
Fermi-liquid theory. In Sec. IIIA we review the
Eliashberg equations and discuss numerical results
for T,(I) in Sec. IIIB. Section IV describes the
applications of the model to 'He. It is fairly self-
contained, and the reader who is not interested in
the details of the formal theory may want to skip
directly to Sec. IV.

II. PARAMAGNON INDUCED INTERACTIONS

.BET%(EEN PERM IONS

In this section we calculate the vertex function
I'(p„p, ;p, + k, p, —k) for the paramagnon induced
interactions between fermions in either the triplet
or singlet state. This function is then related to
the pairing interaction of triplet superconductivity
(in the limit p, =-p, ) and the Fermi-liquid scatter-
ing amplitudes (k-0). Not surprisingly, these
scattering amplitudes are found to be closely re-
lated to the pairing interaction; this fact will pro-
vide a simple method for applying the paramagnon
model to 'He in Sec. IV. While there has been con-
siderable discussion of the pairing interaction in
the literature, "the values of the Fermi-liquid
parameters in the paramagnon model have not been
computed at the same level of approximation as
that used to treat the pairing. Since there is an in-
timate relation between ~ and the Fermi-liquid
scattering amplitudes, we compute them within
the same formalism

The interaction between fermions is the Hubbard
contact interaction

K'"'=I dr dr' n
&
(r)n

&
(r') 5(r —r'), (2.1)

where I is the interaction parameter and n& (r) and
n&(r) are the densities of spin-up and spin-down
fermions at the point r.

Summing the ladder and bubble diagrams4 and
anti(symmetrizing) the result for the triplet (sing-
let) case, we get

I x (k+p, —p, )
I'[x'(k+P, —P.)l'

and

2I+ I'x'(k)
(p p p +k'p& k) 2I+1 —I2[ 0(k)l2

(2.2)

2I+ I'X'(k+ p, —p, )'1 I'[x'(k+ p—, P.)l' '-
(2.3)

where P„P„and 0 represent four momenta, and
X'(k) is the dynamical spin susceptibility for a free
fermion gas, which is given by the Lindhard func-
tion. The constant term —2I appearing in Eq. (2.3)
was included to avoid overcounting, since the low-
est-order term in I appears in both the ladder and
bubble series. There is some ambiguity about how
to treat this term in the literature. " However, it
is generally unimportant for the case of triplet
pairing and for a strongly enha. need system.

From Eq. (2.2), the effective(dynamical) interac-
tion for triplet superconducting pairs may be de-
duced".

l"(P,P') =a[i' (P-P') —y' (P+P')l,
where

(2.4a)

I'x'(P P')-—'(P-P') =1-I&x (P-p)l' (2.4b)

In the static limit, this attractive interaction is the
same as used by others. '"" As expected, in this
limit, only odd-l Legendre polynomials contribute
to V (p, p')fortripletpairs For the . case of sing-
let supercoiiducting pairs, the effect of the parh-
mignon interaction is repulsive. The present re-
sults reduce to those obtained by Nakajima. " The
results of Berk and Schrieffer" are contained in
Eq. (2.3) when the bubble contributions and the
less singular terms are also ignored. In the para-
magnon model the effective mass is given by the
DEP expression
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m+=Z:— — = 1+
m 2k~2

(2.5)

Here I =IN(0) and X, =X,/N(0), where N(0) is the
bare density of states for a single spin. Thus the
effective dynamical interaction which enters the
expression for the mass renormalization is

g( f) x.(p -p ) x.(p p-
1-Ix.(p- p') I-I'x'.(p- p')'

which differs from the triplet pairing interaction
as can be seen from Eq. (2.4). This follows be-
cause both ladder and bubbles contribute to V',
whereas V can be computed by including only
bubbles. For the case of phonon induced singlet
pairing, these interactions are the same.

The quantities V' and V~ are all that is needed
to compute the transition temperatures. For later
reference we compute the scattering amplitudes
in the Landau Fermi-liquid limit (k-0), also using
the vertex functions. Taking first the limit ~-0
and then k-0 corresponds to the scattering ampli-
tudes (called A' and A') rathei than the interaction
terms (called F' and E'). .

We define, as in Fermi-liquid theory, "with p,
and p, near the Fermi surface

+ F"""'(p„p.; p„p.)l,

—I'""""'(P„,P, ; P„P3}], (2 3}

Here a~ = m/m* in the usual'~'" approximation
that derivatives of the self-energy with respect
to momenta (dZ/dp)„, ~ ~, can be neglected com-
pared to those with respect to frequency. Hence
the coefficient of the term in [ ] is simply N(0)/2Z.
This factor of 1/Z appears also in the pairing
constant &~ - [ZN(0)](&~/Z') = &~/Z. This will be
seen in more detail below.

We find
A A 1 I I&'()„), =— ——, ,) ().())

and

(2.11}

1 I' I'x.(p, —p. )

1 —I'[xo(P. —p.)]'
The "forward-scattering sum rule" A'(p„p, )
+A'(p„p, ) =0 (Ref. 15) maybe seentofollowfrom
Eqs. (2.9) and (2.10). It follows from Eqs. (2.9) and
(2.10}that the partial-wave components of the
Fermi-liquid parametersAp Ao and A, , are given by

I~ I
( —I .,, .(-I g(q)I, =,

'

and

I'x'(e)
&+I 1 —I'X.((I) 1-1'X'.(q) (=0

(2.12)

I'x (v}
~ )-&'x.(q) (-Pxl(u)I' (2.13)

A. Theory

In this section the theoretical framework for ap-
plying Eliashberg theory to the pairing interaction
of Eq. (2.4) will be discussed. In Sec. III 8 numer-
ical results for the values of T, as a function of
I are presented. While vertex correc'tions in the
paramagnon diagrams are not negligible (as they
are in the phonon case) we effectively include some
of these higher-order terms by choosing the pa-
rameter I to fit the measured scattering ampli-
tudes (which are available for 'He}, In this sense
we justify applying Eliashberg theory to the para-
magnon problem.

The linearized Eliashberg equations for the nor-
mal and anomalous components of the self-energy

where f ], refers to the projection of the interaction
onto the lth Legendre polynomial. The normalizing
factors (2l+1) are explicitly included as prefactors
in Eqs. (2.11)-(2.13).

Note that the first term in A; is proportional to
the triplet superconducting pairing interaction [Eq.
(2.4)]. This fact will be exploited in discussing
the phase diagram of superfluid 'He in Sec. IV.
It also follows that, because I' is approximately of
the form —Js's, Ar= —3Ai for l &0.

The present calculation of the Landau Fermi-
liquid parameters in the paramagnon model can
be compared with the previous approach to this
problem of Babu and Brown." These authors com-
puted the interaction parameters (F's} using the
same diagrams (although unsymmetrized) as we
used here to compute the scattering amplitudes.
Thus their corresponding A's involve complicated
"cross- channel" couplings —with bubbles and lad-
ders appearing in the same vertex function, in con-
trast to the present case. While these authors in-
clude higher order diagrams in Eqs. (2.2) and (2.3),
our own approach is preferred because (i) we seek
to treat the pairing interaction (without including
these cross-channel diagrams) within the same
level of approximation as our computation of the
A's and (ii) problems of consistency occur when
these more complicated cross channel diagrams
are included.

III. CONVENTIONAL STRONG-COUPLING THEORY
FOR PARAMAGNONS
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are given by'

(1 —Z( p))i~.

and

j~
V*()r —(r')Z((r')irr„. (3 ()

[Z( p')i(d „]',

(p}
1 ~ d-, V'(p- p')q(p')
P ~ [Z(P')i(d„, ]' —~&

(3.2)

Here e( p') is the energy and ((d„] are the Mat,

subara. frequencies, (d„=(2n+ l)vT. Defining
& =—q)/

~ ~„~, these two equations can be combined"
to yield

&(p) = p &(&&) [V'(p p') sgnn'A(p)
pl gl

—V'(P —P') ~(P')] (3 3}

Because we are considering triplet pairing, Fq.
(3.3) may be expanded in a series of Legendre poly-
nomials involving odd-l contributions only, We
define the coupling constants

where we have suppressed the subscript l =1 on
X~(~„—u&„}. The parameter &~(0) -=&~ is the same
as the coupling constant used in the calculation
of Anderson and Brinkman', &'=—&'(0) =rn*/m —1
as can be seen from (2.5). Here kz is the Fermi
momentum and X,(q, (d ) is the analytic continua-
tion of the Lindhard function onto the imaginary
axis. This quantity is given by"

X,(q, co„) = Re —+ —1—1 1 (—'q —i(()„)''

2g

x [ln( —,'q~ —i ~„+q)

—ln( —,
' q' —i+„—q)] (3 9)

where q =k/kz, (i)„=v„/2Ez, and ln stands for the

principal value of the complex logarithm. In de-
riving Eq. (3.9), the Fermi functions were replaced
by their zero-temperature values, which approxi-
mation is justified, for we find T,«T~ for all I.

Equation (3.6} may be converted to an eigenvalue

equation by introducing the pair-breaking param-
eter" p:

and

&', (&u„) = f(j'(0) [V'(p —p', &u„)], (3.4)
rrr(rd, )= Q i (ro„—e„)—ir „—(rd„()rr(rr ),

m=-N- 1.

&'((d„)= N(0) [V'(p —p', (u„)], . (3.5)
where

(3.10a)

Note that it is the bare density of states N(0)
which enters into the coupling constants. This
factor arises from a cha~ge of variables from

p to a~ in Eq. (3.3). Thus

X~(~ ~„,) —&„„.g X'(&u„—ur„) sgnm b, '(~„,),
n m

(3.6)
where the parameters b, '((d„) are the coefficients
of the lth (normalized} spherical harmonic in the
expansion of b (p, (d„}.'

We now assume that l =1, for definiteness and
because it is most appropriate for 'He.

Using Eqs. (2.4b) and (2.6) it follows that

~~((u„—(u„) = dq q
p

(1 —q'/2k~)X, (q, (d„—(d )
1 —I'X', (q, (d„—(u )

(3 'f)

r z
n

rr, = ro„+ — i'(0) r 2+ V(rr, ))
)=1

(3.10b)

and N is arbitrarily large.
The physical-gap equation is that limit of Eq.

(3.10a) in which p=0. Thus the solution of the

gap equation is reduced to that of solving the
eigenvalue equation

N

g (Z„„-p5„„)~(~„)=0,
n=p

where

=X ((dm —~n}+X (~m+4'n}

(3.11a.)

9. Numerical results

m

5 „2m+1+&' 0 +2 & urs 3 11b
l =j.

Here we have used the fact that &' and ~ are even
in co„.

The highest temperature at which the largest
'

eigenvalue p '"=0 is the transition temperature
T„as we shall see below.

1'-&x.(q, ~„-~ )

Xo(q, ~„—& )
1 —f'x'. (q, ~.)

(3.8)

There are several simple results which follow
directly from the analytic form of K„: (i) At

infinitely high temperatures, all the eigenvalues
are negative. This corresponds physically to the
fact that the normal state is always more stable
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FJG. 1. lnT~/T& vs the inverse coupling constant 1/A, ;
corresponding values of I are shown in the upper scale.
error bars indicate numerical uncertainty.

TABLE I. Theoretical values of T~/T&, effective-
mass ratio, and scattering amplitudes for different val-
ues of I, obtained using the paramagnon model.

as T-~. (ii) As I- 1, Z„ is the diagonal matrix
-~1. This follows because in this limit A. (0)
=3& (0) = —,

' !ln(1 —I)! so that [&~(0)—&'(0)]--~.
Thus by I=1, there is no superfluid phase transi-
tion. The physical consequence of this is that
there is no competition between the magnetic in-
stability which occurs at I= 1 and the triplet super-
conducting one: the superconducting instability
"shuts off" before the magnetic one occurs. Thus,
in contrast to the phonon case,"as the paramagnon
becomes arbitrarily soft it suppresses the super
conducting instability. The difference between the
two cases arises in part because the parameters
&' and X~ are unequal (equal) for paramagnon
(phonon) induced pairing. From (ii) we can de-
duce that T,(I) must have a maximum at some
I. This in in contrast to the situation for phonons"
in which T,(X) increases monotoni. cally with X.

To solve for T„we truncate the matrix at some
finite value of N and obtain its largest eigenvalue
p (N) as a function of T. Because K is Hermitian

we thus find a lower bound to the transition temp-
erature: it is that temperature at which p (N)
changes sign (with decreasing T) from a negative
to positive value. The size of the matrix N is then
increased and the same procedure followed until
convergence is obtained. For most of the cases
considered here, it was necessary to take N = 256.
To avoid errors, all the integrals &'(v„) and &~(&u„)

were computed numerically with high precision.
The computed values of ln(Tz/T, ) as a function

of & ' =[1+A.'(0)] /&~(0) are shown in Fig. 1. The
upper scale corresponds to the value of I for each

The points on the curve are also tabulated in
Table I. Error bars indicate the uncertainty in
our result in several regions of the dotted curve
due to incomplete convergence by N =256. As can
be seen, T, reaches a maximum value of about
8 0&10 'T~ at I=-0.995. For values of I~0.97, the
curve approaches a straight line corresponding to
an exponential form 'T, = co,e ' ~, with b near unity.
We were not able to obtain enough points in the
straight-line region' (due to the small size of T,
which led to convergence difficulties at small I)
to determine accurately the cutoff parameter (d, ;
it is of order (—,', T~). We were also unable to fit
our curve to the form (which has been suggested)'
T,/Tz=(l —l)e 'I~, for"any values of I. That this
form is inadequate can be understood as follows.
As I approaches 1 the paramagnon frequencies
become arbitrarily soft so that the "static approx-
imation" breaks down: the T,-vs-I curve will no
longer have the exponential form. As I decreases
away from 1, the small-q approximation to the
Lindhard function X'(q, &u) is invalid and the char-
acteristic frequencies are not related to (1 —1~)Tz.

Among the most interesting physical consequen-
ces of the model calculation is the fact that the
maximum value of T, is of order 10 'T~. The im-
plication of this result far triplet (metal) super-
conductors is that even unde~ the most ideal cir-
cumstances the payamagnon mechanism is unlikely
to lead to high-temperature superconductivity.
For most systems the highest attainable T, will
be comparable to that achieved by the ordinary
phonon mechanism. That these transition temp-
eratures are so low is a consequence of the large
mass renormalization factor Z.

IV. APPLICATION TO SUPERFLUID He

0.9999
0.999
0.995
0.990
0.980
0.970

4+0.5 x10 4

7 xlp-4
8 x10
7 xlp-4
5 xlp-4
3 xlp-4

34.36
24.03
16.91
13.92
11.02
9.39

2.41 1,01
2.20 1.01
1.89 1.02
1.75 1.02
1.52 1.02
1.39 1.03

0

291.3
—50.22
—12.26
—8.03
-4.76
—3.75

In this section we discuss the predictions of the
paramagnon model for the pressure P dependence
of T, in 'He and the Landau Fermi-liquid scattering
amplitudes. The formalism of Secs. II and III
established a means of computing T,(i). To com-
pare with experimental data on T,(P) it is nec-
essary to obtain T as a function of pressure.
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While the paramagnon model is undoubtedly
oversimplified, we apply it here to ~He because
(i) it is a microscopic theory which enables us tb
derive (in the exponential limit) the cutoff fre-
quencies ~, which help to set the scale for the
size of T, . Fermi-liquid theories cannot be used
to obtain these characteristic frequencies. (ii)
It has met with great success in explaining the
temperature dependence of the susceptibility"
and has been somewhat successful in explaining
the magnitude of the mass enhancement' in normal
He. (iii) A spin-dependent fermion-fermion inter-

action clearly plays an important role in stabilizing
the A phase relative to the B phase in the high
pressure region. Paramagnon theory has been
utilized to explain this stabilization. '

It is expected that the oversimplified contact
interaction model tEq. (2.1)] leads to sensible
results for the scattering amplitudes only for
l )0.. It probably fails for l =0, since these scat-
tering processes sample directly the 5(r —r')
term in the interaction. Thus for the computation
of the scattering amplitudes A) and A) for / )0
and the transition temperatures for I =1 pairing,
the paramagnon model will yield a reasonable
first-order approximation.

There is clearly no unique way for obtaining the
values of the pressure-dependent parameter I(P)
which are appropriate to 'He. Three Fermi-liquid
parameters F;, P;, and F; (or alternatively A;,
A'„and A,') are known experimentally, "while the
model contains only one adjustable parameter. It
has previously been suggested that I(P) be chosen
by fitting the theoretically computed normal-state
static susceptibility to experiment. This proce-
dure is thus based on the Fermi-liquid parameter

We argue here that it is more appropriate
to fit ~ directly than to fit X. In this section we
propose two methods for selecting the parameter
T, both of which give very similar results. The
first is based on the scattering amplitude A; which
is found to be proportional to ~; we call this the

Ay method ." The second is based on the s-P ap-
proximation' which yields an expression for & in
terms of the three measured scattering amplitudes.
We also point out; that when the DEP model for i
m*/m is modified slightly to give better agree-
ment with experiment, then the value of I(P)
we obtain in these two ways are very close to
what would be deduced from the static suscepti-
bility in paramagnon theory. It is quite remark-
able that all reasonable procedures for obtain-
ing T(P) yield results for T, in 'He which are in
cloSe agreement.

We now obtain T at each pressure P in two dif-
ferent ways based on the scattering amplitudes of
Fermi-liquid theory. The integrals in Eq. (2.13)

TABLE II. Experimental values of P~/T&, m*/m, and
scattering amplitudes for ~He at different pressures. All
values are from Ref. 12, except when indicated other-
wise.

A A A()

0
18.0
34.36

6.1 x10 4 3.01 2.04
19.0 x10-' 4.93 2.39
25.5 x 10 6.22 (5.5) 2.52

1.91 0.91
-2.79 0.98
—2.80 0.'99

T. Alvesalo, D. Yu, H. K. Collan, O. V. Launasmaa,
and P. Wennerstrom, Phys. Rev. , Lett. 30, 962 (1973).

"After Ref. 13.

(4.2)

for A', were performed; it was found that for I )0.90
the second term in Eq. (2.13) is equal to one-half
the first to within 4/o. Therefore,

(4.1)
Z 1 —I x'0(q)

Noting also that

I'X (q)
Z Z 1 - I'x2(q)

it follows that ~-=—,' A,'. Thus a reasonable choice
for parameter I(P) is to choose that I which fits
A', to the experimentally measured value at each
pressure. It is important, to note that this result
is genera, lly true in any model in which the effec-
tive interaction is of the form —Js ' s.

The second approach which will also be consid-
ered here is the s-P approximation used by Patton
and Zaringhalam. ' In this approximation, "

X=12 Q (-1)'(A;+A;), (4.3)
l

so that I(P) is chosen by fitting X(I) to the right-
hand side of Eq. (4.3) at each P. Since only A;,
A, , and A', are known experimentally, the sum over
l in Eq, (4.3) is truncated after l = 1 and A; is chos-
en so as to satisfy the forward-scattering sum rule.
We begin by using the DEP model for computing
m+/m.

To obtain T,(P) in the A; method we use the theo-
retically computed values of A, which are tabulated
in Table I. We fit the parameter A, to the experi-
menta. lly measured values (examples of which are
shown in Table II) and obtain values of I that vary
from 0.99V to more than 0.9999 from P = 0 to
P =34.36 bar. All the experimental numbers shown
in Table II and those used throughout this paper
are taken from Ref. 12 unless indicated otherwise.
The resulting pressure dependent T, is plotted
in the dotted line in Fig. 2(a). This line terminates
because we were unable to compute T, for I
)0.9999. The solid line plots the experimental
results. " While there is very good agreement
between the magnitude of the theoretical results
and experiment, the pressure dependence is
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wrong. This can be traced to the fact that at these
large values of I, we are in the region of the curve
of Fig. 1 in which T, is decreasing with increasing
I. Thus in this model 'He would not be described
by an exponential expression for T, . Similar re-
sults obtain for the s-P approximation method in
which I varied from =0.990 to =0.9999. These
are shown in Fig. 2(b). It should be noted that in
both cases the incorrect pressure dependence of
T, is related to another unsatisfactory property;
the effective mass ratios m "/m are an order of
magnitude larger than the experimental values,
as can be seen by comparing Tables I and II:

In summary, we see that this model yields good
agreement between theory and experiment for the
magnitudes of the transition temperatures, but
that the pressure dependence is incorrect. In ad-
dition the values of I are unexpectedly large and
the associated values of m*/m are in disagree-
ment with experiment. Although they may appear
to be unrelated, all of these discrepancies derive
from a single factor: the DEP model yields values
for Z =m*/m which are too large.

We can obtain a more physically reasonable para-
magnon model for 'He, in which A', and the mass
ratios m*/m are simultaneously close to the ex-
perimental values, by reducing the magnitude of
the function Z(e) so that the values of Z(0) = m*/m
are brought into better agreement with experi-
ment. '4 It should be noted that we are not fitting
T, here but only normal Fermi-liquid properties.
As will be emphasized here any reasonable pro-
cedure which accomplishes this w'ill not appreci-
ably affect the magnitude of the computed transi-
tion temperatures. Formally, we can view this
reduction of Z(&u) as coming from the inclusion of
vertex corrections, which affect ~' and ~~ in dif-
ferent ways. These corrections have been shown"
to decrease the effective-mass ratio. Phenomen-

4 0

T (mK)

FIG. 2. Comparison between experiment (solid curves,
after Ref. 12), and theory {dashed curves) as a function
of pressure using (a) a fit to the A~& scattering amplitude
and (b) the s-p approximation.

T, =(0.1Tz)e" ~,

or equivalently

T =~ e ' ~ where (d =0.1T e"~~
C C c E

(4.4a)

(4.4b)

so that the cutoff frequency 'e, is weakly dependent
on pressure for the narrow range of I appropriate
to 'He. For this reason, Patton and Zaringhalam'
were able to fit the phase diagram of 'He using an
equation of the form (4.4b) with cu, equal to a cons-

ologically, the readjustment of Z(&u) is justified for
the following reasons. (i) Our results for the mag-
nitude of T, are extremely insensitive to theoreti-
cal models used for Z provided Z is of order unity
(rather than of order 10 as in the model just dis-
cussed). This follows because T is chosen so that
the renormalized coupling constant & /Z is given
by the exPeximental value in terms of the A' s.
Changing the effective mass ratio has only the
effect of yescaling the parameter I. An order-of-
magnitude reduction in the effective-mass ratio
will lead to values of I which are in the exponen-
tial limit of the T, curve. (ii) Fermi-liquid
theories show that m*/m and A; are related, so
that a more-appropriate model for 'He is one in
which both parameters are close to the experimen-
tal values.

We now redefine Z: Z(&u) = 1+s&'(~), where s is
a scaling factor. Thus the DEP model corresponds
to the case s =1. As can be seen from Table II,
the experimentally measured mass ratio varies
from 3.0 to about 5.5. For a scale factor s =0.5
we obtained reasonably good agreement with the
measured values of m*/m over the entire pres-
sure range. These results are shown in Table
III. The numbers in this table are obtained using
the A,' method, while the numbers in parentheses
are obtained from the s-P approximation. A small-
er scale factor of s =0.4 was also tried in which
m*/m varied from =3.0 to about 4.0. For both
values for s the transition temperatures were
within 20/q of one another and the A's as a func-
tion of pressure were essentially unchanged. It
should be emphasized that we do not view s as a
fitting parameter. W'e have made no attempt to
find the "best" s or the best functibna1 form for
Z(&u). We.use this model to illustrate how in the
paramagnon model, the normal Fermi-liquid pro-
perties can brought into reasonable agreement with
experiment.

The results for T,(I) in the rescaled effective
mas's model (with s =0.5} are shown in Fig. 3 which
plots In(T, /T~) vs 1/&—= (1+X')/&~. Note that the
general features of the curve are the same as those
obtained when the unmodified DEP model for Z(&u}

is used (see Fig. 1). For I~ 0.9V the curve could
be fit to the form
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TABLE III. Theoretical values of I, T~/Tz, m*/m, and the scattering amplitudes for He
at each pressure, obtained using the rescaled pararnagnon model. The numbers not in pa-
rentheses are obtained by fitting the A t scattering amplitude while those in parentheses are
obtained from the s-p approximation.

A Ap A

12

18

24

30

34.36

0.948
(0.919)
0.957

(0.959)
0.963

(0.970)
0.966

(O.9V6)
0.969

(0.979)
0.971

(o.9v9)
0.972

(0.978)

4.9 xlo '
(2.8 xlo 3)

6.4 xlo ~

(6.6 x 1O-')

7.4 xlo ~

(8.4 x 10+)
7.9 xlo
(9.6 xlo 3)

8.3 xlo 3

(9.9 x 1O"3)

8.6 x] 0-3

(9,9 x 1O-')

8.7 xlo 3

{9.9 xlo 3)

4.2
{3.4)
4.65
(4.6v)
4.87
{5.29)
4.92
{5.92)
5.24
{5.95)
5.38

(5.95)
5.52

(5.94)

2.06
(1.V1)
2.21

(2.24)
2.32

(2.4v)
2.38

(2.63}
2.46

(2.71)
2.49

(2 71)
2.52

(2.69)

—4.64
( 3.so)
—5.40-

( 5.53)
-5.91

( 6.65)
—6.23

( v. so)
—6.60

( 8.38)
—6.83

( s.38)
—7.01

( 8.18)

1.77
(1.72)
1.80
(1.80)
1.81

(1.82)
1.82
(1.84}
1.82

(1.84)
1.83
(1.84)
1.83

(1.84)

tant. We were unable to fit our curve to a func-
tion of the form T, =(1—I)T~e '~', in which the cut-
off frequency is the spin-fluctuation frequency. The
reasons for this were discussed earlier. For I
—= 0.995, T,(I) again has a maximum of magnitude
=10 'T„. From Table III it should be noted that the
values of I which are appropriate to 'He range
from about 0.95 to 0.97 in the first method and
from 0.92 to 0.98 in the second. These values of
I are close to those used previously. 4 However,
in these earlier estimates of T, the mass renor-
malization factor Z was neglected and ~~ was com-
puted from the expression &~ = —', ~ln(l —I)

l
. The

second approximation, which results from a small-
q expansion of the Lindhard function, is only valid
for (1 —I) s 10 '. For I=0.95, we find using num-
erical techniques that &~ =1.0; in Ref. 4 it was

50
—24

le

l2

6

Experiment The

6

T(mK)

8 lo .
l2

deduced that &~ =4.5. For this T, m*/m =4.3.
Consequently, &~/ =0.23 which should be com-
pared with the previous estimate 4.5. - These or-
der of magnitude differences in & are greatly mag-
nified in T, .

.999 .99 .98 .97 .96 .95 .94 .95

50

o 24

I8

l2

Experim

0 2 8 l0 l2

FIG. 3. lnT~/Tz vs the inverse coupling constant.
Corresponding values of I are indicated in the upper
scale. The curve is obtained by adjusting the theoretical
values of rn~/m to yield better agreement with experi-
ment than the model in Fig. 1.

T(mK)

FIG. 4. Comparison between experiment (after Ref.
12) and theory for T, as a function of pressure using (a)
a fit to the A~& scattering amplitude and (b) the s-p ap-
proximation. The theoretical points were obtained by
adjusting re*/m to yield better agreement with the ex-
perimental masses than the model in Fig. 2.



200 K. LEVIN AND OH, IOL T. VALLS

As might be expected, the theoretical values for
A; and A', differ from experiment (by about a factor
of 2), since the l =0 scattering amplitudes are not
properly given by a contact potential interaction.
However, agreement between theory and experi-
ment is not poor, even for these amplitudes. We
find that A f is about -0.8 = -At/3 at melting pres
sure. Other estimates" of this amplitude give
Ay 0 73 at this pressure.

Finally, in Figs. 4(a) and 4(b) are shown the
pressure dependence of T, in the A,' and s-P ap-
proximation method, respectively. 'As can be
'seen both approaches yield semiquantitative agree-
ment with experiment both in the magnitude of T,
and its pressure dependence. This agreement is
quite good in view' of the fact that small" errors
in ~ are greatly magnified in T,. That the theo-
retical curves are slightly re-entrant is due to
the fact that T~ decreases with increasing pres-
sure. ' The fact that the theoretical values are
somewhat higher than the experimental ones sug-
gests that there is probably ' a very small direct
repulsive interaction between parallel-spin fer-

mions in 'He. A modified model which contains
this effect will be discussed in more detail in a
future paper.

In summary, we have shown how to solve the
Eliashberg equations for T, exactly, within the
paramagnon model, and we have discussed the
implications of these solutions. In applying these
results to 'He, we find that when conventional
strong-coupling effects are properly incorpor-
ated into a modified paramagnon model, it is
possible to obtain reasonably good agreement be-
tween theoretical and experimentally measured
values of T, . This work suggests that if the pa-
rameters in a simple model for 'He (like the pa-
ramagnon picture) are chosen to fit the normal
Fermi-liquid properties, it is indeed possible to
understand the magnitude and pressure dependence
of the normal —superfluid transition temperature.
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