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Self-consistent calculation of surface properties of electron-hole firopletse
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The surface energy of the electron-hole liquid in Ge is calculated using the density-functional formalism. The
kinetic energy is included exactly within an uncoupled spherical band model. Corrections to order ~+ n I

are included in the evaluation of the exchange and correlation energy and also in the evaluation of the efFects

of band coupling and anisotropy on the kinetic energy. We obtain a surface energy of 2.5 X 10 erg/cm' and
an electrostatic dipole barrier h,4 of 0.16 meV. The slnall value of 54 leads to the conclusion that the charge
on the droplet is negative.

I. INTRODUCTION

Free excitons in Ge have been found to condense
into metallic droplets at sufficiently low tempera-
ture and high density of excitons. ' 4 The surface
properties of the electron-hole liquid drqplet
(EHD) are of considerable experimental and theo-
retical interest, ' "primarily because the kinetics
of EHD formation from the exciton gas depends on
surface properties. The role of the surface is
most clearly seen by considering the formation of
EHD nuclei from density fluctuations during ho-
mogeneous nucleation. "'"'4 For small nuclei the
surface energy supplies a relatively large positive
contribution to the total free energy, and hence
tends to inhibit droplet formation. For many situ-
ations this is the rate limiting factor. Besides
being important in kinetic processes, the surface
structure of the droplets determines in principle
the normal modes of the surface. In practice we
can use the surface tension to obtain an estimate
of the low-frequency capillary modes of the drop-
let. ' Another question which has excited some
experimental and theoretical work is the question
of the charge on the drop at finite temperature. ' ""
The surface charge will be important in how the
droplet couples to electrical fields, and possibly
in the dynamics of droplet motion through the lat-
tice.

The surface properties of the EHD have been in-
vestigated by several authors. ' ' These papers
established the order of magnitude of the surface
energy. Results for the electrostatic dipole layer,
and for the electron and hole work functions were
considered to be speculative by these authors, and
the need for more detailed calculation was gener-
ally indicated. In this paper we calculate the
ground-state surface properties of the eIectron-
hole liquid (EHL) in unstrained Ge at zero tem-

perature. The calculation was performed using
the density-functional formalism. '6' " Previous
calculations have treated the kinetic energy by
adding terms of the form C(n).

l
+n(r) I' to the

Thomas-Fermi kinetic-energy density. ' ' For
simple metals this leads to errors of (15-20)%
in the surface energy, compared to the method of
Kohn and Sham" which includes the kinetic-energy
term correctly. Other surface properties such as
the surface width and the electrostatic dipole layer
are expected to depend quite sensitively on the
exact treatment of the kinetic energy. Qualita-
tively, this results from the fact that any finite-
order expansion of the kinetic energy in terms of
a gradient expansion of the density cannot give the
Friedel oscillations at the droplet surface. " In
the present calculation the energy minimization
was carried out by means of the recently developed
variation of potentials technique. " This technique
reformulates the variational problem into a simp-
ler form, and gives answers which are fully equiv-
alent to the self-consistent equation approach of
Kohn and Sham.

In addition to treating the kinetic energy correct-
ly, we have examined the contribution of the var-
ious interaction energy terms carefully. Previous
studies divided the exchange and correlation ener-
gy evenly between the electrons and holes. Fur-
ther, in the evaluation of the correlation energy,
no account was taken of the fact that the electron
and hole densities are not exactly equal every-
where. %'e have calculated the exchange and cor-
relation energies in the local approximation in a
manner which correctly apportions the energy
between the bands, and takes into account the lack
of local charge neutrality at the surface. %e have
included certain effects of multiple scattering" in
our local approximation to the exchange and corre-
lation energy. Nonlocal corrections to the exchange
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and correlation energy were roughly approximatedin
this paper by means of a gradient expansion in the
density ""

The structure of the paper is as follows. Section
II describes the energy-functional approach to
surfaces. Section ID describes the evaluation of
the exchange and correlation contribution to the
surface energy. In Sec. IV we discuss the kinetic-
energy terms. Sections V and VI give the results
for the surface properties. Section VII provides
a discussion of the results. Finally we give tech-
nical detail concerning the valence-band contribu-
tion to the EHL dielectric constant in the Appendix.

II. THEORY

The zero-temperature surface properties of an
EHD are calculated in the density-functional for-
malism using the potential variation technique.
The droplet is assumed to be sufficiently large
that curvature effects are unimportant in deter-
mining the surface energy and the radial charge
distribution. The surface is approximated by a
planar EHL-vacuum interface at x= 0, with the
EHL density going to its bulk value as x- —~,
and to zero as x-+~. Using this approximate
model for the EHD surface, we can write the total
energy of the system as a functional of the densi-
ties of the particles in the various electron and
hole bands. It is convenient to divide this energy
functional into a bulk and a surface contribution,

E [n,(r)] = E+AZ [n,.].
Here n,.(r) is the density of particles in the ith
band; E is the bulk energy of a uniform EHL at
the equilibrium bulk density; A is the surface
area; and Z is the surface energy per unit area.
The ground-state properties are determined by
minimizing E with respect to variations in the
densities n, These variations are subject to the
condition that the number of particles in each band
remain a constant. From K[I. (1) it is clear that
minimizing the surface energy Z is equivalent to
minimizing E. Hence from now on we will phrase
the minimization problem in terms of Z rather
than E. Following the procedure used by Lang and
Kohn ' for a single-component system, we can
write an exact functional for Z in terms of the
densities n, (r):

Z[n, ]=o,[n,]+o„[n,]+ o [n,].
Here 0, is the kinetic contribution to the surface
energy for an EHL of noninteracting particles
with densities n, (r}; the exchange and correlation
contribution to Z is denoted by 0„; while the third
term on the right gives the electrostatic energy
contribution

drdr'p r p r'
lr- r't (3}

Here p is the net charge density. In Sec. DI, we
discuss the evaluation of 0„, and in Sec. IV the
evaluation of 0,. Qnce functional forms for these
quantities are obtained in terms of the variational
potentials, we minimize Z and obtain the ground-
state surface properties. We stress at this point
that using the variational potential technique is
equivalent to solving the self-consistent Kohn-Sham
equations for the same problem. The potential
variation technique is straightforward to apply for
the EHL, and avoids two difficulties associated
with obtaining solutions to the self-consistent eq-
uations. The first problem is the divergent self-
consistent potential obtained when a gradient term
is included in the evaluation of 0„,." Second,
since the variation of potentials technique is in-
herently stable numerically, it avoids the well-
known numerical instabilities found when iterative
schemes are used to solve the self-consistent
equations for metallic surface problems. "

III. EXCHANGE AND CORRELATION

The exchange and correlation contribution to
the surface energy is approximated by a gradient
expansion

e„[,.(r)]= J d'r[e„(,.(r))- e„e(x)]

Here e„(n,} is the exchange and correlation energy
per unit volume for a uniform EHL with densities
n, The term e„, is the value of e„for the bulk
equilibrium density of the uniform EHL. The
first expansion coefficient in the gradient series
is denoted by g, , In the rest of this section we
evaluate the functions e„, and g,.~.

The exchange energy for a uniform EHL has been
obtained' ' ".

e„(n,.) = —0.784n', ' —1.048n'„'[it* .
Here n, and n~ denote the total electron and hole
densities. The evaluation of the correlation ener-
gy is complicated by the fact that the total electron
and hole densities are not exactly equal in the sur-
face region. We therefore first obtain the corre-
lation energy e, for a bulk uniform system, where
n, =n„. If n, = n„(an approximation that we can
verify after the fact), then we can expand e, as

e,(n„n„}=e,(n, =n„)+ [p, ', (n, =n„) —p'„(n, =n„)]&n.

(6)
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Here

&n= ,' (-n, —n„)

I
1

I
1

I
1

I
1

I

(8}
8

p'„„(n,=n„)= e,(n„n„)~„„.

each

The random-phase approximation (RPA) is used
to evaluate e, and p, ', ~ within the model band struc-
ture used by Combescot and Nozieres. " The elec-
tron bands are characterized by four ellipsoidal
bands in the (1, l, I) directions. The two fluted
valence bands are degenerate at k = 0 and coupled
by a matrix element of the density operator.
Within the model band structure of Combescot and
Nozieres the valence bands are described by two
spherical coupled bands which are characterized
by a light-hole and a heavy-hole mass. For con-
venience we list all of our input parameters in
Table I. Using this model band structure, we ob-
tain an analytic expression for the imaginary part
of the RPA dielectric constant. This formula,
which is quite complicated because of the valence-
band contribution, is included as the Appendix.
The real part of c(q, sI) is then easily obtained as a
one dimensional numerical integral by Kramers-
Kronig inversion. Once a(q, NI) is known, e," "
(n, =n„) and p', ~ are obtained by numerical inte-
gration. Results for e,"r" (n, =n~) are shown in

Fig. 1, and for p.', „ in Fig. 2. The results for
e~" (n, = n„} are very close to those of Combescot
and NozQres, being typically 2% more negative.
The RPA values obtained for p, ', ~ are used in the
calculation of Z. However, we further correct
e, (n, = n~) to include the effects of multiple scat-
tering, as follows.

Bhattacharyya et e/. 26 have used a self-consis-
tent-field approximation (which they call the self-
consistent particle-hole method) to calculate con-
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FIG. 1. (a) Correlation energy per pair from the
exact BPA calculation. (b) Correlation energy with cor-
rection for multiple scattering included.

tributions to the correlation energy beyond the
RPA. They use the full self-consistent particle-hole
procedure for a simplified model band structure
consisting of four spherical electron bands and
two uncoupled spherical hole bands with the light-
and heavy-hole masses. We extract our correc-
tion to the RPA result from their calculation. We
first calculate the RPA correlation energy for this
model band structure. Subtracting this RPA result
from the self-consistent particle-hole result yields
a correction 4e, to our previous calculated RPA
correlation energy which included valence-band
coupling and electron-. band anisotropy

e,(n, =n„)~e,"r"(n,=n„}+be,(n, =n„). (9)

Figure 1 shows our final result for the correla-
tion energy of the bulk EHL. Using these values

TABLE I. Major parameters used in calculation {from
Ref. 24).
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Parameter Value Units

g&~ (Bohr radius)

S* {Rydberg)

n (bulk density)

0.12

0.22

0.347

0,042

177

2.65

2 25 @10

0.58

Electron mass

Electron mass

Electron mass

Electron mass

meV

CXIl
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Intermediate result of this calculation.
FIG. 2. Correlation. contributions to the chemical po-

tentials p, and p&.
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for e„and the known values for the bulk kinetic
and exchange energies, we can obtain the bulk
equilibrium density and energy, n = 2.25 & 10" cm ',
E~ = 29 'K. The value for n is in good agreement
with other experimental and theoretical re-
sults. "' However the va, lue for E~ is somewhat
larger than recent experimental results4 16-2V K'
and" 16-24'K. In view of the fact that the calcu-
lated value of E~ results from the sum of several
large contributions of opposite sign, the lack of
agreement is not too ~3~rming. For example, a
change in the correlation energy of V% would lead
tp an E~ of 20'K. Still, the present calculation of
e, is the most complete known to us, including the
effects of: the anisotropy of the electron bands,
coupling between light- and heavy-hole bands within
a spherical model, and multiple electron-hole
scattering.

We should note that the expression for e„, ob-
tained by adding E(ls. (9) and (5}, is incorrect in
the low-density limit r, -~, since e„-0. Qn

physical grounds we expect the exchange and cor-
relation energy per pair to go to the potential en-
ergy of the exciton in the limit of very low density.
However, almost the entire integral for o„ in Eq.
(4) is obtained from that region of the surface for
which the density vp, ries from the bulk density n

to about 0.05 n. For this range in density, the
metallic ground state is energeticaQy favored over
the corresponding exciton ground state. Hence we
expect the evaluation of e to be correct over the
entire range of relevant surface densities.

The estimate of the gradient contribution to e„
is made in the fpllowing way. ~spit and Geldart"
have calculated a gradient correction for the elec-
tron gas of the form

~E~~= d'rc n n-'~3 en'

For large n, the coefficient C(n} goes to the value

2.6 x 10 ' obtained by Ma and Brueckner and

Sham. ' W'e use the fpllpwing ad Roc expression
to estimate the effects of the gradient correction
for the EHL:

dE" = dr Cn n &n,

+C(n,)n„~ ~vn„~']

We do npt place high reliability on the above ex-
pression but rather use it to obtain a rough esti-
mate of the corrections to the local (zero-order)
term.

IV. KINETIC ENERGY

The evaluation of o, proceeds in two steps.
First, using the variational potential approach,

we calculate an exact contribution to o, using a
simplified band structure consisting of four spher-
ical electron bands and two spherical uncoupled
hole bands. Later we shall describe a second
contribution to 0, which takes into account elec-
tron-band anisotropy and valence-band coupling.

The variational potential technique is easily
extended to the calculation of the EHD surface
properties. Assuming the simplified band struc-
ture, we define a variational potential v,' (r) for
each band. The strategy is then to use these po-
tentials to determine the contribution to cr, from
each of the bands, and to determine the densities
n, (r). Since the surface energy functional Z, apart
from o'„ is constructed to be an explicit functional
of the densities, we then minimize ~ by varying the
potentials. Below we describe the form of the
variational potentials use5, and describe how to
obtain n, (r) snd e, in terms of them. Of course,
s, and n, only have physical significance for that
set of potentials which minimize the surface en-
ergy.

Since nothing in our calculation depends on the

y, z directions parallel to the surface, it is clear
that the v,' depends only on the x coordinate per
pendicular to the surface. Further v,' goes to a
constant as x-+~. Assuming that the particles
are noninteracting, we then solve the single-par-
ticle Schrodinger equations for particles in the ith
band moving in the potential v,'~. From the sin-
gle-particle wave functions g,'(r) and eigenvalues
e~~ we can write

a&

, (~)=g I
A(~&(*,

a~&

e,'= g (2v'm, ) ' dkk(kz —k')(4v y,'}
0

d'rn, r n,' (r —v,'

(12)

Here m, and k& denote the density-of-states mass
and Fermi wave vector of the ith band. We use
the symbol o, to denote the contribution tp the
surface kinetic energy from the simplified band-
structure model. The phase shift of the 0th wave
function of the ith band is denoted by y,', i.e. ,

P,'(r) =A sin(km+ y') e"~'e"~', x ——~ . (13}

The expression in large parentheses on the right-
hand side of E(l. (12) is the kinetic-energy contri-
bution from a single spherical band of noninteract-
ing electrons, as given by Lang and Kohn for the
jellium surface 2~

The total kinetic-energy contribution tp Z can
be written
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&.[n«r)1 = o:[n((r)l+ A&.[n«r)l . (14)

The term 4o, is included to account for the effects
of valence-band coupling and electron-band aniso-
tropy in the determination of o,. In order to obtain
an approximate form for bo, we note that the ki-
netic-energy terms o, and cr', canbe approximated

in terms of a gradient expansion in the densities
to order

~
Vn, I'. The expansion coefficient for a

spherical band of noninteracting particles is weQ
known; the equivalent expansion coefficients for
the EHL have been determined by Reinecke and
Ying (RY)e; these include the effects of valence-
band coupling and electron-band anisotropy. Eq-
uating the coefficients to order

~
&n, ~' yields

, 1+y'" 1 r"' 1, l&n, (r)P 1 1 1
(n(x)]=, f u' lvN(r)l' (+& I (g ((~y I )((~y ) 3yg

+ ~" „{~) (2 )

Here n,(r) and n~(r) are the total electron and hole
densities. The masses m~, mo, and m~ are, re-
spectively, the heavy-hole mass, the electron op-
tical mass, and the electron density-of-states
masses; y denotes the ratio of the light- to heavy-
hole masses.

V. SURFACE ENERGY AND DIPOLE BARRIER

We report the calculated surface energy Z, the
surface widths defined as the distance between the
10 and 90% of bulk density positions and the
electrostatic dipole barrier V4. We first give the
results for our most complete model of the energy
functional, and then report the results of two less
complete calculations. In this way we hope to show
the effects of various approximations in the
calculation of the physical quantities. ln the
following we list the possible contributions
to Z: (a) e', [Eq,. (12)], the exact kinetic-energy
contribution described in Sec. IV for a simplified
band structure which neglects electron-band an-
isotropy and valence-band coupling. (b) &e, [E(l.
(15)], the correction to o, which accounts for
electron-band anisotropy and valence-band cou-
pling to order

~

Vn, ~'. (c) As an alternative to (a)
and (b), we can describe the entire kinetic-energy
term by means of the gradient expansion of RY.
This term is only correct to order

~
Vn,. I' and it

misses higher-order contributions and cannot pro-
duce Friedel oscillations at the surface. (d} e„
= e„+e, [E(l. (4}], a local approximation for the
exchange and correlation energy (this term in-
cludes the effects of unequal electron and hole
densities). (e) ho„[E(l. (11)], an estimate of the
nonloeal contribution to the exchange and correla-
tion energy to order

~
Vn, I'.

We constructed three model energy functionals
from the contributions (a)-(e). Model A is our
most complete calculation, and includes the exact
kinetic energy for uncoupled spherical bands o',
plus the band-structure corrections to order

~

Vn, ~'. Model A also includes our best estimate
of the local contribution to the exchange and corre-
lation energy plus a nonlocal contribution to order
~
Vn, (' Mo.del B tests the effects of neglecting the

nonlocal correction to the exchange and correla-
tion energy. Model C tests the effects of approxi-
mating the kinetic energy by the gradient expan-
sion of RY.

The variation of potentials technique requires a
potential vt (r} for each band. By examining the
self-consistent Kohn-Sham equations we find that
at the minimum in energy each of the four electron
bands has the same effective potential, while the
two hole bands have a different effective potential.
Hence in our variation procedure we introduce a
single variational potential for the electrons and a
second variational potential for the holes. Each
potential is characterized by eight parameters
which are varied to obtain the energy minimum.
We constrain the total charge Q on the surface to
be zero by adding a large penalty function to the
surface energy of the form AQ', where A is a large
positive number. The minimization of Z is carried
out using a simplex search routine optimized for
nonlinear minimization problems. In all cases the
minimization can be performed without difficulty.

Mode1 A

We include the terms (a), (b), (d), and (e) listed
above. The minimization of the energy was carried
out and we obtain

Z=2.45x 10 ' ergs/cm',

so=2.4x 10 ' cm, 64=0.16 meV.

Below we list the various contributions to o in
erg/cm'

o', = —5.58x 10, Acr, =0.30& 10 ',
o'„= '7.24 x 10 4, 4o'„=0.48 && 10"4,

o =0.016 x 10 ~, b,a, =0.004& 10



17 SELF-CONSISTENT CALCULATION OF SURFACE. . . 1889

The term 4o, denotes the contribution to the cor-
relation energy due to n, (x}w n„(x) in the surface
region; i.e. , the second term of Eq. (6}. The sur-
face energy is the sum of relatively large cancel-
ing terms and is hence quite sensitive to the forms
chosen for the various terms. Note also that the
term o that gives the electrostatic energy is
small; to obtain accurate values for the dipole
layer, the variation in energy must be carried out
to very high accuracy. Since 4a, is about 25% of
the electrostatic energy, it plays a significant role
in determining the size of the dipole barrier 44,
which we see is quite small; i.e., about 10% of the
binding energy per pair. In defining 44 we use
the convention that 44 &0 indicates that the dipole
barrier increases the binding of the holes.

Model B

Here we include terms (a), (b), and (d). This
model is similar to model A except that we leave
out the nonlocal contribution to the exchange and
correlation energy given by (e). The results are

the EHD may be adequately treated by the gradient
technique. However, those properties which de-
pend sensitively on the energy such as the surface
density profile and the dipole barrier must be cal-
culated in the more complete formalism of Kohn
and Sham. The value of the dipole layer in this
calculation is similar to that reported in the
gradient calculation of HY.

@e,h ~e, h

where

(16)

VI. SIGN OF DROPLET CHARGE

The sign of the charge on the EHD depends on
the relative values of the electron and hole work
functions. At a finite temperature, the component
with the largest work function evaporates less
readily, and hence gives the sign of the droplet
charge. The work function 4, „ for a given compo-
nent depends both on that component's bulk chem-
ical potential p,, „and on the electrostatic dipole
barrier &4 at the surface:

2=1.98x 10 ' ergs/cm',

vv=2. 4x 10 ' cm, b4 =0.17 meV.

ae
We, h-

~~e, h
(17)

An interesting result of this calculation is that the
surface charge density is changed only slightly
from the result obtained in A. The difference be-
tween the surface energy obtained here and that of
model Ais 0.47x 10 ' ergs/cm'. This is exactly
the nonlocal contribution 4o„ to the surface energy
in model A. Thus the effect of the nonlocal term
in o„could have been obtained by simply evaluating
the correction using the old self-consistent density
without bothering to reminimize the energy. As
expected, the size of the electrostatic dipole layer
depends sensitively on the correction, but remains
small.

Model C

In this model we test the effects of replacing the
kinetic energy cr, with the gradient expansion of
RY. The energy is then minimized in the standard
way for the gradient technique by varying the den-
sities. We find that

E = 1.80 x 10 ' ergs/cm',

re=1.60x 10 ' cm, 44.=0.53 meV.

Model t differs from model 8 only in the treat-
ment of the kinetic energy. We see thaf this re-
sults in a change in the energy of only 1070., how-

ever, the surface width is decreased by about
3370, and the electrostatic dipole barrier is larger
by a factor of 3. From this calculation it seems
reasonable to conclude that the surface energy of

Here e is the energy per unit volume for a uni-
form EHL. The evaluation of Eq. (17) involves the
quantities p.

', „=ae, /n, „, which were discussed in
Sec. III. At the bulk density we find

p, =- 4.09 meV,

p.h
= —2.53 meV.

(18)

(19)

VII. RESULTS AND CONCLUSIONS

Our best result for the surface tension is o
=2.4(5) x 10 ' ergs/cm'. We also conclude that
the EHD should be negatively charged. Recently„
several groups have obtained experimental esti-
mates of 0 by fitting the experimental data to
various models of droplet nucleation and kinetics.

Previous theoretical estimates of p,e and ph
were obtained" by dividing the exchange and cor-
relation energy equally between electrons and
holes. Were we to use this procedure we would
obtain p,,= —3.99 meV and ph = —2.63 meV; thus
the previous approximation used to obtain p, and
p.h is in fact quite good.

Using the value for 44 found in model A, we obtain
4, —Ch=-1.24 meV. This leads to the con-
clusion that the charge on the EHD is negative.
Since the dipole barrier &4 =0.2 meV, we see that
the sign of the charge is determined by the bulk
chemical potentials. The fact that &4 is small for
all of our self-consistent calculations leads us to
have confidence in the calculated sign af 4, —4h.
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Experimental values obtained for 0 are 1.0 x j.o"',"
1.8 x 10 4,'2 and (2.4 —2.8) x I ~ ergs/cm', " The
scatter in the reported results makes comparison
with experiment difficult. However, %esterwelt'
and %'esterweltet al.~ who claim to have a
reliable measurement of o = (2.4 2.8) x 10 ' ergs/
cm' at a temperature of 2'K.2' Our result of 2.4(5)
ergs/cm' is in good agreement. Pokrovskii and
Svistunova have experimentally determined that
the charge on the EHD is negative, "whichisalso
in agreement with the result we obta. ined.

The major features of our calculation are sum-
marized below. The use of the self-consistent pro-
cedure is necessary to obtain accurate values for
the electrostatic dipole layer. However, the self-
consistent procedure does not significantly alter
the value of 0 from the result obtained in the grad-
ient approximation. An accurate evaluation of the
correlation energy is necessary, and the inclusion
of multiple scattering effects changed o signifi-
cantt.y. The inclusion of a term in the correlation
energy which takes account of the tack of local
charge neutrality at the surface does not contribute
significantly to a but does affect the value of the
electrostatic dipole barrier. Important contribu-
tions to 0 came from gradient corrections to both
kinetic energy and the exchange and correlation
energy. The ad koc nature of our gradient cor-
rection for the nonlocal exchange and correlation
energy leads us to suggest that this is the most
obvious ptace to further improve our calculation.
Owing to the small absolute size of the correction,
we would expect it to change the value of 0' by no
more than 15'.

We give an analytic formula for the valence-
band contribution to the imaginary part of the BPA

dielectric constant Ime(q, (d). The evaluation of
Ime(i|, &d) is carried out within the model band
structure of Ref. 25 and includes valence-band
coupling in a spherical approximation. The con-
tribution of the ellipsoidal electron bands to
Imc((1, &(() is well known and easily calculated. Once
the expression for Imc(q, ~) is known, then
Re@((I,&o) can be straightforwardly obtained by a
numerical evaluation of the Kramers-Kronig
relation. Alternatively the expression for Re&((I, (d)

can be obtained directly in the form of a one-
dimensionat. numerical integral.

We give results for the noninteracting density-
density response function Im}|'((, which is related
to Ima ((I, &o) by

Ime (q, a() =, p [Im}f '(((q, &u).] .
gg

(Al)

The indices run over all the bands and the te-rm

X',
&

indicates the density response of tt|e ith band
to a potentia. l which couples to the density of the
jth band. There are four spherically symmetric
(q =

I qI ) contributions from the valence bands to
Imx', &.. an intraband contribution from each band;
and two terms involving interband transitions
from the light- to the heavy-hole band and vice
versa. The intraband terms are given by

Im}('(((q, ((() = (3m (/Svq)N(((q, ~) .
Here m, denotes the mass of the ith band and the
term }f0«,~(q, to) is the I.indhard response function
for a spherical band of noninteracti;ng electrons.
The function N, &

is given by

Im}t(( (q y ((() i(L(~g(q I ((() —(3m (/Svq )N(((q, ((()

(A2)
The interband terms are

N(((q|((() =— 1
(yq —m(&0) ln, —(~q +m((d) ln2 2 I 2 2 2+2m( t (m(™() 2 2(k, —k,).4m, (o + 2M g(d S'PÃ g?FE ~

(A4)

Here k, and k, are functionals of q and . The ex-
plicit functional forms of k, and A, are given below
for the various cases.

For the intraband case we define the following
supplementary functions:

k,"=(k»,. —2m(&o)' ', (A5)

k(s = (1/q) (m, a —& q'), (A6)

&d, = (q/m, )(k», ——,'q), (A7)

(A9)

(A10)

(A11)

k, =@~, for all q and ~. (A12)

Here k~, denotes the Fermi wave vector of the
ith band, i.e. , the light- or heavy-hole band. The
functions k, and A', for the intraband case are

k, = k,"e(2k» ( —q)e ((o, (o),

k, k(se(q 2k» ~)e((d, &o)e((d + &u,)—,

k, =kee(2k„, q)e(~, ~)e(~

(0, = (q/m ()(k», + g q) . (AS)
The first interband case we consider is for tran-

sitions from the heavy- to the light-hole band. We
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again list several supplementary functions
0, andk, :

g tFL)m~ 2ppl pl~2 . X/2

(m„—m, )' m„- m,

k', = [m~/(m„- mg)]q,

k", =[2m~(ce' ~)]'I',
ke= fZ

k,"= ~Z+k; ~,

(u, = e~- (I/2m~)(k~ )+q)',

(o, = c~ —(I/2m/(k~, —q)',

&o, = (1/2m, )(ke „+q)'- e~,
~4=(I/2m, )(k, » q)' e„.

and then

(A13)

(A14)

(A15)

(A16}

(A17)

(A16)

(A19)

(A20)

(A21)

Q'&k~g+k~ p q

k, = k", 9(a&,—&o)8(&u —u&,),
k, = k~e8(~ —&o,)8(~,—&o),

k, = k", 9(&o —&o,)8(&u, —&u),

k =k „8((o &o )9(u) to).

If a'»p, g+& g, I,

k, = k~e8(~, —&u)9(~ —~,),
k, = k» 8(&u &o,}8(v, &u) .

(A22)

(A23)

(A24)

(A25)

(A26}

(A27)

The final case covers interband transitions from
the light- to heavy-hole bands. We define the sup-
plementary functions

Here the subscripts l and h refer, respectively, to
the light- and heavy-hole band. The hole band
Fermi energy is given by e~

The functions k, and k, are the following: If

k,"= [2m, (e~ v)] '~',

k"= /S+k'
f

(u„=e~ —(1/2m, )(k~ „q)—',
u, = (I/2m„)(kz, + q)2 —ez,
(o, = [2(m„- m, )] 'q',

&@4= (1/2m&)(kz, —q)' —ez.
The functions k, and k, are defined below.
that if q&kz „-kz „ then N, &(q, &o)=0. If

k „-k, &q& [(m~- m, )/m„]km n,

k, = k", 8((u, (o)8(~),
k, =kz, 9(&o2 —m)9(&u},

k, = k", 9(~ &u,)8(u&, &u) .

[(mI, —mt)/mal kz „&q&kz, &+kz „,
k, =k", 9(&u, Iu)8(u&),

k, = k(8(~ &o,)9(&u, ~),
k, = k~,8(&o, ~)9(~),

k, = k,"9(&u &u,}8(~, ~) .

k~, +k~ ~& q& [(m„mg)/m„]ke, ,

k, =ke9(&a —u )9(&u, —e),
k, =kz, 8(u& u&,)9(&u, ~),
k2 = k2 9(&u —ur, )8(&a, —Iu) .

(A30)

(A31}

(A32)

(ASS)

(A34)

(A35)

(A36)

We note

(A37)

(A36)

(A39)

(A40)

(A41)

(A42)

(A43)

(A44)

(A45)

(A46)

2

k,'= [mg/(m„m, )]q,

(A28)

(A29)

q & [(m„- m, )/m, ]k

k, =k,'9(~ ~,)9(~, ~),
k2 =kz, 9((u - &u4)8(m &g) .

(A47)

(A48)
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