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Detector integrated angn&nr distribution: Chemisorption-site geometry, axial-recoil
photofragmentation, and molecu&ar-beam orientation
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(Received 19 July 1977)

The seemingly diverse problems of chemisorption site geometry, orientation of species in molecular beams,
and the axial recoil of molecular photofragments can be analyzed by means of the dependence of
photoexcitation on target orientation. Expressions are derived for this orientation dependence in terms of the
electric-dipole excitation amplitudes of t'he target. For cylindrically symmetric targets a particularly simple
single-parameter distribution 1+PrP,(cos8&) is obtained, analogous to the Yang-theorem result
1+P~P,(cos8&) familiar from random-molecule photoelectron angular distributions (T denotes target, D
denotes detector). For targets of arbitrary symmetry the distribution has a maximum harmonic dependence
of second order and is completely characterized by at most eight parameters in addition to the overall cross
section. The special utility of elliptically polarized light is also discussed.

In principle the geometry of an oriented species
(e.g. , molecules adsorbed on a surface, or aligned
ina molecular beam) can be determined from the
angular distribution of electrons photoionized from
it by comparing the observed distribution with a
calculated one. This comparison will be more or
less complicated depending on the inherent com-
plexity of the distribution itself and on alterations
to that distribution due to, e.g. , substrate bonding
and backscattering for a chemisorbed target, in-
teraction-region geometry for a molecular beam.
Vfe have sought to identify the type of photoioniza-
tion experiment which is best suited to the deter-
mination of target orientation, in terms of low-or-
der angular dependence, minimal experimental
complication, and lack of extraneous information.

In a given photoionization experiment the or-
ientation of the target, or the (electron-) detection
direction, or both, may be resolved. (By "re-
solved" we mean "measured" in the quantum-
mechanical sense; in particular, an unresolved
quantity must be treated theoretically as com-
pletely random. ) Clearly, the most detailed in-
formation is available in the experiment which re-
solves both, either by measuring the angular dis-
tribution of electrons from a fixed target (for al-
ternative target orientations), or by measuring as
a function of target orientation the photocurrent at a
fixed detector (for alternative detector-light orienta-
tions). Both of these "fully resolved" processes have
been explored in prototype calculations (see below).
The predicted distributions are beautifully rich in
structure and detail. However, for the purposes of
determining the geometry of an oriented species (the
geometry of a molecule on a surface or the population
of its rotational sublevels in a molecular beam), both

of these techniques yield much superfluous informa-
tion which is due to the relative orientations of
the light source and detector alone. We show here
that, if one is interested in target orientaNon only,
then the simplest approach is to measure the total
photocurrent, e.g. , at a collecting sphere sur-
rounding the target oH entation. The resulting in-
tegrated detector angular distribution (IDAD) has
two simplifying key features: (i) all interference
vanishes between ionization amplitudes with alter-
native orbital momenta l and momentum projections
m, in contrast with photoelectron angular distri-
butions, and (ii) the maximum harmonic dependence
is second order, so that the distribution can be
completely characterized experimentally with rela-
tive ease, even for targets of arbitrary symmetry.
Further, and of particular significance to chemi-
sorption studies, the IDAD is necessarily imper-
vious to the effects of elastic scattering of ejected
electrons from any substrate. Indeed, the experi-
ment may be performed equivalently by measuring
photoabsorption alone; ionization is not even re-
quired. This approach may be especially appropri-
ate to the study of gas-phase orientation in molec-
ular beams, etc. For cylindrically symmetric
targets, a particularly simple 1+P P,r( cos)8srin-
gle parameter distribution results (T denotes tar-
get; see below), analogous to the Yang-theorem
result 1+PoP, (cos8o) for random molecule-photo-
electron angular distributions (D denotes detector;
see below).

To make things clearer we have found it help-
ful to cast the present study in the broader con-
text of the a.lternative possible photoionization an-
gular distribution studies. %e begin with the basic
cross-section expression'
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this is doubly differential in target orientation R~,
specified by the set of Euler angles {a,p, y} of the
rotations which carry the laboratory (light) frame
into the target frame, and in the photoelectron
ejection direction along the solid angle An = (8s, Pn)
of the detector. Photoionization dynamics deter-
mine the coefficients CK„K, ~ through ingoing-wave
normalized electric-dipole transition amplitudes

&,' pro [defined below, E(L. (V)]. The harmonic com-
position is limited by the dipole character of the
interaction (2 x 1) and the maximum orbital mo-
mentum l of the ejected electron (2l ). Within
this context we can identify four classes of experi
ments, , summarized in Table I:

a. Fixed-target angalar dlstnbutton (FTAD}.
The orientation R~ of the target is held fixed andthe

TABLE I. Photoionization angular dependence. '

Dls tribution Characteristics General form Harmonic dependence

FTADb d R~ fixed

Oz varied

d ( r)/&t)el~ = Z &s~l(Rr)yr~l (t)o)
K'ghee

0 —Ke —2/ max

Md«Mj'«Kd

FDAD"

ITAO f

O~ fixed

R ~ varied

ddd

R~ unresolved

~~ varied

0 K 2/ .,+2

M~M~K

—2/max «Mye (2/max

K= 0, 2

M= 0

d&/dQnl 0
= (o/4r)(1+ psPt(cos es)1

«(t)D)/dttrl~ = + &real(t)nPir, u(Rr)-
e

e

IDAQ & ~~ unresolved

Rz varied

d /dd l~ ——QZP |'„(dd) 0~K~2
~~M~K

For all distr'ibutions elliptical polarization is represented by a linear combination of the considered distributions
for left and right circular polarizations plus an interference term; see text. In Ref. 1, R&=Rz and k&= &z.

G~ is the laboratory-frame ejection direction which is defined in terms of the target-frame ejection direction by

Yj (Qg)} Yl (k }D (R~}.
I dddd

+r sl( r)= C'rs r spfr -u$( jr)' see Eq. (2).

For a cylindrically symmetric target the f1rst rotation, through +&, of the set R& is about the symmetry axis of the
target and therefore moot; in this case the rotation matrix element is proportional to the spherical harmonic YK&(p, n),
where p, u are angles in the set It = {&,p, o] = It&, the transformation which carries the laboratory hame to coinci-
dence with the target frame (Ref. 5}.

S ssi(O ) = Q ~Ztr+~t s&(~, n)i see % (2) ~

f For mp = +1, Pg ——PD.1

& Replacement Bz Oz possible in the absence of elliptical polarization; see text.
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variation of photocurrent is measured as a function
of detector orientations Q~. Davenport' predicted
the first FTAD for valence-shell ionization of CO
with He I 584-A resonance radiation for orienta-
tions Ar parallel and perpendicular to the electric
vector of the light. Other workers' have extended
this work to treat K-shell ionization over the
range 0-5 Ry electron kinetic energy.

b Fi.xed-detector angular distribution (FDAD).
The detector orientation A~ is held fixed and the
photocurrent is measured as a function of target
orientations R~. This arrangement is appropriate
to photoelectron spectrometers with fixed light-
detector geometry (typically set at 90') but with the
ability to rotate a mounted chemisorption sub-
strate. In anticipation of such studies, the FDAD
for E-shell ionization of CO has been calculated
for a range of detector orientations. '

c. Integrated-target angular distribution (ITAD).
The net photocurrent for all target orientations
Ar along the direction As is measured. This cor-
responds, e.g. , to the usual gas-phase (random-
target) photoelectron-angular-distribution experi-
ment. The distribution is obtained by integration
of E(I. (1}over R„. The result (for nonchiral tar-
gets') is

= 4—[1+l}sP,(cosos) ],
D 1T

(3)

where 0 is the integrated cross section, e~ is mea-
sured from the electric vector of the light, and the
single asymmetry parameter Ps completely char-
acterizes the distribution. This simple result is
a consequence of the dipole character and well-de-
fined parity of the ionizing interaction, and is al-
together independent of the dynamical details of
the process. Quite general expressions for P~ are
available. '

(5)

d. Integmted-detector angular distribltzon
(IDAD}. As described above and the topic of this
report, the net interaction with the target (for all
detection directions if ionization occurs} is mea-

A

sured as a function of orientation R~. The distri-
bution is obtained by integration of E(I. (1}over Q().
The result is of the form

dgd„=Q Q Re[ZxuYrs(fir) l (4)
E=o N ~0

We have replaced R~ by the target solid angle A~
=(er, (t r) =(p, y) since, because of the cylindrical
symmetry of the dipole interaction (i.e. , in the ab-
sence of elliptical polarization), the first Euler an-
gle e is dynamically moot. Expressions are ob-
tained below for the dynamical coefficients Z~„.
For cylindrically symmetric nonchiral' targets,
all Zr„vanish except Z~= c/4v and Z„=&rPr/4v,
so that the IDAD takes the particularly simple form

[1+P P,(cos& )],dA~ 4w

analogous to the ITAD (3).
Both the FTAD and FDAD are generally very

richly structured because of the coherent super-
position of the anisotropies in the response of the
target to the light and in the distribution pattern
of ejected electrons. The IDAD is substantially
simpler because of the elimination of any such co-
herence and indeed of any dependence on ejection
anisotropy whatsoever. (The ITAD, of course,
contains no information on target orientation. ) The
IDAD measures directly and exclusively the de-
pendence of the target response on the orientation
A~ with respect to the light. As such the IDAD is
conceptually and experimentally the most direct
probe of tax'get orientation.

The general formula for the FTAD and FDAD in
the form of E(1. (1) derives from E(l. (15) of Ref. 1,

I&m' +a '-a ( + 1}( I 1} ~ (('-() ((e) s)i)
e m& E num&

)(D„, )k,)DI„'(k,) Q (lm, I' - m) PKI,)(l Ol'O~K, O)(2K, +1) '&

Ke

)( Yr s (k~)g (1m„,1 —m„'
~ K~„)(Im» 1 —m& ~

K„O}D„&+(R.) .

Here a is the fine-structure constant, o, is the
Coulomb phase argl'(l +1-i!k,), and Dfpo(R„) is
the rotation matrix element whose argument R„ is
the set of Euler angles (()(„,P„,y„j which transforms
the target-frame coordinate system into the labor-
atory-frame system. The choice of the target-
frame coordinate system is arbitrary, although it
must be the same as that in which the dipole transi-
tion amplitudes are defined. The laboratory co-

ordinate system is characterized by a single z di-
rection (assuming no elliptical polarization; see
below), taken either as the axis of polarization for
linearly polarized light (polarization (Iuantum num-
ber m~= 0), or as the propagation direction for cir-
cular or natural polarization (m~= a 1 for left- or
right-circularpolarization, positive or negative
helicity, respectively; natural polarization may
be represented by an incoherent sum of left and



DETECTOR INTEGRATED ANGULAR DISTRIBUTION:. . . &695

right circular polarizations). All the dynamics
are contained in the target-frame amplitudes

D, „o(~|;,)= — d r4", ' k„r)

x rF, (r)q r (~)
r

for electric-dipole transition from the initial state
4r (r) to the ingoing-wave-normalized continuum

0
state 4",„)(k„r) of electron kinetic energy k,'.
The set of polar angles k, = (8„$,} specifies the
electron ejection direction in the molecule-frame

coordinate system. [Since these angles will be in-
tegrated over, there is no need here to express
them in terms of laboratory-frame angles QD
= (8~, P~), as would be required to obtain Eq. (1);
see Eq. (23) of Ref. 1.] All dependence on ejection
direction is found in the spherical harmonic
F» „(k,); the contribution to the integral over k,K hf

is zero except for K, =M, =O, i.e. ,

dk, y „(k,) = (4 )'i'5, 5„,. (g)e KN e e e

Performing the integration yields

do

),g, , g ) )
.. . (2V ~ 1)(2)~ i))'+

4w
l flinty

E ' ffl' ffl'

xylo' ')s'''~~&' D&, ,O, D& "o(lm, l' —m'(00)(EO, f'0(00)

x2 (lm„, 1 -m„'IZ~„)(1m~, 1 m~~Z„0}D„-"0(R„). (9)
K

This leads immediately to the selections /= 1', m=m' by triangular conditions on the Clebsch-Gordan coef-
ficients; all interference vanishes between ionization amplitudes with alternative values of the angular mo-
mentum or its projection. The zero index on the rotation matrix element

= (~, ) )'; )))„~,) (10)

reflects the cylindrical symmetry of the dipole interaction. Substituting Eq. (10) and replacing the simpler
Clebsch-Gordan coefficients with their algebraic forms' in Eq. (9), we obtain

' ~~o &-)r=(4v)'"4»'nkvd g (-1} '- ~D,...'DI„)."
l m m&~

x Q (1m„, 1 -m„'
~
K~„)(lm „1-m, ~

&„0)(2'„+1) '~' y»~ (P„,n„).

The angles (P„,n„) are equivalent to the polar an-
gles of the laboratory z axis in the target frame.
The harmonic in these angles is related to the har-
monic in the polar angles of the target in the labor-
atory frame by

&»„(P„,n„)=( 1) "y»~(P-, r)

(12)

as derived in the Appendix. Making the replace-
ments K„-Kand M&-M, we may cast Eq. (11) in
the form of Eq. (4), i.e.,

K

P g Re[Z,'„T;„(e„@,)]. (13)
T ol K=0 3f =o

Here we have replaced dR„by (4v) 'dQr (see Ap-
pendix), since there is no dependence on the third
Euler angle y„, and for convenience we use unnor-
malized spherical harmonics F»„= [ /4(»2K 1)+]'~'
x YK„. The limit K~2 is given by triangular
conditions in Eq. (11). As a consequence of the
fact that the cross section is real, the sum over
m„&m„' in Eq. (11) is the complex conjugate of the
sum over m„&m„'. Therefore taking only m„~ m„'

(giving M=M„= m„—m„'» 0), this sum can be ex-
pressed in terms of real parts as in Eq. (18), with
the factor (2 —&,}= (2 —&„,) to ensure that the
m„= m„' terms are counted only once. Thus, the
coefficients Z»„here differ from those in Eq. (4)
by the factor [4»/(2K+ 1)]'~'(~3nhv) (2 —5«) and are
given by
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Zr~~=3(1m&, 1 —m&~KO)(-1) ~ g P (-1) "D', ~, D,' ' o(lm„, l —m„'~KM)(2 —6„0),
lm

(14)

where the factor 3 arises because each of the
Clebsch-Gordan coefficients in Eq. (14) when evalu-
ated for K=0 contributes a factor (3) '~'. The ex-
plicit expressions for these coefficients in terms of
dipole amplitudes labeled by l, m, and m„are

Z„~=(3m' 2)v 3 Q (2m„—1)D, 'D,

Z„~= (3m~2 —2)&6 QD, „, 'D,
les

z &-
y

l mm&

l rgtn

l tory

3m~ —2 ~ (3 2)
~

(-)r

l ftlt5y

(15)

The definitions of the Z~~ make use of the fact that
m„and m„', the projections of the dipole interac-
tion along the target z axis, are restricted to the
values —1, 0, +1, i.e. , D,' ' 0=0 otherwise. Of
the six coefficients defined in Eq. (15), only those
for which M 4 0 hpve an imaginary part. Denoting
the real and imaginary parts of these three coef-
ficients as Z~„and Z~„, respectively, and sub-
stituting explicit forms for the unnormalized har-
monics F~„, we express the IDAD in the form most
suitable for fitting to experiment

(Z~+ Zqo cos 8r+ Z202(3 cos 8r —1)
dA

—[W(Z» coeur —Zf, sinpr)+ v —,(Z;, coeur —Z» sinpIr) cos8r] sin8r

+ W(Z» cos2p r —Z~» sin2P r) sin'8r). (16)

Only the first term contributes to the integrated
cross section

do mohv

(17)

late~

l tnt~

Thus, once the value of the integrated cross sec-
tion 0 is fixed, the shape of the distribution is
characterized by the remaining eight para, meters;
or five in the case of linear polarization, m~ = 0,
since the K= 1 terms vanish, or for natural po-
larization, since the incoherent sum of left- and

right-circular polarizations, m~= +1,giveszero
net contribution from the K= 1 terms.

Equations (15) and (16), then, are the key results
of this study. In order to apply them to the deter-
mination of molecular orientation on a surface, one
would first specify an (arbitrary) target-frame
coordinate system attached to the surface, and
then seek to determine the orientation of the mole-
cule within that frame. Unfortunately the orienta-
tion cannot be inferred directly from the measured

m m +m0 (18a)

I Im =m„+m0, (18b)

where m0 is the projection of the initial-state an-
gular momentum. Equation (9) then restricts
M =m —m =m —m0 —I +m0=m —m =0 i.e.I I I

r 2' 0 0
m„= m„I and all nondiagonal terms in m„vanish in
Eq. (15), leavingonly those terms in Eq. (13) for
which M =0

distribution: The dependence upon the orientation
of the molecule in the target frame is contained
implicitly in the dipole transition amplitudes, and
in practice there are many more than nine of these
at best; thus a simultaneous solution for the dipole
amplitudes is impossible. Instead we may pro-
ceed in reverse and, guided by intuition, compute
the distributions resulting from alternative proba-
ble orientations until the observed distribution is
reproduced.

For a target with cylindrical symmetry about
its z axis a further simplification results, since
m and m' are conserved for cylindrical symme-
try, and therfore,
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(19)
2

do wahv g ZroPr(cossr),
E=O

where the unnormalized spherical harmonics with
zero projection are just the Legendre polynomials
Pr(cossr). The odd term still vanishes with lin-
early or naturally polarized light, but also if
m, =0 (i.e. , Z-state photoionization), because
O', ' o=D,',' o for a cylindrically symmetric target
and the terms with opposite signs in the summa-

do'

dQ~, „ Zr, Pr( co sar)
E =Os2

=—[1+PrP, (cos8r) ], (20)

where the asymmetry parameter is given by

tion over m in Z«~ cancel one another. For either
of these cases the distribution takes the form of
Eq. (5),

@f5

p — ~ ~ D' o 23m-m 2-2 D o

OO lm lm

(21)

Equations (16) and (20) give the IDAD for a tar-
get of general symmetry and cylindrical symmetry,
respectively, for linearly and circularly polarized
light, and for naturally polarized light (which may
be expressed as the incoherent sum of left- and
right-circular polarizations). One further general-
ization which can be made is the treatment of el-
liptical polarization, which may be expressed as
the weighted coherent sum of left- and right-cir-
cular polarizations; indeed linear and circular po-
larizations are limiting cases of elliptical polari-
zation with eccentricity 1 and 0, respectively. The
doubly differential cross section (6) is an expan-
sion of the expression'

d'(r
=4v'ohvl(4' '(k„r)lt' (R„)lc (r)& I',

y e m&
O

(22)

where the dipole operator is

(0, )=() ) (1 —25, )rE )', (r)o' o(r).

(23)
The treatment of elliptical polarization then con-
sists of replacing the operator in Eq. (22) with a
linear combination of the left- and right-circular
polarization operators,

P (R„)= sine &„(R„)+cosa$,(R„), (24)

where the superscript e denotes elliptical polaLiza-
tion and the weighting factors are given in terms of
an angle e to preserve normalization. The sub-
script m& still labels the operator because it may
be defined in such a way that the helicity of the
elliptical polarization is given by the sign of
mo[lmol =1 only now]. Forming the squared modu-
lus, as in Eq. (22), three terms result:

GF0'
=4v'o"&sin'~ I&@' 'It (R ) I@,& I'+cos'~l&+' 'lt'- (R ) I%,&l'

Sip

+ sin 2c Re [(4' )
I
t'.,(R„)I@r ) ( 4r I $,(R„) I

4 ( '& ]j. (25)

Thus, the cross section for elliptical polarization,
may be expressed as the incoherent sum of left-
and right-circular polarizations, with weights
sin'e and cos'e, respectively, plus a crossterm
weighted by sin2& which represents their coherent
superposition. The matrix elements in the first
two terms in Eq. (25) are just the same as for the
pure left- and right-circular polarization cross
sections; only the weighting is different. All the
interference is contained in the crossterm. The
extension of this result to the IDAD for elliptical
polarization is direct: Integration of Eq. (25) over
detection directions k, gives simply a weighted sum
of the IDAD's for left and right circular polariza-
tions and the analogous detector-integrated cross-

Cos &der

(26)

(2V)

term. Denoting this interference term by dX/dR„
we may write

sin2~ de

djt„
sin2z @AX+ A

d+ i m~

and its contribution tothe IDAD can be shown' to
have the general form

dX

lm ffe m~

x (Im„, 1 —m„'
I 2m„—m„')
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where the constant of proportionality is exp(2i5)
and specifies the angle & between the major axis
of the ellipse in the xy plane and the x axis." This
interference contribution has two important fea-
tures. First, it depends on all three Euler angles
in the set R„since elliptical polarization destroys
the cylindrical symmetry of the dipole interaction
(e.g., the magnitude of the interaction will depend
upon whether, say, a linear molecule is aligned
along the major or minor axis of the ellipse). Sec-
ond, the interference term makes no net contri-
bution to the integrated cross section o. This in-
tuitively obvious result is demonstrated by in-
tegrating Eq. (27) over all target orientations R„:
The integral of the rotation matrix element over
R, is zero unless all its indices are zero, and
therefore the net contribution of the crossterm to
the overall cross section is X=0.

Apart from its utility in describing accurately the
radiation from a true source which has an ellipti-
cal component of greater or lesser magnitude (we
have in mind particularly synchrotron radiation"),
the use of elliptical polarization allows the resolu-
tion of the third target orientation angle y„= n.
With linearly or circularly polarized light, the
IDAD allows the specification of target geometry
only to within a rotation about the symmetry axis
of the light. Furthermore, elliptical polarization
allows some manipulation of the features of the
resulting distribution. Considering the IDAD (16)
as a sum of the integrated cross section (—,'vnhv)g,
=0 and periodic perturbations due to the K=1,2
terms it is seen from the definitions (15) that the
K= 2 terms have twice the magnitude for linear
polarization (m~= 0) as for circular polarization
(m~= + 1), but at the expense of the K= 1 terms,
which vanish for linear polarization. By using the
intermediate elliptical polarization (which may be
as well, if not as conveniently, represented as a
coherent sum of linear and circular polarizations),
the distribution may be "tuned" to give maximum
structure by changing the degree of elliptical po-
larization.

DISCUSSION

Because of its simple form and the fact that it
depends only on the relative orientations of target
and radiation source, the IBAD seems preferable
to either the FDAD or FTAD for the determination
of site geometry in adsorbed species. Yet, it is
not possible to infer directly the orientation of a
molecule on a surface from the measurement of
this distribution without first making some dynami-
cal assumptions about the adsorption interaction
itself; either that it is weak enough that the dis-
tribution is dominated by the shape of the "isola-

ted mo1.ecule" distribution, so that the orientation
can be obtained by comparison with the calculated
free-molecule distributions, or that it is known
(or assumed) beforehand, so that calculations ac-
counting for the appropriate site geometry may be
performed and then compared to experiment.
Nonetheless, these are restrictions to which the
doubly differential FTAD and FDAD are even more
sensitive because of the choice of a particular de-
tection direction, and if one is interested in tar-
get orientation alone they are unnecessarily com-
plicated.

There is a case in which an oriented target may
be considered to be isolated in space —in a molec-
ular beam at sufficiently low pressure that the in-
teractions with other particles in the beam are
negligible. Since the IDAD measures differential
cross section as a function of target orientation
alone, the photocurrent needs not even to be mea-
sured, rather the distribution can be character-
ized directly by absorption of light as a function of
source-beam orientation, and in fact this type of
experiment does not require ionization at all. Al-
ternatively, if the photoabsorption accesses a re-
pulsive molecular state, and dissociation is rapid
compared to molecular rotation (axial-recoil lim-
it"}, then the angular distribution of the photo-
fragments gives the IDAD directly. This has been
applied recently by Dehmer and Dill" to the analy-
sis of H, -H+ H'+ e photofragmentation. Devia-
tions from the axial-recoil limit may be included
by the treatment of the target as being in a definite
rotational state, i.e. , no longer can a particular
orientation be assumed, but rather the target will
span a distribution of orientations determined by
the rotational state distributions.

APPENDIX

The following relations' will be used in the mani-
pulations in this Appendix:

(i) The set of Euler angles defining a rotational
transformation is related to the set defining the in-
verse transformation as

(A1a}

(A1b)

(ii} The rotation matrix element with second rn

index and third Euler angle zero is related to a
spherical harmonic in the remaining two angles:

D~,(cr, P, O) = [4w/(2j+1)]'~'Y~ (P, o), (A2)

where now (P, n) are equivalent to the usual polar
angles.

(iii) The following definition of the spherical
harmonic Y, (8, P} is used:
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dRD„' (R)D„(R)= . 1 5„„5 5~ ~. (A4)
1 g 2 2 2gg+1 & 2 1 Q 1 2

The orientation of the target in the doubly dif-
ferential cross section (6) is specified by R„
-={a„,p„,y„], the set of Euler angles which carries
the target-frame coordinate system into coinci-
dence with the laboratory-frame system. The lab-
oratory-, or photon-frame z axis is taken as the
polarization axis for linear polarization axis for
linear polarization and the propagation direction
for circular polarization, and the frame is there-
fore cylindrically symmetric about z. Thus, the
final Euler rotation, through y„about this axis, is
shoot and y„may be set equal to zero. If we de-
fine the inverse of this transformation as
R= (n, P, y)—, then by Eqs. (A1),

R„=-ln„,P„,y„)=(n„,P„,o), (A5)

R=(a, P, y)=R-„-'={O,—P„, (A6)

and we identify a = 0, P = —P„, y = —a„. The rela-

4v l+m)!
x [d/dcos8]' ' (cos'8 —1)'. (A3)

(iv} The orthogonality relation between rotation
matrix elements is

tion (A2) is applied to the rotation matrix element
D„",(R„) in Eq. (5):

(AV)Ds"0(R„}= [4v/(2K„+ 1)]~~~1'r~ „(P„,n„),

where (P„,a„) is equivalent to the set of polar an-
gles of the laboratory z direction in the target
frame. The harmonic can be expressed in terms
of the harmonic in the laboratory frame polar an-
gles of the target by the relationship (A6) and the
identifications following:

x E !e '"r" [(-1)(-sinP)] "~
2~,Z„t

E~ +N
x "(cos'P —1)«r.

d cosP

=(-1)"»» ~ (P, r), (A9)

which leads directly to the relationship in Eq. (12).
Using relationship (12}we may rewrite Eq. (11)
as

(AS)

But y'r „(-p, -y) can be related to Fr „(p,y) by
explicit substitution into the defining relation (A3):

( )
2K„+1 (K„-M„)!

4v (K„+M„)!

(4v) I 4v2ohp ~ ~ ( 1)sl7 nlp D( ) rp D( )ro

Jr' !!fL fbi

x g (1m» 1 —m „'
~
K~)(im» 1 —m) K 0) (2K„+1) '~2(- 1)~w Yr „(p,y). (A10)

(A11)

(A12)dA -=sinP dP dy.

The elements of solid Euler angle and solid polar
angle are

dR -=(Sv') 'dn si nP dP dy,

Carrying out the integration over a gives 2m. We
can therefore write for Eq. (A10),

(A13)
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