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We report one-electron calculations of the soft-x-ray L, ; absorption and emission of Na, Mg, and Al and
the soft-x-ray K absorption and emission of Li. The absorbing ion is placed at the center of a metal
consisting of a valence band of electrons and of a uniform positive background which has a spherical hole
removed from around the ion. Self-consistent solutions for states with and without a core hole are found
using the density - functional approach. However, we eliminate self-interaction effects from the bound-state
wave equation in order to get more realistic wave functions. This was originally proposed by Cowan but
ignored subsequently. We think it is essential for getting good wave functions. In our solution both the core
electrons bound to the central ion and the valence electrons are allowed to relax into the self-consistent
solution. We find self-consistent potentials, charge densities,and threshold energies for soft-x-ray transitions.
Scattering states in the relaxed potentials are used in spectrum calculations. We report cross sections found
for Li, Na, Mg, and Al and compare them with experimental results. Moreover, we calculate the exponents
a, a, and a; essential to the threshold theory of Mahan and Noziéres and de Dominicis (MND). For Lij,
Mg, and Al we get agreement with experimental results for a and a, We get no agreement for Na but we
attribute this not to a failure in MND theory but to an inadequacy in our model when used to find low-
energy zero-angular-momentum valence-electron wave functions.
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I. INTRODUCTION

The density-functional formalism was introduced
by Hohenberg and Kohn'~® nearly 15 years ago to
investigate systems with an inhomogeneous elec-
tron density. Combined with the I{ohn-Sham local-
density approximation for the exchange energy,®*
it provides a simple straightforward method for
finding a self-consistent single-particle potential
which includes electron-electron interactions.
With this formalism there is no need to use pseu-
dopotentials or make other approximations to the
potential.

The density-functional formalism has been used
with much success to study the ground-state pro-
perties of electron systems. When applied to
atoms®~!! the density-functional method works
very well, especially considering that the charge
density varies rapidly in an atom. Threshold en-
ergies for photoionization can be obtained that
agree with Hartree-Fock results. Spectra for
photoionization can also be obtained. When ap-
plied to metals the density-functional method again
works well. When combined with an augmented-
plane-wave (APW) calculation'?"!® good results for
band structure are obtained. Tong'” used the form-
alism in a modified cellular method to calculate com-
pressibility. Dagens!® calculated the displaced
charged density around a completely screened ionic
potential using the auxilliary neutral-atom method.
Almbladh and others have studied the nonlinear ef-
fects of the screening charge induced around a point-
charge impurity.!®*?® The density-functional me-
thod has also been used to study the electron

structure near metal surfaces.?’ 212 Surface po-
tentials, charge densities in the region near the
surface, and surface energies are calculated.

The density-functional method is rigorously ap-
plicable only to the study of the ground-state pro-
perties of systems with a nondegenerate ground
state. However, under the assumption that the
core hole created during a soft-x-ray transition
can be treated as a weak external potential, Alm-
bladh and von Barth?* have treated the excited
state created in x-ray absorption using the densi-
ty-functional method. Their calculations for ab-
sorption thresholds agree with experiment. Flynn
and Lipari®® used a modified form of the density-
functional method and also obtained good agree-
ment with experiment for their threshold-energy
calculations.

Soft-x-ray absorption and emission in metals in-
volve transitions between the ground state of the
metal and an excited state with one-core hole.
Most calculations of soft-x-ray emission and ab-
sorption®®~2® either use some approximation for
the potential to describe the scattering of the ejec-
ted electron or assume that the ejected electron
moves in the potential of the ground state. Ritsko,
Schnatterly, and Gibbons?® include final-state in-
teractions by using plane waves orthogonalized to
the final-core states. They include band-structure
effects by including backscattering from near
neighbors, but they use approximate core-wave
functions. Gupta and Freeman®” also include band-
structure effects in their calculation of Mg spec-
tra by making a careful APW calculation to find
matrix elements and a detailed density of states.
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Smrcka?® makes a similar calculation for Al. In
each case electron wave functions are calculated
using methods appropriate to study the ground
state. This is not necessarily an adequate approx-
imation. The valence electrons screen the core
hole created during the absorption in a time w;?!
where w, is the plasmon frequency. In metals
w,!is about 107® sec. An electron with energy
near the Fermi energy (velocity about 2 X108
cm/sec) does not travel away from the range of
the core potential in that time. For that reason
one should use the excited-state wave functions in
calculating absorption spectra. In calculating
emission spectra one must use the electron wave
functions when the core hole is present because
this is the initial state. The formalism commonly
used to study ground-state properties in metals—
APW, orthogonalized-plane-wave (OPW), the cel-
lular method, etc.—all use the translation symmetry
of the metallic ground state. They are not so
useful for studying a metal with a core hole
because the core hole destroys the translation
symmetry. However the density-functional meth-
od has proved successful in studies of both the
ground state and the core-hole state and is

thus better suited for use in calculations of absorp
tion and emission spectra.

In this paper we use the density-functional ap-
proach to study the ground-state properties of
simple metals and the properties of simple metals
with a core hole. We calculate soft x-ray spectra
for both emission and absorption. By comparing
our single-particle calculations with the extensive
experimental observations?*~* we find out where
many-body and band-structure effects are needed
to explain the structure of soft-x-ray spectra.
Moreover, since we calculate electron wave func-
tions for the metal with and without a core hole,
we determine the phase shifts for eleetrons scat-
tering off the core hole. This allows us to test the
theoretical predictions of Mahan,** Nozidres and
de Dominicis,*® and Doniach and Sunjié¢®*® for ex-
ponents o, a, and a,, that describe the anoma-
lous power-law behavior of spectra near thres-
hold, by comparing our calculations for the ex-
ponents with values extracted from soft-x-ray ex-
periments®”' 22 and XPS measurements.?®* %

To use the density-functional method we must
have a model for a metal. In Sec. II we describe
our model. We treat the other ions as a uniform
positive background. Around the central ion,
which undergoes the transition, we remove a
a sphere of charge from the positive background.
Thus we have no background charge in the sphere
around the central ion. We find wave functions
for all the valence electrons and the electrons
bound to the central ion. We use the density-func-

tional formalism to obtain single-particle equa-
tions describing the electrons. We use the Kohn-
Sham local-density approximation for the exchange
energy and the Wigner form for the correlation
energy.*' However, we make one significant
change in our application of the density-functional
formalism. The Coulomb potential used in the
density-functional formalism has self-interaction
effects that should be cancelled by the exchange
potential but are not when it is approximated by
the Kohn-Sham local-density exchange. For val-
ence electrons this is a negligible effect, but for
bound electrons self-interaction makes a major
contribution because the bound electron is local-
ized and makes a large contribution to the charge
distribution near the core. To eliminate this ef-
fect we subtract the self-interaction from the po-
tential we use in the single-particle equation for
bound states. Although this correction was origi-
nally proposed by Cowan?? for atoms it has been
ignored in applications of the density-functional
method.

Almbladh and von Barth?®* recently presented a
model similar to ours. They include a background
that is more realistic by taking it as a certain
spherical average of the real background. They
use the density-functional approach but they do not
make our self-interaction correction. They pre-
dict @, o, and a, as well as threshold energies.
They get good agreement for the energies but
their values for a and a, do not always agree with
experiment. They are not completely optimistic
about the ability of the theory of Mahan, Noziéres,
and de Dominicis (MND) to predict exponents.
Their poor value ofa ,for Alis responsible for much
of their pessimism.

Flynn and Lipari®® also studied the threshold
properties of simple metals but they predicted only
threshold energies. They used a modified self-
consistent-field method and pseudopotentials to
describe valence-electron interactions with the
background. They were able to calculate thres-
hold energies in agreement with experiment but
they did not find valence-electron wave functions
and so were unable to make any calculations of @,
a,, o,Oor spectra,

In Sec. III we present our results for free ions.
We predict photoionization thresholds of Ne, Na*,
Mg?, and APP* with only 1% error. We also cal-
culate photoionization cross sections for Ne. When
we include self-interaction effects we get very
poor results. When we exclude these effects we
get much better agreement with the measurements
of Samson?® and Hartree-Fock theories.** This
gives us confidence that we can treat core effects
adequately by our method at least for ten electron
ions.
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In Sec. IV we present our results for metallic Li,
Na, Mg, and AL We predict threshold energies for
the soft-x-ray transitions of Li, Mg, and Al with
only 2%-5% error. We find this to be very satis-
factory. We find the energies as the difference be-
tween the energies of the core-hole state and the
ground state using the energy functional of the
density-functional method and make no attempt to
include additional corrections. Our result for Na
is not as good because our solution for the Na-2p
core-hole state shows bound-state resonances in
the valence band not observed in experiments. We
also present potentials and phase shifts for metal
states with and without a core hole. The potentials
are short range and screened as one would expect.
In addition, we present charge densities of core
and valence electrons. We find very little per-
tubation of the valence band when there is no core
hole. With a core hole there is a screening charge
of electrons just outside the core.

We also present the single-particle cross sec-
tions both in the normal approximation and the
sudden approximation. In the hormal approxi-
mation the wave function of the outgoing valence
electron is calculated with a potential that has the
system relaxed in its final state with a core hole.
In the sudden approximation the final-state wave
function is computed using the initial potential We
find similar results in absorption for both approxi-
mations. When we compare our calculations to
experimental spectra®® for Mg and Al we get good
qualitative agreement but we cannot reproduce the
structure. We also find that the ratio o of s-wave
cross section to d-wave cross section at threshold
is greater than one for Na and Mg and about one
for AL This is a change from the free-ion result
that 0 is small and confirms the experimental fact
that s-wave effects are dominant near threshold
in many metals. We also present emission re-
sults for Li, Na, Mg, and Al. However we get
poor agreement with experiment®® for Na, Mg,
and Al. For these metals our results predict low-
energy peaks indicative of s-wave resonances.
However these are not observed experimentally.

We make calculations of @, a,, and «, for each
metal. We get good agreement with experiments
for many of the exponents. This gives us confi-
dence in the power of MND theory. However the
indications of a bound state seen in the emission
cross section for Na carry over to the Na phase
shifts. As a result we get values for the expo-
nents that differ considerably from experiment.
This failure is an artifact of our model and cannot
be attributed to MND theory.

II. THE MODEL

We want to describe the situation in which the

disturbance in a metal due to a particular ion,

either an impurity or a host ion undergoing an
optical transition, does not extend too far from
the ion itself. The valence electrons are able to
screen the disturbance within several lattice
spacings and outside this region the potential is
weak. Except for Friedel oscillations the metal
remains unperturbed by the disturbance and is
nearly uniform everywhere. The simplest model
for a metal is the jellium model with a valence
band of electrons and a uniform positive back-
ground made from the nuclear charges and the
core electrons bound to them. The charge density
of the background is fixed to neutralize the charge
of the valence electrons. This is the model we
consider.

The ion under consideration is placed at the cen-
ter of the metal. Because we start from ionic
ground states that are closed shells and thus
spherically symmetric(i.e., Li*, Na*, Mg?* or
Al®*)the disturbance in the jellium environment is
spherically symmetric. When a core hole is crea-
ted this symmetry is broken. However we assume
this is a small effect. Thus we always consider a
system in which charge densities have been spher-
ically averaged, as in the restricted Hartree-
Fock method.

In a realistic model of the metallic environment
of the ion under consideration, the positive back-
ground should not extend to the ion’s nucleus. For
that reason we delete a sphere of charge from the
positive background that surrounds the ion. The
radius of the sphere 7, is just the Wigner-Seitz
radius—the radius corresponding to the volume of
one atom in the metal (see Table II). We treat the
positive background with the hole and the nucleus
of charge Z at the center of the hole as a fixed ex-
ternal potential. Within this potential we allow the
core electrons bound to the central nucleus and all
the valence electrons to interact, relax, and
screen any disturbance.

Because we consider a uniform background and
take our system to be spherically symmetric we
lose all band-structure effects in our calculation
and the density of states is taken to be spherically
symmetric. Moreover, because the perturbing
potential decays quickly, the valence-electron
density is uniform almost everywhere and the
Fermi energy is left unchanged. Thus the density
of states for the valence electrons is the same as
that for free electrons in the jellium model.

With this model we study the soft-x-ray absorp-
tion and emission. We first find a self-consistent
solution with wave functions for the core and val-
ence electrons when there is no core hole. For
Na, Mg, and Al we then find a self-consistent sol-
ution for the state with one 2p core electron ex-
cited to a state at the Fermi level. For Li we find
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a self-consistent solution for the 1s core hole
state. The valence states used in calculating
transition matrix elements are obtained using the
potential due to electrons fully relaxed around the
core hole. In doing this we assume that core and
valence electrons relax quickly enough so that the
outgoing electron moves in this fully relaxed po-
tential. For emission calculations this is the cor-
rect procedure because the initial state is this ful-
ly relaxed and screened core-hole state. For ab-
sorption we also calculate transition-matrix ele-
ments in the sudden approximation in which the
outgoing electron wave function is calculated with
the potential of the state without a core hole. We
can then compare these two approximations for
finding the transition-matrix elements.

To calculate these matrix elements we need the
valence and bound-state wave functions. We find
these by using the single-particle equation ob-
tained by the density-functional method, '3

( v zfda'”('.’ £$'|)+vex(p(f»

VT ) B =€ 8 ), (1)

where Z is the nuclear charge, n(f) is the charge
density of the positive background,

3

N 3—:; if 7>7,
n(T) =
0 if 7 <swyg,
and
p®= 2 4 @+ 2o @I
states statese€ <€F

All energies are measured in rydbergs and lengths
are measured in Bohr radii. We approximate the
exchange potential by the Kohn-Sham local-density
exchange potential

Vex(p(E)) = =2[(3/m)p(F)]V2 .

We use Wigner’s results for the correlation poten-
tial

Vco,(p(r))- [ew,(p(’ Ne®),

where

—0.88
0D = oy 7am T

We use this as a simple approximation for what
should be a small effect.

We actually use Eq. (1) only for the valence-elec-
tron wave functions. To find the bound-electron
wave functions we use another, more realistic
wave equation. When the Kohn-Sham exchange en-

ergy is used to approximate the Hartree-Fock ex-
change energy,* the Coulomb self-energy for the
electrons is included in the exchange term. To
cancel that addition, the Coulomb self-energy is
also included in the direct electrostatic energy.
When the exchange energy is approximated by the
Kohn-Sham local-density exchange potential these
self-interaction effects no longer cancel. For a
free atom the Coulomb plus exchange potential
vanishes at large distances from the atom. For a
bound electron this is a poor approximation to the
-2/ potential that a bound electron moves in far
from the nucleus. When we calculate valence
states in a metal we do not worry about the inclu-
sion of the self-interaction because it has an effect
of order 1/N (N~10%2) on the potential and is nelgi-
ble. However, the effect of the direct self-inter-
action of a bound electron on the potential is at
least 1/Z near the nucleus where the bound-elec-
tron wave function is sensitive to the form of the
potential. The bound-electron self-interaction
should not be kept in the potential used for cal-
culating the wave function of that electron. Simi-
larly we should correct the exchange term but,
because it varies as [p(¥)]"/2, any change in p(F)
will not make a large change in the exchange term.
Cowan*? also suggested this self-interaction cor-
rection in his study of atoms. In addition, he
parameterized the exchange potential by requiring
that the virial theorem be satisfied, that the en-
ergy eigenvalues be the binding energies and that
there be no exchange energy for orbitals occupied
by one or two electrons. This procedure is not
readily applicable to our model because we must
include core-valence electron interactions and
valence-valence electron interactions as well as
core-core electron interactions. Rather than make
an ad hoc change in the exchange term we leave it

as it is. For bound states we use the wave equa-

tion

<_V2___2 fds ’ n(?') P(-. )+|¢i( )|2
|T-7

+ux(p6»+vm(pcf») @ =@ . @)

With this modification the bound states are calcu-
lated using a more realistic potential. The charge
density determined by these bound states will be
more realistic as will the Coulomb potential cal-
culated using the core charge density. Since the
valence electrons interact with the core electrons,
this improvement will affect the valence wave
functions as well.

We obtained self-consistent solutions using this
formalism by employing a modified Herman-Skill-
man program.® We calculate only valence wave
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functions for s, p, d, and f states. Higher angu-
lar-momentum states are only slightly perturbed
and we use free-electron wave functions for these
states. At large distances from the ion we cannot
find the electron density accurately by numerical
means. By calculating phase shifts for valence
states we determine the correct asymptotic ex-
pression for p(f) and we include its effects in the
Coulomb potential. In this manner we get the
Friedel oscillations that one would expect around
an impurity.

We first used the iterative procedure of Herman
and Skillman to get self-consistent potentials and
wave functions. In their procedure one first
chooses a starting potential. This is used to gen-
erate new wave functions and a new potential. A
suitable average of the two potentials is taken as
the next starting potential. This iteration pro-
cedure is continued until the starting potential and
the potential it generates are sufficiently self-
consistent. For free ions this procedure is very
successful and self-consistency is obtained quick-
ly. For our model this procedure is not enough.

If the starting potential generates a charge density
that does not give a neutral system, then insta-
bilities are introduced into the iteration procedure
that are sufficient to prevent getting adequate self-
consistency. Following a suggestion of Zaremba
et al.?® we modified our convergence procedure.
After each iteration step we form a new potential
with a value at each point which is between the
values at that point of the starting and final po-
tentials of the previous step. We then vary this
new potential between the limits of the two pre-
vious potentials until we find one that obeys the
Friedel sum rule. We take this potential to be
our new starting potential. With this addition to
our convergence procedure we are able to get
self-consistent solutions which obey the Friedel
sum rule to five decimal places. In the core re-
gion the difference between starting and final
potentials is typically 0.005 Ry or less. In the
asymptotic region where the potential becomes
totally screened the difference is much less.

The model proposed by Almbladh and von Barth?*
differs from ours in several aspects. They do not
make the self-interaction correction for bound
states that we make. This can have a dramatic ef-

fect on calculated absorption cross sections, as
our calculations for atomic Ne show. Although
this correction primarily affects the bound-state
wave functions, it can, through the charge density
and the potential, affect the valence states. So we
must be extremely careful in constructing the po-
tential.

The model of Almbladh and von Barth also differs
from ours in the choice of exchange and correla-
tion potentials. The effects of both exchange and
correlation are small compared to the Coulomb
potential, The exchange potential is about —0.3-
—0.4 Ry. The correlation energy lowers the ener-
gy by 0.1 Ry. However in the region where the
Coulomb potential decays to zero these other po-
tentials are important. For Al we get similar re-
sults when we use potentials with and without Wig-
ner correlation. It is not clear what is the best
approximation for the exchange and correlation po-
tentials.

We must find the energy of states with and with-
out a core hole to find threshold energies. The
starting point of the density- functional approach
is the assumption that the energy of the system
can be written as a functional of the electron den-
sity. In our model this functional takes the form

56)-, 2, ( - [or@vuma)

occupied
states

2z [y @ =)

[ 1= o) o, 5,

[F-F1
+ [ lealo@ +elp@N ] pE) 7, (@)

where

€ (PEN = =3 [(3/mpE)]/ .

We use the variational principle derived by Hohen-
berg and Kohn to obtain Eq. (1) from Eq. (2). To
find the energy of the system we use Egs. (1) and
(1’) to evaluate the first term in Eq. (2). We find
that

E(p)= b;ﬂ €+ v{?—;w szllpu @)|2d% +22 fdar "Tm+ [n@F) = p®)[n(EF") +pEF)] Py

states states p . &
F
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states

-7/



17 ATOMS IN JELLIUM 1749

where the energy eigenvalue of Eq. (1) for a val-
ence state i, is ¥2. We note that the last term in
Eq. (3) is the correction we must include because
the self-interaction term is excluded in Eq. (1’).
We also note that in our model the jellium has in-
finite extent and thus several terms in Eq. (3) are
infinite. By subtracting from Eq. (3) those energy
contributions that a system with a uniform valence
band would make we get an energy expression that
gives a finite result.

III. FREE-ION RESULTS

We first checked our method by calculating
photoionization cross sections and threshold ener-
gies for the free-ion transitions Ne—~Ne*, Na*

- Na?*, Mg?* -Mg* and A¥*—AI**. These are all
transitions from ten electron closed-shell states
to nine electron 2p-hole states. Threshold ener-
gies have been accurately computed before, be-
ginning with Tong and Sham.® We have similar
success. Using Kohn-Sham exchange we get ioni-
zation energies that are about 0.09 Ry too low—an
error of 2% -5% (see Table I). Correlation ef-
fects®® cause this systematic error. When we in-
clude Wigner correlation (see Table I) the error
is only 0.01 Ry or less than 1%. We also calcula-
ted threshold energies using Slater exchange but
the values computed were all too big. Slater ex-
change makes the potential too attractive and the
extra electron is too tightly bound. However, the
threshold energies are much less sensitive to
whether or not we make the self-interaction cor-
rection to the bound-electron wave equations. We
also calculated the threshold energy for Li*- Li**.
For Li the agreement with experiment is poor be-
cause we include exchange effects that do not ex-
ist for one and two electron ions. Although we can-
not use our model for free Li ions, we can use it
for metallic Li because there are exchange inter-
actions between electrons in the valence band.

We calculated the cross section for each photo-
ionization transition mentioned above. In each

TABLE 1. Calculated and experimental threshold en-
ergies for photoionization from the indicated ion ground
state. E, includes exchange effects. E,, ., includes
correlation as well as exchange effects. The experimen-
tal values E,, are taken from the work of Moore (Ref.
45).

(Rydbergs) Ne Na* Mg AR+

Eo 1.50 3.39 5.80 8.73
Eoxcor 1.59 3.48 5.89 8.81
Eom 1.58 3.48 5.89 8.82
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FIG. 1. Experimental and theoretical calculations for
the photoionization cross section of free Ne: (a) the
experimental measurements of Samson (Ref. 43), (b)
the 2p —d cross section when self-interaction contri-
butions to the potential are included, (c) the 2p —s
cross section when self-interaction contributions to the
potential are included, (d) the 2p —d cross section when
there is no bound-electron self-interaction, and (e) the
2p —s cross section when there is no self-interaction.

case we computed the dipole approximation to the
transition-matrix element using the length form
for the matrix element. In the one-electron ap-
proximation the cross section for a transition with
the outgoing electron changing its angular moment-
um from [ to I+1 is

O1o141=Cray EV/R) [ Un, 1ay |7 [9m)]|?0(ey + € —TV)

(4)

where ¢, is the threshold energy, Zv the photon en-
ergy, €, the energy of the ejected electron, £ the
overlap of the remaining electrons (about 0.95 for
free ions but taken to be unity for metals), ¢, is a
bound-state wave function of angular momentum,

I, %p, 1., is the continuum state with momentum %
and angular momentum /+1, and

lph.ul—,?..—’-s%(kr+6, —121> in metals,

zp,,.,“—;_.—.;»%(kr—lzl +%l.n(2kr)+n, +6,) ,
for free ions, where n; =arg{I'(I+1 - Z/k)] and §,
is the phase shift.

The results for Ne, Mg?*, and A** are shown in
Figs. 1, 4, and 5. In Fig. 1 we compare the ex-
perimental results of Samson* for the Ne—-Ne*
cross section with our results. The 2p—d and
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2p —s transitions with and without self-interaction
are shown. Near threshold dramatic improvement
occurs when self-interaction effects are excluded.
The 2p—d plus 2p—~s cross section excluding self-
interaction agrees well with the experimental ob-
servations. The discrepancy between the two
methods is easy to understand. When self-inter-
action is included a core electron is repelled not
only by the other core electrons but by its own
charge distribution as well. Thus a core electron
is less tightly bound when self-interaction is in-
cluded. The overlap between the core wave func-
tion and the continuum wave function is then suf-
ficient to give a large cross section even for low-
energy d-wave electrons which are kept away from
the ion by the centrifugal barrier. When the direct
self-interaction is taken out, the electron is more
tightly bound, the overlap with low-energy d-wave
electrons decreases and the cross section is sup-
pressed. The core wave functions differ by only
5% between the two approximations but this still
leads to a 50% decrease in the cross section near
threshold.

We find several interesting features when we
consider the photoionization cross sections for
Ne-~Ne*, Mg2?*-Mg?®, and A" - Al**, The
2p —s transition is strongest for Ne, weaker for
Mg?*, and weakest for Al®**, The potential for Ne
is the least attractive because Ne has the smallest
nuclear charge. Thus the 2p electron in Ne is the
least bound. This is reflected in the overlap in-
tegrals. They are largest for Ne and Ne has the
largest 2p—s cross section. In general the 2p-d
transitions also follow this pattern and for the
same reason. However, near threshold the Na*
cross section actually flattens out and the Ne cross
section begins to decrease. Only the Mg?2* and
AP cross sections continue to rise towards thres-
hold. The overlap integral is still largest for Ne
but, for the 2p—d transition, the frequency factor
v appearing in Eq. (4) controls the form of the
curve near threshold. Near threshold, v for Ne
is half the v for Na* while the overlap integrals
are closer in magnitude. By using the relation®

[H,r]:—i}ig:z=—iﬁw’/,

the length-matrix element is transformed to a
velocity-matrix element

|<¢k,lt1 |?l¢nl>l"(1/l’)l<¢k,li1|6'¢nl>|'

Then

1
Ol”li!~5 (‘pk, lillprl¢nl>,2 ’

where p, is the radial momentum. Ne has the

least attractive potential so the centrifugal poten-
tial has the largest effect. The radial momentum
of the low-energy continuum electrons should be
small. This is reflected in the small cross sec-
tion for Ne. In Al the potential is more attractive
and the radial momentum matrix element is large
enough that the cross section does not decrease
near threshold. Finally, the 2p—d transitions are
stronger than the 2p —s transitions. There are two
reasons for this. First there are six allowed
2p—s transitions. Furthermore the s states have
nodes in the region where the bound state is finite,
but low-energy d-wave states have no nodes in
this region.

IV. METAL RESULTS

We present results for Li, Na, Mg, and AL We
obtain good self-consistent solutions for both the
states with and without a core hole for each metal.
In Table II we give the parameters used for each
metal. Since we assume that the density of states
is that of a free-electron model we use free-elec-
tron values for the Fermi momentum %, and the
Fermi kinetic energy ep.

InTable III we present calculations for the K soft-
x-ray threshold energy in Li and the L, ; thres-
hold energy in Na, Mg, and Al. Our results for
Li, Mg, and Al differ from experiments only by
2%-5%. This is quite satisfactory because our re-
sults are just the difference in energies of the
states with and without a core hole. We make no
attempt to include any additional corrections. We
note that our result for Li is satisfactory even
though we cannot predict a threshold energy for
Li*. Our model is not applicable to free Li ions
because they have no exchange interactions. How-
ever, for metallic Li we get good results because
there are exchange interactions between electrons
in the valence band. Our result for Na is not as
good as those for the other metals. Our solution
for the 2p core-hole state of Na shows anomalous
behavior that our other solutions do not show.
There are resonances in the low kinetic-energy
s-wave valence states. This affects the phase
shifts and the energy calculation.

TABLE II. The Fermi momentum kg, the Fermi en-
ergy €p, and the Wigner-Seitz radius ryg.

kplay™) er (Ry) rws(ag)
Li 0.593 0.352 3.236
Na 0.487 0.237 3.941
Mg 0.720 0.518 3.358
Al 0.926 0.857 2.989
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TABLE III. Experimental and theoretical values for
threshold energies: (a) experimental results (Ref. 47),
(b) calculations of Flynn and Lipari (Ref. 25), (c) calcu-
lations of Almbladh and von Barth (Ref. 24), and (d) this
work.

Rydbergs a b c d
Li 4.02 4.08 4.08 4.09
Na 2.26 2.29 2.24 2.79
Mg 3.65 3.66 o 3.80
Al 5.36 5.35 5.35 5.29

In Fig. 2 we show the self-consistent potentials
acting upon a valence electron in Al with and with-
out a core hole. The results for the other metals
are similar. In each case the potential is short
range and screened. The metallic potentials are
almost totally screened after one 7y and are
totally screened after two 7ys. The difference be-
tween potentials with and without a core hole is
small showing that the 2p core hole is screened
quickly and makes a small perturbation on the
metal. We also see a very small bump in the po-
tentials. This is typical of the potentials. The
valence electrons screen the central potential too
much. However the long-range Friedel oscilla-
tions in the charge density compensate this and
the potential returns quickly to the asymptotic val-
ue Ve (0o) + Veor (0,), Where p, is the density of the
unperturbed valence band.

We plot in Fig. 3 the excess radial-charge den-
sity for valence electrons [4772Ap,(r), where
Ap, (7)=p,(r)—p, and p, (r) is the valence-charge
density] and the radial-charge density for core

1
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o
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POTENTIAL (RYDBERGS)

V(r) 2 T
Al kf = 0.857 Ryd.

1.0 30 50 7.0 9.0
r(ae)

FIG. 2. Potentials seen by a continuum electron
scattering off Al: (a) due to a free Al 3* ion, (b) due to
a free Al** ion, (c) due to metallic Al without a core
hole, (d) due to metallic Al with a 2p core hole.
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FIG. 3. Radial charge density of the core electrons
and the excess valence electrons in metallic Al: (a)
without a core hole, (b) with a 2p core hole. Note the
change in scale for the core and valence-electron den-
sities. 7 yg is 2.99a,.

electrons. The valence electrons around a core
hole bunch up just outside the core electrons. The
screening charge in the core-hole state is pulled
toward the center due to its attraction to the core
hole and it has a large peak to screen the core
hole. The charge density decays quickly to the
Friedel oscillations. These dominate the excess
charge after two 7,5. Near the core the valence-
electron density has an oscillatory behavior. This
results from the extra nodes that appear in the
valence wave functions due to the scattering po-
tential,

In Table IV we present the position and magnitude
of the main peak of the screening charge in the
core hole state. As expected, the screening
charge in Al is pulled closest to the central ion
and the peak is largest in Al. This happens be-
cause the Al* ion has the most charge to be
screened and because Al is the densest of the four
metals. We note that the screening charge in Li
is pulled closer than that of Na even though in
both cases the same charge must be screened.

TABLE IV. Position and magnitude of the main peak
in the radial-charge density for the screening charge in
the core-hole state.

Li Na Mg Al

Position (a,) 235 310 230 1.95
Magnitude (a,™) 0.55 0.36 0.68 1.02
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TABLE V. Phase shifts and Friedel sums for both the ground state and core-hole state. §,
is the phase shift at zero wave vector. AJ,; is the difference between phase shifts at the Fermi
level and at zero wave vector. FS is the Friedel sum.

8 A8, 8 A8, 8, As, FS

Li ground state T —0.3367 0.0  0.1411 0.0  —0.0118  0.000 000
Li 1s core hole T 0.2745 0.0  0.5114 0.0  —0.0363  0.999993
Na ground state 27 —0.1301 0.0234 0.0 0.0134  0.000000
Na 2p corehole 31  -2.2646 0.7069 0.0 0.1971  1.000000
Mg ground state ~ 2r  —0.1335 0.0559 0.0 0.0047  0.000 006
Mg 2p core hole 2 0.3435 7 0.3965 0.0 0.0251  1.000000
Al ground state 2r  —0.1327 7 0.1276 0.0  —0.0073  —0.000005
Al 2p core hole 2r 0.2265 7 0.4742 0.0 0.0260  1.000000

The Li ion has only 1s electrons bound to it.
The Na ion has 1s, 2s, and 2p electrons bound
to it. These extra electrons around a Na ion
prevent the valence electrons from getting as
close to the center as those in Li.

In Table V we present phase shifts for the val-
ence states at zeré wave vector for both the core-
hole state and the ground state. The phase shifts
at zero wave vector are either zero or a multiple
of m. For each multiple of 7 the wave function has
one more node than the same wave function for a
free electron. Except for the s-wave phase shift
in the core-hole state of Na, the zero wave vector
phase shifts of Na, Mg, and Al show the same
characteristics. The s-wave phase shifts are 27,
the p-wave phase shifts are n, and all others are
zero. The fact that 5, and 6, are not zero is in-
dicative of the bound-state character of the s and
p waves. The s waves show 3s bound-state char-
acteristics, the p waves have 3p characteristics.
This shows up in the emission cross sections as
we will discuss. For d waves and higher angular
momenta we have no resonant behavior because
the centripetal potential keeps the electrons away
from the core. The phase shifts for Li show the
same trend but only the s-wave shift shows reso-
nant characteristics.

We also show in Table V the change in phase
shift in going from the zero wave vector state to
the Fermi level. The s wave in the ground state is
pushed out slightly and the p wave is pulled in
slightly. Using the Friedel sum rule*®

Ap,=(2/m)2 (21 +1)ab;,

we find the amount of excess charge in the valence
band. For the ground states Ap, is zero. In the
ground state the s band loses a small amount of
charge and the p band gets a compensating amount
of charge. The d and higher bands are perturbed
only slightly. In the core hole states the change in
both the s- and p-wave phase shifts is positive.

Both bands gain an excess of charge. This is the
charge that screens the core hole. Again the per-
turbation of the d band is small and exists primari-
ly to insure exact-charge neutrality. The only
strange behavior is seen in the phase shifts of the
Na core-hole state. Because there is a resonance
in the s-wave states the s band actually loses
charge. To screen this loss and the core hole the
perturbations in the p and d bands are much lar-
ger. This is another indication of how the reso-
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FIG. 4. 2p—s and 2p —d absorption cross section
for Mg: (a) 2p —d free Mg?* ion absorption, (b) 2p
—d metallic Mg absorption in normal approximation,
(¢) 2p —d metallic Mg absorption in sudden approxima-
tion, (d) 2p —s free Mg?* ion absorption, () 2p—s
metallic Mg absorption in normal approximation, and
(f) 2p — s metallic Mg absorption in sudden approxima-
tion.
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FIG. 5. 2p—s and 2p —d absorption cross section
for Al: (a) 2p —d free Al®* ion absorption, () 2p
—d metallic Al absorption in normal approximation,
(¢) 2p —d metallic Al absorption in sudden approxima-
tion, (d) 2p —s free Al®* ion absorption, (e) 2p —s
metallic Al absorption in normal approximation, and
(f) 2p —s metallic Al absorption in sudden approxima-
tion.

nant characteristics of the Na core hole s waves
affect that solution.

One of our aims in this study was to calculate
absorption and emission cross sections. Just as
we did for free ions we calculated the single-par-
ticle cross sections in dipole approximation using
the length form [see Eq. (4)]. We plot the 2p~s
and 2p-d absorption transitions for Mg and Al in
Figs. 4 and 5 and the 1s - p absorption for Li in
Fig. 6. Similar results were obtained for Na. We
include cross sections calculated in the sudden
approximation as well as the normal approxima-
tion. Note that the energy scale is in rydbergs.
The same trends occur that were apparent for
free ions. For a more attractive potential (Al
rather than Mg) the 2p~d cross section is lar-
ger near threshold because the radial~-momentum
matrix element is greater. For large energies
the 2p—-d cross section becomes weaker for the
more attractive potential in contradiction tothe above
argument. For large momenta, the valence wave
functions have many nodes inthe region where the
bound-electron wave functionisfinite. The more at-
tractive potential induces more nodes. Thus ortho-
gonalization effects become important enough tode-
creasethe cross section. The 2p - s cross sections

for metals inthenormal and sudden approximation
also follow this trend. The contribution to the
cross section changes drastically near threshold.
In free ions the ratio o of s-wave to d-wave cross
section at threshold is 0.05 for Na*, 0.04 for
Mg?*, and 0.03 for Al®*. The s-wave part is in-
significant. In metals the ratio is 3.6 for Na, 1.6
for Mg, and 0.70 for Al. We get similar results
using the sudden approximation. This is a con-
firmation of experimental observations that al-
though d-wave contributions are more important
for free ions, s-wave contributions can be equally
important in metals. In fact, the x-ray edge di-
vergences in Al, Mg, and Na are thought to be
due to divergences in the s-wave cross section.
From Figs, 4-6 there is no reason to expect
that either the sudden or normal approximation
gives a better result for the absorption cross sec-
tion. They both have the same form. In Figs.
T and 8 we compare experimental results obtained
from Deutsches Elektronen-Synchrotron (DESY)
for x-ray absorption in Al and Mg (Ref. 33)
with our results for both approximations. None
of the calculated curves can produce the spec-
ific structure in the experimantal curves—es-
pecially not the threshold divergences—but both
agree qualitatively with the experimental obser-
vations. However Ritsko et al.?® find that includ-
ing backscattering as a correction to the one-elec-
tron results reproduces much of the structure
away from threshold. The normal approximation
gives better results near threshold. The sudden
approximation is more accurate far from thres-
hold. Low-energy outgoing electrons are slow
enough that they stay near the core long enough
to experience the relaxed potential. Higher-energy
outgoing electrons spend less time near the core
and are gone before the potential can relax. For
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FIG. 6. 1s—p absorption cross section for metallic
Li: (a) in normal approximation, and (b) in sudden
approximation.
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FIG. 7. Experimental and calculated total cross
sections for metallic Mg: (a) experimental results of
DESY (Ref. 33), (b) the normal approximation, and (c)
the sudden approximation.

that reason the sudden approximation should be

better at high energies and the normal approxi-

mation at low energies. However, the core hole
should be screened in a time w;'. Since w, is
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FIG. 8. Experimental and calculated total cross
sections for metallic Al: (a) experimental results of
DESY (Ref. 33), (b) the normal approximation, and
(c) the sudden approximation.
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FIG. 9. Emission cross sections for Li and Na: (a)
experimental results for Li (Ref. 29) and Na (Ref. 30),
(b) s —2p calculation for Na and p — 1s calculation for
Li, and (c) d—2p calculation for Na. By cross section
we mean-intensity divided by photon-frequency squared
[I(w)/wzl. The results have been scaled arbitrarily.

10*% sec™! an electron with about the Fermi ener-
gy does not travel away from the core in that time.
It is not clear which approximation is more ap-
propriate.

We have also tried to calculate emission cross
sections but with little success. In Figs. 9 and 10
we show calculated emission cross sections and
experimental observations.?® * The experimental
curves are scaled arbitrarily, relative to the cal-
culated curves, so we can only compare the
shapes. The obvious discrepancy is that there is
a peak in the calculated curves for Na, Mg, and
Al for energies near the bottom of the s-wave val-
ence band which are not observed experimentally.
This structure is similar to structure that is seen
if a virtual bound state or resonance exists. As
we mentioned earlier, results for Na indicate that
there might be an s-wave bound state in the pres-
ence of a core hole. Matthew® has made measure-
ments of double ionization satellites in Na that
suggest that some valence states may be localized,
however, experimental emission curves show no
such behavior. We note that the results for Li
show no peak. This confirms our result that the
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FIG. 10. Emission cross sections for Mg and Al:
(a) experimental results for Mg (Ref. 30) and Al (Ref.
30), (b) s—2p calculations, and (c) d—2p calculations.
By cross section, we mean intensity divided by photon-
frequency squared [I[(w)/w?. The results have been
scaled arbitrarily.

p-wave phase shift at zero wave vector is zero
for Li.

We also test the explanation by Mahan,3* Noziéres
and de Dominicis® using many-body theory of the
threshold singularities observed in soft-x-ray
spectra. We test this by using phase shifts ob-
tained from our model to calculate the predicted
threshold exponents. Noziéres and de Dominicis
predict that near threshold, emission and absorp-
tion have the form

%741

Ul-ﬂﬁl(e):CI(e-em)/gl ’

where €, is the threshold energy and £ a cutoff

energy. They predict that

a;=2/mylep) - a,

a=22(21+1)(ﬂ‘-(;€’—)>2 ,

where 7,(€5) is the phase shift for an electron with
angular momentum ! and energy €, moving in the
potential of the core hole. Almbladh and

von Barth®* show that this phase shift is the dif-
ference in phase shifts calculated for scattering
off the potentials for the metal with and without a
core hole. We present our calculations in Table
VI as well as those of Almbladh and von Barth and
experimental results for o, obtained from an em-
pirical fit done by Dow and Sonntag®” and experi-
mental results for o obtained from XPS measure-
ments done recently by Citrin, Wertheim, and
Baer.*' ® We get very poor results for Na be-
cause the core-hole phase shifts are very big due
to the apparent s-wave bound-valence state. How-
ever we get much better results for Li, Mg, and
Al. Our results for o, agree much better with the
experimental fit of Dow than do the results of Alm-
bladh., We also get good agreement with experi=
ment for the @ of Li, Mg, and AL Our results for
the @ of Mg and Al are within the allowed range of
values determined by Citrin. Our value of a for
Li falls just outside the allowed range of values.
Our results for o, do not agree with the results of
Neddermeyer.?® However he attributes a large
error to his result for Al so our disagreement is
not significant.

V. SUMMARY

We have presented a model of a metal in which
an ion is placed at the center of a jellium metal.
A spherical hole in the background is taken out
around the ion and the core and valence electrons
relax into a self-consistent solution. We do this
for states with and without a core hole. We have

TABLE VI. The threshold exponents @, @;, and ¢, for (a) this work, (b) Almbladh and von

Barth, and (c) experimental results.

ot af af ab o} af af af
Li 0.16 0.23 0.08 0.16 0.27 0.05 0.232 0.22° b
Na 0.54 0.10 -0.10 0.20 0.38 -0.05 0.20% 0.27° oo
Mg 0.12 0.19 0.10 e .. oo 0.132 0.23° -0.01°¢
Al 0.10 0.13 0.12 0.13 0.06 0.14 0.12% 0.14° 0.02¢

2From P. H. Citrin, G. K. Wertheim, and Y. Baer (Refs. 39 and 40).

®From the fit of Dow and Sonntag (Ref. 37).

¢ From H. Neddermeyer (Ref. 38).
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tested this model by studying the free ion photo-
ionization of Ne, Na*, Mg®*, and AF*. We get
the best agreement with experiment when we
eliminate bound electron self-interaction effects
from our single-particle potential. When we test
this model by studying metallic Li, Na, Mg, and
Al we get self-consistent solutions that obey the
Friedel sum rule to five decimal places. We pre-
dict threshold energies and power-law exponents
for each metal. We get very satisfactory results
for every metal but Na. This failure for Na is
caused by the anomalous behavior of the 2p core-
hole solution for Na. We also calculate absorption
and emission cross sections for each metal. The
absorption cross sections for Mg and Al agree
qualitatively with measured cross sections—but
without the band-structure effects and the many-
body enhancement. Our emission cross sections
show low-energy peaks indicative of the resonance
behavior we have seen in our solution for Na.
Recently Flynn®® has made measurements on the
optical absorption of halides in alkalis. Their re-
sults seem to be incompatible with MND theory.
They find large negative values for a,. It would
be interesting to test this with our model. Not only
can we study the impurity problem with our model,
but we can extend it to study deep-core-hole
states. Feibelman and McGuire®! made a simple

1-OPW calculation of Na KLV Auger line shapes
to see if matrix-element effects would explain the
“mystery” peaks measured by Barrie and Street.%?
Our model would be an ideal starting point from
which to obtain realistic wave functions needed to
study these matrix-element effects.

Note added in proof. Our calculations show a
weak bound state for Na?* in sodium metal. If such
a state exists, then according to the theory of
M. Combescot and P. Noziéres, J. Phys. (Paris)
32, 913 (1971), the edge spectra should be calcul-
ated with the bound state occupied. We did not do
this, which could explain the poor results. In fact,
our calculations would describe the secondary
threshold they predict. However, it is more like-
ly that this bound state is an artifact of the model.
The use of a more realistic potential with periodic
centers of attraction should delocalize this weak-
ly bound state. Recently G. Wertheim and P. Cit-
rin, “Fermi Surface Excitations in X-Ray Photo-
emission Lineshapes from Metals” in Photoemission
in Solids (unpublished), reanalyzed the x-ray edge
data for Al. Our value for a, for Al is consistent
with their new experimental value of a,=0.095.

ACKNOWLEDGMENT

This research was supported by the NSF.

1p. Hohenberg and W. Kohn, Phys. Rev. 136, B864
(1964). —

®N. D, Lang, Solid State Phys. 28, 225 (1973).

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

4H. Bethe and R. Jackiw, Intermediate Qu Quantum Mech-
anics (Benjamin, Reading, Mass., 1968).

SF. Herman and S. Skillman, Atomic Structure Calcula-
tions (Prentice~-Hall, Englewood Cliffs, N.J., 1962).

SB. Y. Tong and L. J. Sham, Phys. Rev. 144, 1 (1966).

"R. D. Cowan, A. Larson, D. Liberman, J. B. Mann;
and J. Waber, Phys. Rev. 144, 5 (1966).

®1. Lindgren, Phys. Lett. 19, 382 (1965).

9s. T. Manson and J. W. Cooper, Phys. Rev. 165, 126
(1968).

Vg, Combet Farnoux and M. Lamoureux, J. Phys. B 9,
897 (1976). -

1E, J. McGuire, Phys. Rev. 175, 20 (1968).

!23. D. W. Connolly, Phys. Rev. 159, 416 (1967).

13p. De Cicco, Phys. Rev. 153, 931 (1967).

“W. E. Rudge, Phys. Rev. 181, 1024 (1969).

15M, Ross and K. W. Johnson, Phys. Rev. B2, 4709
(1970).

16p, M. Marcus, J. F, Janak, and A. R, Williams,
Computational Methods in Band Theory (Plenum,
New York, 1971).

‘"B, Y. Tong, Phys. Rev. B 6, 1189 (1972).

181, Dagens, J. Phys. C 5, 2333 (1972).

¢, 0. Almbladh, U. von Barth, Z. D. Popovic, and
M. J. Stott, Phys. Rev. B 14, 2250 (1976).

g, Zaremba, L. M. Sander, and H. B. Shore, and J. H.
Rose (unpublished).

N. D. Lang and W. Kohn, Phys. Rev. B 1, 4555 (1970).

2N, D. Lang and W. Kohn, Phys. Rev. B 3, 1215 (1971).

K, H.Lau and W. Kohn, J. Phys. Chem. Solids 37, 99
(1976).

%c, 0. Almbladh and U. von Barth, Phys. Rev. B 13,
3307 (1976). -

%c, P. Flym and N. O. Lopari, Phys. Rev. B 7, 2215
(1973). -

%83, J. Ritsko, S, E. Schnatterly, and P. C. Gibbons,
Phys. Rev. Lett. 32, 671 (1974).

2'R. P. Gupta and A. J. Freeman, Phys. Rev. Lett. 36,
1194 (1976). -

L. Smrcka, Czech. J. Phys. B 21, 683 (1971).

®p, J. Fabian, Soft X-Ray Band Structure (Aca-
demic, New York, 1968).

NElectronic Density of States, edited by L. H. Bennett,
Natl. Bur. Stand., Spec. Publ. No. 323 (U.S. GPO,
Washington, D. C., 1971).

3R, Haensel, G, Keitel, B, Sonntag, C. Kunz, and
P. Schreiber, Phys. Status Solidi A 2, 85 (1970).

32R. Haensel, G. Keitel, P. Schreiber, B, Sonntag,
and C. Kunz, Phys. Rev. Lett. 23, 528 (1969).

3H, J. Hagemann, W. Gudat, and C. Kunz, Optical
Constants from the Far Infrared to the X-vay Region:
Mg, Al, Cu, Ag, Au, Bi, C and Al,0;, DESY SR-7417
(Desy, Hamburg, W. Germany, 1974).

34G. D. Mahan, Phys. Rev. 153, 882 (1967); 163, 612



17 ATOMS IN JELLIUM 1757

(1967). 45C. E. Moore, Atomic Energy Levels, Natl. Bur.
35p, Nozidres and C. T. de Dominicis, Phys. Rev. 178, Stand. Circ. No. 467 (U.S. GPO, Washington, D.C.,

1097 (1969). — 1949), Vol. 1.

%3, Doniach and M. Sunjié, J. Phys. C 3, 285 (1970). 48L. 1. Schiff, Quantum Mechanics (McGraw-Hill,
%3. Dow and B, Sonntag, Phys. Rev. Lett. 31, 1132 New York, 1968).

(1973). 413, A. Bearden and A. F. Burr, Rev. Mod. Phys. 39,
%H. Neddermeyer, Phys. Rev. B 6, 2411 (1976). 125 (1967). -
3p, Citrin, G. Wertheim, and Y. Baer, Phys. Rev. 83, F. Friedel, Nuovo Cimento Suppl. 7, 287 (1958).

Lett. 35, 49 (1976). 493. A. D. Matthew, Phys. Lett. A 50, 401 (1975).
40p, Citrin, G. Wertheim, and Y. Baer (unpublished). Sp. J. Phelps, R. A. Tilton, and C. P. Flynn, Phys.
4g, Wigner, Phys. Rev. 46, 1002 (1934). Rev. B 14, 5254 (1976).
22R. D. Cowan, Phys. Rev. 163, 54 (1967). 5ip, J. Feibelman and E. J. McGuire, Phys. Rev. B 6,
433. samson, J. Opt. Soc. Am. 55, 935 (1965). 3006 (1977). -
“R. J. W. Henry and L. Llpsky, Phys. Rev. 153, 51 52A. Barrie and F. J. Street, J. Electron Spectrosc.

(1967). Relat. Phenom. 7, 1 (1975).



