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An interatomic potential for copper is constructed, using the best available intermediate- and low-energy
experimental information. It reproduces satisfactorily the threshold energies for atomic displacements as well
as the phonon spectrum of the metal. This potential is also extrapolated to include higher-energy data. An
analytical expression is proposed, of which every constituent is physically well understood. It is emphasized
that such a potential may be quite useful for lattice-defect studies in which short-range as well as long-range

effects are involved.

I. INTRODUCTION

The atomic interaction energies in general range
from 10° to ~1 eV for radiation-damage studies.
One may also look for even lower energies if the
information on the configuration and potential
energy of the final defects is desired. Acceptable
theories exist only for the extreme cases of high
and low energies. In the high-energy domain
(~10% eV), the interaction potential is well de-
scribed by the so-called Thomas-Fermi-Dirac
(TFD) model,' which, being statistical in nature,
is expected to become less and less reliable as
the density of electrons in the region of overlap
decreases. Also, the conduction-electron screen-
ing, which is outside the scope of the TFD theory,
begins to become important below ~100 eV. In
the low-energy domain (~1 eV), the situation is
already less favorable. The lattice-dynamical
studies, through coherent inelastic scattering
of neutron experiments, afford a quite reliable
basis to the theory, while theoretical techniques
such as pseudopotentials are available to treat
the problem. In fact, although some interesting
results have been obtained, the screened pseudo-
potentials give only semiquantitative agreement
with experiment. A better agreement is usually
obtained if the parametrized pseudopotential is
used.? In the intermediate region (~1 to ~100 eV),
the most important in the dynamical studies of
atomic displacements, no reliable theory exists
and one has to use the semiempirical or purely
empirical potentials, the parameters of which
are adjusted to the property one is looking for.
Evidently, such a potential can be valid only in
a restricted energy domain.

As a consequence, to study the formation and
the properties of point defects in metals, an ap-
proach from first principles is presently not
feasible; one introduces the suitable parameters
at one stage or the other. In this work, we try

to construct a composite interatomic potential
by interpolation through the vast energy domain
in point, the number of parameters being kept

to a minimum by staying as close to the theory—
when reliable—as possible.

In a metallic system, the interatomic potential
may be divided into two parts: (i) The long-range
part which includes the bare Coulomb interaction
and the screening due to conduction electrons;
(ii) the short-range part which arises from the
polarizability of ion cores, and from the Pauli
exclusion principle.

The first contribution is oscillatory, which is
well established through the study of phonon spec-
tra and Kohn anomalies.® Physically, the source
of this oscillatory behavior is the screening by
conduction electrons which is cut off sharply at
the Fermi wave number. In general, then, the
screening has the effect of eliminating the long-
range Coulomb potential and replacing it by a more
rapidly decaying oscillatory term. It hardly af-
fects the interaction at very short distances.
This contribution is fairly understood by pseudo-
potential theory for simple metals but the puzzle
is still unresolved for transition and rare-earth
metals.*

The short-range interactions are little under-
stood through the theory. Rahr et al.® have cal-
culated recently the Van der Waals interactions
for noble metals using a simplified picture of a
metallic system in which the ions are regarded
as nonoverlapping and immersed in a uniform
background of conduction electrons. Though far
from a real situation for a d-band metal, these
authors estimated its contribution to the cohesive
energy from 6 to 17% in the noble metals. As
concerns the exchange-overlap interaction, Bene-
dek® has recently made an attempt to calculate
it in a number of metals by the Heitler-London
method. This method seems unsound, however,
for d-band metals where the separation between
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core and conduction electrons is unclear and the
hybridization between s and d bands is dominating.
There have also been numerous empirical and
semiempirical calculations of exchange-overlap
potential using various experimental informa-
tion.” However, many uncertainties still exist

as to the nature and magnitude of short-range
potentials.

Therefore, in our composite potential, we will
tie together a long-range oscillatory part as it
is given by the pseudopotential theory with a purely
empirical short-range part. In order to adjust
the latter’s parameters, we will use the well-
established physical data obtained through low-
and intermediate-energy-range experiments, i.e.,
(a) The potential should reproduce as well as
possible the phonon spectrum; (b) it should allow
to estimate correctly the threshold energies for
atomic displacements; (c) at still higher inter-
action energies, it should join smoothly the TFD
potential.

The metal copper has been chosen because a
number of experimental data are available and
the generalized pseudopotential analysis has also
been done satisfactorily. The plan of this paper
is as follows: (a) Section II is devoted to the
use of the threshold energies for atomic dis-
placements to calculate short-range repulsive
potentials, which are then compared with others;
(b) in Sec. III these potentials, in conjunction with
the screened Coulomb potential deduced from
pseudopotential treatment,are used to calculate
the phonon frequencies and parametric adjust-
ments for improving the agreement with experi-
ment are examined; (c¢) in Sec. IV a composite
interpolated potential is constructed and discussed.

IL. COMPARISON OF SHORT-RANGE INTERATOMIC
POTENTIALS

For several decades, the parameter calcula-
tions of empirical or semiempirical so-called
short-range potentials have been done with the
help of data such as compressibility—or more
generally elastic properties, cohesive energy,
etc., which correspond to interaction distances
close to atomic distances a, in the perfect crystal.
These potentials explain some properties but
fail to explain others or, to say it differently, the
parameter values differ following the property
used to adjust them. The main reason for it is
probably that the form of the potential used (usual-
ly exponential) is hardly physically justified for
all the distances.

Keeping in view that the TFD potential is valid
for distances <+5a, and knowing for sure that the
oscillatory nature of the composite potential should

occur in the vicinity of a¢,, we see that data cor-
responding to interaction distances ~3a, should

be best suited for an intermediate landmark. This
is just the case of atomic displacements in metals
near threshold energies. Actually, from thresh-
old-energy values, parametfric potentials may

be derived either through the classical many-body
calculations of Gibson ef al.® or through a sim-
ple geometrical model of Lucasson et al.®~!!
Gibson et al.’s calculations already exist for
copper with a Born-Mayer type potential. Al-
though it is a self-consistent calculation, the
deduced threshold energy is 25 eV while the
experimental value is 19 eV.'? It is worth-
while to explore the best possible parametric
potential for copper through the geometrical model
of Lucasson et al., as the method is attractive
because of its simplicity. As it is rather different
from the so-called barrier model, with which

it has sometimes been confused,'® we recall here
its main features; for more details, the reader
may refer to Ref. 10.

In order to result in the formation of a Frenkel
pair, a knocked-on atom A —projected with a
kinetic energy 7,, in a direction close to (100),
(110), or (111)—has to cross a potential barrier,
also called “lense,” to get into a neighboring
atomic polyhedron and forms momentarily with
the atom B inside it, a compressed configuration
before transferring to it part of its remaining
kinetic energy T. The process has to be repeated
a number of times, so increasing the distance
between the compressed site (or interstitial) and
the vacancy left behind until a recombination is
precluded. The approximations done to estimate
the energy loss (T, — T) in each lense passage
are the following:

(i) The transverse impulses givenby the mobile
atom to the atoms of the lense may be neglected
in first approximation because their effect is to
decrease the height of the potential barrier. (This
mutual compensation is the physical basis of the
so called barrier model).

(ii) The longitudinal impulse given to the atom
B is evaluated through Lehman and Leibfried’s
approximation,'* taking into account the kinetic
energy gained by A going down the lense barrier.

(iii) If the height of the potential barrier of the
lense is comparable to the threshold energy (in
a ratio of ~3 for instance), as in the [100] or
[111] events, one has to consider two cases: in
the ultimate passage, the mobile atom A stops
in the close vicinity of the lense saddle point so
that a longitudinal impulse is given not only to
B but also to the lense atoms. It is easily eval-
uated classically. In penultimate passages, A
crosses the lense, coming closer to B so that



1702 S. PRAKASH AND P. LUCASSON 17

10000

100 Il 1 L i
20 25 30 b (x.| ) 35 40

FIG. 1. Semilogarthimic linearity of Born-Mayer
potential parameters.

the impulse given to the lense atoms while climb-
ing the barrier is partly cancelled by taking it
back while going down the barrier and the re-
sultant impulse is small enough to be neglected.

(iv) I the height of the barrier is small com-
pared to the threshold energy, as in the case in
[110] events, A stops in positions close to the
saddle point for several passages because the
energy loss per passage is small (the main con-
tribution to the threshold energy is due to the
building up of a compressive energy between A
and B). In that case only, the longitudinal im-
pulse to the lense atoms must be evaluated.
Therefore the number of passages necessary for
the stability of Frenkel pair is larger than in the
previous case (five or six instead of two along
(100)). As the energy loss per passage is small,
the error introduced in the number of passages
is of the order of 1%.

In copper, we know that the absolute threshold
energy for atomic displacement is 19 eV and
should correspond to both [100] and/or [110]
events. For displacements along [111] directions,
the threshold is 2.5-3 times higher.*!? We have
first considered the [100] direction case: as-
suming that the stable Frankel pair is formed
after two passages,® the geometrical model yields
a set of parameters A and b of the Born-Meyer
potential

o(r)=Ae™", (1)

which reproduces the same threshold energy.
Under these conditions when the interaction energy
and the distance are fix these parameters show
a semilogarithmic linear dependence' as is evident
from Fig. 1. We have used several couples of
this set of parameters to calculate threshold
energies for displacements along [110] with five
or six successive knock-ons and along [111] with
two passages through the corresponding double
triangular lenses.® The results are shown in
Table I. The best fit to experimental data is ob-
tained with either A =558 eV, b=3.0 A™ or A
=1309 eV, b=3.5 A™'. In what follows, the cor-
responding potentials will be noted P, and P, re-
spectively. The fact that a choice is possible
when displacements in several directions are
considered stems from the differences in geom-
etry and in dynamical processes. Larger values
of A (with correspondingly larger values of b)
would give too low [110] and too high [111] thresh-
olds compared to [100].

In Fig. 2 we have plotted P, and P, in an inter-
action distance domain extending from the vicinity

TABLE I. Threshold energies for displacement in different directions for a varying number
of lense passages with several sets of potential constants (eV).

b (&Y 2.0 3.0 3.5 4.0
A (eV) 113 558 1309 3122
Passages

@ 6.92 8.31 9.09 9.57 9.86
@) (100) 19.02 19.01 18.99 19.00 19.00
@) 31.18 29.69 28.85 28.37 28.04
“) 43.13 40.25 38.63 37.69 37.07
@ 1.62 3.96 5.82 7.68 9.82
@ 7.02 7.83 8.73 9.94 11.61
) (110) 12.42 11.70 11.64 12.20 13.40
@) 17.82 15.57 14.55 14 46 15.19
(5) 23.22 19.44 17.46 16.72 16.98
®6) 28.60 23.31 20.37 18.98 18.77
@ 13.61 17.50 21.19 25.13 29.55
@ (111 31.81 37.66 45.59 56.44 71.03
®3) 50.74 59.31 72.20 90.47 115.22
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FIG. 2. Comparison of various short-range potentials.

G: Gibson et al. (Ref. 8), J: Jaswal and Girifalco (Ref.
15), B: Benedek (Ref. 6), M: Moriarty (Ref. 4), Py, P,:
Present calculations. R, denote the position of the
nearest neighbors.

of core radius (0.95 A) to the vicinity of second
neighbors (3.61 A) on a semilog scale. We have
also chosen some potentials representative of
the empirical or of the theoretical category and
have plotted them—for intercomparison pur-
poses—on the same graph. G and J represent
the empirical potentials, respectively, obtained
by Gibson et al.® and by Jaswal and Girifalco.'®
J is obtained using cohesive energy, lattice pa-
rameter and compressibility data. Both are rep-
resented as

Pr)=Ae /%), @)

The parameters (A, b) for these potentials used
in the present calculations are (0.051, 13.0) and
(0.0958, 13.64). A is in eV and b is dimension-
less. The first one (G) is harder than P, and P,
at distances less than 1.8 A and softer beyond
it. This agrees with the high threshold energy
it gives. The second one (J) is even harder than
(G) but it is softer than P, and P, for »>2.3 A.
The curves (M) and (B) represent the potentials
calculated theoretically by Moriarty* and by Bene-
dek,® through the analysis of overlapping of d-
wave functions. Moriarty potential appears in
the framework of a pseudopotential analysis while
Benedek has used the Heitler-London method.
Visibly, the potentials are found in close agree-
ment among themselves and with the empirical
potentials for intermediate values of » (from
~1.7 to ~2.2 A) but diverge for smaller and for
larger values of ».
We have finally to wonder what may be the con-

tribution of the screened Coulomb part in this
interaction distance domain. There have been
many calculations of screened Coulomb potential
for copper'® but only Moriarty’s evaluation is
free from adjustable parameters, therefore we
have shown his results in curve “screened Cou-
lomb” of Fig. 2. It is evident that this contribu-
tion is always much smaller than the exchange-
overlap part and can be neglected in the calcula-
tion of threshold energies which involves dis-
tances from 1.55 to 2.55 A. However, in the cal-
culation of the point defects produced, it may
play a dominant role as it is long range and oscil-
latory at distances where the overlap potential
almost vanishes.

III. INTERMEDIATE- AND LONG-RANGE INTERATOMIC
POTENTIALS

The test of validity of the potential functions
in this section will be the correct prediction of
the phonon spectrum. Moriarty calculated the
phonon frequencies of copper using the general-
ized transition metal pseudopotential approach
of Harrison.? His results are shown in curves
M of Fig. 3. He finds strong anomalies in the
transverse branches in the [100] and [110] di-
rections and in the longitudinal branch in the
[111] direction which are associated with s-d
hybridization. His results are up to 20% lower
than the experimental values.!” As the contribu-
tion of the first neighbors is a major one in the
calculation of phonon frequencies, the empirical
potentials discussed in Sec. II include certainly
reliable informations in the vicinity of ~a, while
a theoretically evaluated potential may have some
uncertainties because of difficulties involved in
multicentral integrals and nonavailabilty of crys-
tal wave functions. Therefore, we will tentatively
add to Moriarty screened Coulomb potential the
short-range potentials discussed in Sec. II.
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FIG. 3. Phonon frequencies of copper. The descrip-
tion is the same as that of Fig. 2. The solid and open
circles represent the observed values. wy is the plasma
frequency.
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FIG. 4. Oscillatory pair potential for copper. The
description is the same as that of Fig. 2.

The consequences on calculated phonon spectrum
appear in Fig. 3, where the computed phonon
frequencies for three principal symmetry direc-
tions [100],[110],[111] along with the experi-
mental values are drawn. In any case, the fre-
quencies increase and this leads to a better agree-
ment with the experimental values. The curves
(J) show that Jaswal and Girifalco’s function over-
estimates the frequencies. The most reasonable
agreement is obtained by the potentials de-
rived from the threshold-energy data. With
P,, for the longitudinal branches, there is
good agreement for lower values of wave
vectors while the frequencies for higher values
of wave vectors are overestimated. Surprisingly
good agreement is obtained for the transverse
branch in the [111] direction. Gibson et al. po-
tential yields phonon frequencies which are lower
than the experimental values for lower values
of phonon wave vector except for the longitudinal

¢l(r)=1-—(2.9/73)cos(2.367' -0.1) for »>4.6 A

and

()

00568 exp[ — 13.0(r/a, - 1)] = (1.75/r%) cos(2.36r - 0.1) for 0.4<r < 4.6 A,

(02921 exp| - T.67(r/a, = 1)] = (1.81/7°) cos(2.33y ~0.1) for 0.4<r<4.6 &,
"1 - (3.02/7%) cos(2.337 —0.1) for »>4.6 A.

branch in the [111] direction and the T, branch
in the [110] direction (curves G). For higher
values of wave vectors, a close agreement is ob-
tained with experiment. The calculated phonon
frequencies using potential P, are found to be
similar to those obtained with P, and therefore,
they are not shown in the figure. We had no ex-
plicit form of Benedek potential and so we did
not carry out the calculations for this potential.
It is possibly not justified to represent this po-
tential by an exponential function near » =a,. The
positions and magnitudes of the anomalies found
by Moriarty were left almost unaltered and there-
fore, it appears that the overlap potentials do
not contribute to the anomalous behavior.

We conclude that Gibson ef al. and P, potentials
in conjunction with screened Coulomb potential
reproduce reasonably the phonon spectrum of
copper. At the same time these short-range po-
tentials also reproduce fairly the threshold ener-
gies (in which the contribution of screened Cou-
lomb interaction to the threshold energies is very
small and may be neglected). Therefore, we con-
struct the composite interatomic potential by add-
ing the two segments. This addition eliminates
all the uncertainties involved in the extrapolation
of two segments. Such a potential explains well
the intermediate- and low-energy-range experi-
ments. These potentials are shown in the Fig.

4 for » > 1.55 A. Both have positive derivatives

at the first-nearest-neighbor distance. The first
minimum is between the first- and second-near-
est neighbor, which might, correspond to some
resonance states or bound states for P, and G, re-
spectively, as far as the nature is in view.!® As
concerns the position of the absolute minimum, it
is not required in the vicinity of first neighbor.*®

Finally we represent these potentials with uni-
fied expressions:

(4)

¢, and ¢, represent the potentials when Gibson et al. and P, potentials are added to Moriarty screened
Coulomb potential, respectively. These potentials are in units of eV. The parameters of ¢, and ¢, are
obtained by fitting the numerical values of the potential within the deviation of (5-10)%. The most impor-
tant point is that every contribution of this expression is physically well understood while this is not true
for other parametrized potentials.?® The potentials are combinations of exponential repulsive and screened
Coulomb attractive parts. For larger values of » these reduce exactly to the asymptotic form.
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FIG. 5. Composite interatomic potential/ for copper.

IV. COMPOSITE INTERATOMIC POTENTIAL

In this section we obtain the composite inter-
atomic potential with the help of potential calcu-
lated in Sec. III, and TFD potential. We calculate
TFD potential by the formula obtained by Firsov?!:

¢ () = (2%e*/7r)x[(2VZ)?/3(r/0.885a,)] , (5)

where Z is the atomic number, e is the electronic
charge, and a, is Bohr radius. The tabulated values
of Thomas-Fermi screening function x are used in
the calculation. This is the high-energy segment
of the potential. The intermediate- and low-ener-
gy segments consist of the sum of overlap and
screened Coulomb potentials. Two segments are
joined graphically. Such an interpolation is shown
in Fig. 5. The Thomas-Fermi potential deviates

considerably from the linear relation on a semilog
scale beyond 0.7 A. We joined the high-energy
segment of »<0.7 A to low-energy segment which
continues to long-range oscillatory pair potential
shown in Fig. 4. Linear interpolation on semilog
scale is justified because in the vicinity of core
radius (~1 A) Born- Mayer potential should be a
good representative. At these small distances the
cores get deformed, and exchange and correlation
interactions between core and conduction electrons
may become important. White?? has shown that the
latter contribution amounts to only 6% of the ion—
ion Coulomb interaction and it can easily be ne-
glected. However no estimation exists for the de-
formation of the ion core.

V. CONCLUSION

We have constructed the composite interatomic
potential for copper using the best available ex-
perimental and theoretical information. In prin-
ciple, the band-structure effects, which may give
rise to three-body interaction because of partial
localization of d electrons, should also be in-
cluded. Such an analysis would be extremely com-
plicated and we can only say that the corresponding
information is included in our potential through
parametrization. This potential describes the
low- and intermediate-energy-range experiments
satisfactorily and it may be evaluated easily. We
think that it might be quite useful for the study of
the properties of metals where short-range as
well as long-range effects are involved.
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