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The intersecting-spheres model is a general approach to the calculation of the electronic structure of
molecules and solids which adopts a one-electron local potential, an energy-independent trial function, and a
cellular partition of space. It has been uM with satisfactory results to determine the total energy and the
ionization spectra of simple molecules. %e report now results concerning the selfwonsistent band structure of
Si and Ge, and we show that these results compare favorably with band structures calculated by the
orthogonalized-plane-wave method, under the same assumption for the exchange and correlation potential.

I. INTRODUCTION

When we consider the various existing methods
for the calculation of the electronic structure of
solids, limiting our attention to the approaches of
nonempirical character which make use of a local
self-consistent potential, we can observe that the
methods which have met with more success in the
past either contain a systematic approximation of
the self-consistent potential, like the APW' and
the KKH' methods, or introduce a special treat-
ment of the core region, like the OP% method',
these approximations in some way limi:t the ap-
plicability of the above-mentioned approaches to
specific crystals. In particular, methods which
use a muffin-tin potential cannot work well for
covalent systems and their generalization to in-
clude non-muffin-tin terms, although possible, is
rather difficult to perform, 4 while the OP% method
fails to converge when the valence and conduction
levels which are investigated have no counterpart
in the atomic core.'

Among the other approaches, the cellular meth-
od, ' which allows a more accurate description of
the one-electron potential than the original APW
and KKR methods, suffers from problems of con-
vergence, since it requires a large number of
matching points on the surface of the cells and
consequently needs large l expansions of the trial
function. '

The LCAO method, finally, can be considered
as the most general approach, since in principle
it does not introduce systematic approximations to
the potential, nor requires separate treatment for
the core levels; its generality has been underesti-
mated in the past, when it was erroneously con-
sidered useful only in the case of tight binding; this
is not true"'; however, since more or less slowly
decaying functions centered on different nuclei
usually overlap at a distance of various neighbors,

the computational effort implied by the evaluation
of two and three center integrals can become un-
wieldy even with efficient Gaussian-based pro-
grams if a variational calculation with a very flexi-
ble trial function is desired. "

It is evident that a method with the quick con-
vergence of the direct lattice sums typical of the
cellular method and with the general form of the
self-consistent potential typical of the LCAO ap-
proach is desirable; such a cellular LCAO meth-
od is in our view provided by the intersecting-
spheres model. This approach has been satis-
factorily tested in the case of simple molecules"
and a preliminary computation of the band struc-
ture of &diamond" has given encouraging results.

In the first part of this article we give a de-
scription of the intersecting-spheres model for
solids; in the second part we report on self-con-
sistent calculations of the electronic structure of
silicon and germanium and compare the resulting
band structures with those obtained by a long-
established method like OP% under the same as-
sumptions for the exchange and correlations po-
tential.

II. INTERSECTING-SPHERES MODEL

The formulation of the intersecting-spheres
model for solids closely parallels that given for
molecules. " Therefore, we report here only the
main points of the model and make reference to
previous works whenever useful. The basic idea
for the intersecting-spheres model is the introduc-
tion of an energy-independent trial function, con-
stituted by atomiclike functions centered at the
various nuclei and mutually overlapping as little
as possible, while still remaining continuous and
with continuous gradient. To build up such a basis
set, a partition of the volume occupied by the
solid into cells closely related to that occurring
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in the cellular method is very useful. These cells
are obtained in the following way: we surround
each atom in the unit cell of the direct lattice (one,
two, or three dimensional) with a sphere of given
radius. For a three-dimensional lattice the radii
are chosen in such a way that the whole space is
filled by overlapping spheres. At each intersec-
tion between spheres we insert a cylinder of given
height which connects the surfaces of the inter-
secting spheres. Prom these geometrical objects
a partition into nonoverlapping cells can be derived
in a way which is illustrated in Fig. 1 for a simple
one-dimensional structure. The cells derived
from the atomic spheres are called atomic
cells; those derived from the cylinders are called
spline regions for a reason explained in the fol-
lowing. In the case of a three-dimensional struc-
ture the atomic cells are polyhedra, while the
spline regions can be partitioned into prisms as-
sociated with couples of neighboring atoms. Each
atomic cell is coated by spline regions which join
the atom with its neighbors.

For a given wave vector Tc we assume that the
trial function is a linear combination of Bloch sums
defined as

~Q

nfl, e

In Eq. (I) N is the number of unit cells in the lat-
tice and a runs over all direct lattice translations,
while 4,„, is a localized function centered at the
position of the ith atom in the unit cell with trans-
lation vector 8, In the intersecting-spheres
model 4,„, is chosen in the following way: within
the atomic cell i, it is the solution of the self-con-
sistent atomic problem corresponding to quantum
numbers n, L, m and with the outer boundary con-
dition not at infinity, as it occurs for a free atom,
but at the radius of the atomic sphere; elsewhere

FIG. 1. Cellular partition for a linear chain accord-
ing to the intersecting-spheres model. Heavy lines
define the atomic cells and the spline regions; the
light lines show the atomic spheres and the cylinders
used to derive the partition. 1 and 2 denote the atomic
cells within the unit cell of the infinite chain.

4,„, is zero, except in the spline regions at-
tached to cell i, where the atomic function is con-
tinued and sent to zero at the outer surface of each
region. This behavior can be obtained through the
use of spline functions. In fact the atomic solu-
tions

can be expressed with respect to a rotated
reference frame with the polar axis joining two
atomic centers as

D(n ~ ~»)p in im(«~ s~ ~ p i)

=«.i(«) Z ~' (&»y)I'r~(sl, s'0 (3)

where e, P, y are the Euler angles which define
the rotation of the reference frame. " The single
terms in the sum of Eq. (3) can be matched with
continuity of the function and of its gradient at the
plane boundary between the atomic cell i and the
spline region by the function

(4)

Cylindrical coordinates are used; the exponen-
tial ensures matching along cp, and the four co-
efficients a~ ensure that the function and its gradi-
ent are continuous at one end of the spline region
and vanish at the other end. We stress the fact that
the atomic solution is retained only within, the
atomic cell and that the spline functions are re-
tained only within the spline regions (prisms) and
not over the full cylinders from which the spline
regions are derived.

Using the above defined 4,„, functions in the
Bloch sums a secular equation can be derived for
the problem of the electronic structure of solids
in exactly the same way as for a conventional
LCAO treatment; the only pleasant difference is
that functions 4,„, centered on different atomic
sites overlap only if two atomic cells are in con-
tact vrith the same spline region; therefore the
lattice sums involved in the evaluation of the
various matrix elements are as short as possible.

The mathematical techniques for the computa-
tion of the individual contributions to the matrix
e)ements between Bloch sums are exactly the
same as those used for molecules and need not to
be reported here; the interested reader is re-
ferred to Ref. 11, where a detailed account of the
formalism is given. We only recall some relevant
points: the mathematical representation of the self-
consistent potential and of the charge density
adopted by the intersecting-spheres model is an
expansion in spherical harmonics around the
various atomic centers; the self-consistent Hamil-
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tonian is broken into a fixed term, contaimng the
kinetic operator and nonoverlapping atomic poten-
tials (for which the 4(„( functions are solutions
within the atomic cells) and a self-consistent cor-
rection which includes all the modifications to the
starting potential due to the self-consistent charge
distribution of the crystal. The matrix elements
contain contributions arising from the atomic cells
and contributions coming from the spline regions,
which are evaluated separately. Contributions
deriving from the fixed term of the Hamiltonian
are evaluated exactly; for what concerns the self-
consistent corrections the following approxima-
tion is used: the self-consistent charge density is
defined by the proper sum of products of atomic
functions not only within the atomic cells, where
such a representation is exact, but also within the
spline regions up to the planes of intersection of
each atomic sphere with the neighboring spheres,
as if the spline regions had actually zero thick-
ness; the same approximation is used for cal-
culating the matrix elements of the self-con-
sistent correction to the potential. This approxi-
mation, which is exact for spline regions of zero
thickness, is not used for the matrix elements of
the fixed part of the potential, nor for the overlap
matrix elements, in order to obtain a good ac-
curacy even when the spline regions are not thin.

In the intersecting-spheres model integrals like

are not in general extended to 4m, but to the solid
angle A(r(} which is subtended by the atomic cell
i at the radius ~, ; therefore we first calculate the
spherical harmonics expansion of a 8 function
equal to 1 in the atomic cell and zero elsewhere"~4

Consequently

x sins(ds(dC(( . (V)

In Eq. (7) the well-known Gaunt integrals appear.
For crystals the self-consistent charge density

is determined through integration over the Bril-
louin zone; in the case of the intersecting-spheres
model symmetry arguments and the rotation
properties of spherical harmonics" easily allow
us to limit the integration to the irreducible seg-
ment of the Brillouin zone.

III. COMPUTATIONS

In order to provide evidence concerning the ac-
curacy of the intersecting-spheres model for
solids we have performed self-consistent band-
structure calculations for silicon and germanium.
We have done the calculations in a self-consistent
way to obtain informations not only about the con-
vergence properties of the method with respect to
the basis set, but also to verify the accuracy of
the whole model and to establish its practical use-
fulness for computations of physical interest.

For silicon and germanium the direct lattice is
face centered cubic with two atoms per unit cell,
located at the origin and at a(-,', —,', —,'}. The atomic
cells are truncated tetrahedra with four hexagonal
faces toward the nearest neighbors and 12 tri-
angular faces toward the next-nearest neighbors. '-

Both the potential and the charge density can be
expanded in tetrahedral harmonics around each
atomic center. " We have truncated these expan-
sions in spherical harmonics at / =4 after having
verified that on going from E = 3 to l =4 only
changes of at moyt 0.1 eV occurred for the valence
and lower conduction levels. The 8-function ex-
pansion of Eqs. (6}and (7) was consequently trun-
cated at l =8.

For each atomic center we have assumed a basis
set constituted by the atomiclike functions needed
by a minimal basis set plus two s, two P, and two
d extra radial functions (the two lowest virtual
orbitals for each /). In this way the basis set was
constituted by 54 ahd V2 functions for silicon and
germanium, respectively. We have used the radii
of the spheres and the thickness of the spline re-
gions as nonlinear variational parameters to obtain
the lowest possible eigenvalues for the valence and
lower conduction levels at the first cycle of the
iteration process. We have noted that the depen-
dence of these levels on the nonlinear parameters
is not critical for the above-mentioned basis sets,
being typically less than 0.2 eV for a 0.5 a.u.
variation of the radius of the spheres from the
optimal value, and less than 0.3 eV for a 0.4 a.u.
variation of the thickness of the splines from the
optimum thickness.

For what concerns the determination of the
charge density, we have substituted the integration
over the irreducible segment of the Brillouin zone
by a weighted sum over a six point: cubic mesh;
points and weights were chosen as given in Ref. 16,
where it is shown that such a choice provides satis-
factory convergence for the self-consistent eigen-
values. We have separately verified that halving
the mesh size did not introduce significant changes
to the band structure.

We have found satisfactory convergence for the
direct lattice sums needed to evaluate the self-con-



1862 S. ANTOCI AND I, . MIHICH 17

sistent potential when six shells of neighbors were
considered for each atom. This quick convergence
is motivated by the fact that when the potential is
expanded in spherical harmonics around an atomic
center in the diamond lattice the dipole and quad-
rupole terms of the expansion are zero for sym-
metry reasons. " Thus, when performing the re-
expansion of the potential of a given atomic cell
with respect to another atomic center, "beyond
the distance at which the atomic spheres no longer
intersect only octupole and higher terms'are to be
reexpanded and convergence is very fast. Such a
behavior is further enhanced by the very shape of
the atomic cells, which extend farther from the
nuclei in the nonbonding directions. In this way the
tetrahedral distortion of the charge density due to
the covalent bond is to some extent compensated
by the shape of the cell, thus giving a small value
to the octupole potential term.

For what concerns the accuracy of the approxi-
mation to the charge density in the spline regions,
we have verified that the above-)mentioned substitu-
tion of the spline functions with the atomiclike
orbitals leads to errors for the total charge of the
unit cell not larger than 0.02 electronic charges in
the range of spline thicknesses explored in the
computations. The charge densities were conse-
quently renormalized to preserve the neutrality of
the unit cell.

In F.ig. 2 the self-consistent band structure of
silicon along She A and 4 symmetry lines is re-

eV

ported. Slater exchange approximation" and, the
experimental lattice constant a=5.431 A were used.
The variationally determined values for the radius
of the atomic spheres and for the thickness of the
spline regions resulted to be 5.0 and 1.2 a.u. , re-
spectively. In Table I we report the energy posi-
tions of the valence and conduction levels at the
six high-symmetry points F, X, I., W, n(2, 0, 0),
and Z(-'„-'„0) of the irreducible segment of the
Brillouin zone, together with the values obtained
with a self-consistent OPW calculation' using
about 259 plane waves. The I',„level was as-
sumed as our zero since the values reported in
Ref. 16 are given in such a way. The agreement
between the two computations is quite satisfactory
for the valence bands; the average disagreement
between the valence levels at the six points is in
fact 0.17 eV. We believe this to be a remarkable
result, since such an agreement has been obtained
between self-consistent calculations using a com-
pletely different approach. The disagreement con-
cerning the conduction levels probably indicates
that the convergence properties of the finite basis
set adopted by us are significantly better for the
occupied than for the empty levels.

In Fig. 3 we report the self-consistent band
structure of germanium along the A and 4 lines.
Slater exchange" and the experimental lattice

TABLE I. Self-consistent energy eigenvalues for Si
atthehigh-symmetrvpoints I', X, L, W, 6(z, 0, 0), and
Z(~, ~, 0) according to the OPW method. (Ref. 16) and to
the intersecting-spheres model (ISM). The same zone
sampling and exchange approximation were used in the
two calculations. Energies are in eV.

Level OP% ISM Level OP% ISM

0

-10

-15

FIG. 2. Self-consistent band structure of Si along the
A and 4 symmetry lines. Energies are in eV. Slater
exchange approximation was used.

I'is
I 2'c
I'2S v

I'iv
X4c
X~c
X4v
Xg„
Xic X4v

L3
Lfc
L3 ~ v

Lgv
L2.v

L3 -L3.„
Lfc L3~v

2.79
2.75
0.0

-11.74
9.79
1.28

-2.72
-7.75

4.00
3.83
1.60

-1.18
-6.75
-9.53

5.01
2.7S

4.07
4.50
0.0

-11.49
11.14
2.11

-2.34
-7.64

4.45
4.75
2.74

-0.82
-6.64
-9.54

5.57
3.56

Sgc

%c
W2c

trav

~2c ~2v
&s

&ic
&sv
b2rv
&~v

&ic-&Sv
Zic
Z4c

Zsc
Z2v

Zgv

Zsv

Z3 -Z2v

10.SO

5.15
4.83

-3.57
-7.61

8.40
5.89
3.62
1.55

-1.78
-3.58

-10.69
3.33
5.54
5.02
2.88

-1.27
-3.45
-5.40
-9.74

4.15

11.75
6.93
6.24

-3.39
-7.49

9.63
7.30
5.13
2.68

-1.59
-3.46

-10.51
4.27
6.59
6.41
3.88

-1.00
-3.23
-5.41
-9.67

4.88
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eY, TABLE II. Self-consistent energy eigenvalues for Ge
at the high-symmetry points I', X, L, W, d f~, 0, 0), and
Z(&, z, 0) according to the OP% method {Ref. 18) and to
the intersecting-spheres model. The same zone sampling
and exchange approximation were used in the two calcu-
lations. Energies are in eV.

0.
Level OP W ISM Level OP% ISM

t2S

-10

I

-1S

FIG. 3. Self-consistent band structure of Ge along
the A and 4 symmetry lines. Energies are in eV.
Slater exchange approximation was used.

I i5c
I'~ c
I 25'v
I iv
X4c
Xic
X4v

Xi„
Xic X4v

Lsc
Lic
Ls ev

Lfv
L~~v
Ls -Ls v

Lic-LS ~ v

3.34
1.20
0

-11.88
10.04
1.97

-2.56
-8.18
4.53
4.60
1.30

-1.16
-6.78
-9.93

5.76
2.46

3.80
1.52
0

-11.97
10.67
1.80

-2.32
-8.39

4.12
4.67
1.23

-0.86
-7.04

-10.21
5.53
2.09

Wic
W2c

W2v

wi„
W2c W2v

b,2.c
&ic
&Sv
b,2.v

&ic-&Sv
~4c
~sc
~~v

~sv

~Sc-~2v

5.60
5.22

-3.18
-8.10

8.40
3.75
2.12

-1.64
-4.16

-10.92
3.76
5.52
3.04

-1.23
-3.12
-5.84

-10.06
4.27

6.30
6.04

-3.31
-8.29

9.35
4.35
2.19

-1.58
-4.35

-11.07
3.77
5.89
3.01

-1.04
—3 +23

-6.14
-10.30

4.05

constant u = 5.65V5 A were used. The variationally
determined values for the radius of the spheres
and for the thickness of the spline regions were
5.5 and 1.2 a.u. respectively. Again a straight-
forward comparison with a self-consistent OP%
calculation" can be made through the energy
values reported in Table II. Also for germanium
the agreement is rather impressive, particularly
for the valence levels, for which the average dis-
agreement is 0.20 eV. %e note that for germanium
the agreement between the conduction levels is
more stringent than for silicon.

The only point of sharp disagreement between
the two calculations concerns the absolute position
of the levels, both for Si and Ge. In Figs. 2 and
3 we report the band structure referred to an en-
ergy scale which assumes zero energy for charges
at infinite separation. In Figs. 3 and 5 of Ref. 18
the OPW results are reported; if these results are
to be referred to the energy scale adopted by us,
we find an overall upward shift of the OP% band
structure with respect to our results of as much
as 9 eV for both Si and Ge. The change in the
constant potential needed to bring our eigenvalues
in agreement with those reported in Ref. 18 does
not affect the kinetic energy, but it would change
the total energy per atom by as much as about 9
and 21 Ry for Si and Ge, respectively. We have
performed preliminary ca1culations of the total
energy and of the kinetic energy of Si and Ge,

since our all-electron treatment allows such a
computation to be done in a straightforward man-
ner, and we find virial ratios which are wrong by
a few parts times 10 ', while with the above-
mentioned shift they are wrong by a few parts
times 10-'. The question may be trivial, but
perhaps it deserves some more attention.

IV. CONCLUSIONS AND PERSPECTIVES

We hope to have provided with the calculations
of the band structure of silicon and germanium a
rather interesting evidence for the capability of
the intersecting-spheres model to deal with
crystalline structures. The convergence proper-
ties of the basis set are satisfactory and can be
summarized as follows: the use of spline re-
gions aUows to obtain good convergence without
requiring the large expansions of the trial func-
tion in spherical harmonics needed by the cellular
method; when compared with a LCAO approach
with Slater orbitals" the intersecting-spheres
model gives slower convergence with respect to
the principal quantum number, since xnore flexi-
bility is needed if the trial functions are not al-
lowed to overlap to a large extent; this slower
convergence is however more than compensated
by the enormous saving obtained by the minimiza-
tion of the number of two center integrals and by
the complete elimination of the three center in-
tegrals.

Since the intersecting-spheres model allows an
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all-electron treatment, it is well suited for the
study of the cohesive energy, lattice constant,
and compressibility of solids; this study is under
way and preliminary results are encouraging al-
though the numerical accuracy of the present com-
puter code is to be improved to deal with the total
energy of medium size atoms like Si and Ge.
Being a L| AQ approach, the intersecting-spheres
model can be applied with no change to one- and

two dimensional structures; we hope to provide
soon evidence for its usefulness in calculating the
electronic structure of polymers.
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