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The static and dynamic properties of an isotropic quadrupolar system are studied by the method of double-

time Greens functions. Using symmetrized equations of motion, a Dyson equation for the single-particle
Green's function is obtained. The self-energy is expressed in terms of three-particle Green's functions, which
are determined using an effective Hamiltonian, with the exact commutation relations approximated by
quasiboson ones. A detailed expression for the lifetime of the elementary excitations is obtained.

I. INTRODUCTION

Recently there has been considerable interest in
systems with quadrupolar interactions. Consider
a quadrupole consisting of four point charges suit-
ably placed along a straight line. The potential
energy between a pair of such quadrupoles is mini-
mized if the line joining the center of the quadru-
poles is parallel to the axis of one quadrupole and
perpendicular to the axis of the other. New con-
sider a sequence of these rigid quadrupoles, with
center of mass fixed to a linear chain and each ro-
tating about the center of mass with angular mo-
mentum J. Classically, in the ground state, these
quadrupoles would line up with adjacent rotation
axes perpendicular and M = +J. The elementary
excitations of this system are librational waves in
which the axes of rotation perform small oscilla-
tions about their ground-state orientation.

The potential energy between two quadrupoles,
with centers separated by the distance R j&, is'

4m P8t Q P ltd Q (1.1)jg 5PS fn 2 j 2

YP(Q, ) = -(3/10v)' I'LP(i), (1.2)

where the spherical tensor operators L~~(i) are
given by

L,'(i) = P, [(S;)'- -,'], '

L"(i}= 2 (SfS~(+S(S*,),
L"(i) = 2(S;)' (1.3)

where Y, is the spherical harmonic [with sign con-
vention I,'=(Y,'}"]; ~, =6, a„=-4, and e„=l;
and p. is the quadrupole moment of the charge con-
figuration (with four charges along the x axis the
quadrupole tensor has only the diagonal elements
—p, , —p, , and 2 p). Nakamura' has introduced a
quantum-mechanical model by expressing the
spherical harmonics in terms of spin operators in
the S =1 subspace

It is convenient to rotate the spin axes at each site
so the z axis corresponds to the classical ground
state configuration. For instance, in the linear
chain the spin axes would be rotated 90' counter-
clockwise about the x axis at every alternate site.
The Hamiltonian will then take the form

X= —Q Q JPq"L,"(i)L,"(j),
(j,j ) tee ft

(1.4)

where the coupling constants J~j&", between spins at
lattice sites i and j, depend on the particular
ground- state structure.

The most studied quadrupolar system is molec-
ular hydrogen. At low temperature, ortho-hydro-
gen can be modeled as J =1 rigid rotators fixed to
a rigid lattice with the orientational interaction
described by the Hamiltonian (1.4)."' Infrared
absorption' and x-ray diffraction' experiments
confirmed that the crystal structure is fcc at suf-
ficiently low temperatures. It is impossible for
all molecular axes to be perpendicular. The or-
dered state, classically, consists of four sublat-
tices, with all molecular axes in a given sublat-
tice pointing along one of the four [1,1,1] direc-
tions. ' The quadrupolar order parameter

Q = (2) ((Sg)') —1, (1.5)

has been measured by NMR techniques, ' with the
indication that there is probably a first-order
transition around 3'K.' The transition to an or-
ientationally disordered phase is marked by a
lambda anomaly in the specific heat. ' The order-
disorder transition is accompanied by a structural
phase change from the fcc to a hcp lattice. The
exact role of this structural phase transition,
which occurs at or near the order-disorder trans-
ition, is not clear at this time. '

In the molecular-field ground staie all spins are
in the M =0 state. Librons are coll.ective excita-
tions of the M =+1 states. Since there are four
sublattices, there will be eight branches to the ex-
citation spectrum e„(k) all with a gap due to the
anisotropy in the interactions. Green's function
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X= —g P J L"(ti)L (j)
(g, g~ m

(1.6)

is isotropic; that is S' is a good quantum number.
This Hamiltonian is to a quadrupolar system what
the isotropic Heisenberg model is to a dipolar sys-
tem. There is only one sublattice and the excita-
tions M =+1 are equivalent so there is only one
branch to the dispersion relation. The molecular-
fie1.d ground state M = 0 is still not an eigenstate
of the Hamiltonian (1.6) as with real hydrogen.
The existence of an ordered state breaks the ro-
tational symmetry of the Hamiltonian. Thus the
excitations will be gapless in the limit of vanish-
ing momentum. ' Clearly this model does not
represent real hydrogen', we take the philosophy
that it is nevertheless an interesting mathematical
model.

In fact even a simpler nondynamical model, in
which J",&" = &„,6,J,&, has been considered as a
model for ortho-hydrogen. ' '" Harris has pointed
out that it has no critical point as it transforms
into a S =-,' Ising model in a nonzero field." Wheth-
er or not the addition of the fluctuation terms in
the Hamiltonian (1.6) gives rise to a critical point
remains an open question.

In addition to molecular hydrogen and other mo-
lecular solids, "quadrupolar interactions arise
in several physical situations. Liquid crystals
possess similarities with molecular crystals.
They are characterized by the presence of an ori-
entational order of rodlike molecules (with dis-
ordered centers of gravity). Maier and Suppe'4
have presented a microscopic theory for molecules
possessing quadrupolar symmetry to describe the
first-order nematic-isotropic liquid phase trans-

techniques have been used to determine the ex-
citation spectrum. ' '" Particular at;tention has
been given to the zero wave-vector case,"where
the effects of libron-libron interactions can b8
seen in E4unan scattering experiments. '3 It has
been suggested that the full dispersion relation
e„(k) and the libron lifetimes should be measurable
in nuclear y-ray scattering. "

Harris has developed a complete analogy between
hydrogen and a dilute antiferromagnet. " The para-
hydrogen (Z=O) take the place of the nonmagnetic
ions as there is no orientational interaction be-
tween the sphe'rically symmetric J=0 molecules
and its neighbors. The corresponding percolation
problem has also been studied by both theory and
experiment. "

In this paper we follow Barma" and Fittipaldi and
Tahir-Kheli" in studying the simplest of the dy-
namical quadrupolar Hamiltonians, by restricting
J~~&" = 6 „J&&. The resulting Hamiltonian,

ition. The Heisenberg model is a suitable des-
cription of magnetic systems with no orbital con-
tribution to the magnetic moment. When there is
strong spin-orbit coupling, biquadratic terms ap-
pear in the pseudospin Hamiltonian. " Another
example is Jahn- Teller ferroelectric system,
where there may be a phonon-induced electric
quadrupolar interaction. " In all of these cases,
the anisotropic contributions to the Hamiltonian
will undoubtedly be important,

In this paper we limit our discussion to a study
of the zero-temperature excitation spectru~ of the
Hamiltonian (1.6). Our approach differs from the
previous authors, "' in that we maintain a sym-
metrized form for the equations of motion without
resorting to a complicated Callen-like decoupling
scheme. This enables us to calculate the three-
particle Green's function so we can determine the
damping of the elementary excitations. We do,
however, violate the off-diagonal self-correlation
sum rule. '7" W'e argue that just as the diagonal
self-correlation is only calculated approximately
in any perturbation scheme, so too is the off-
diagonal self-correlation. Hence it does not vanish
identically.

In Sec. II we introduce creation and annihilation
operators particularly suitable to describe the
S=1 algebra. Then the equations of motion are
derived and written in the form of a Dyson equation
for the Green's unction. In the zero-order or
linear theory the dispersion relation for the ex-
citations is not surprisingly the same as that for
an antiferromagnet. In Sec. IV a static renormal-
ization of the excitation energies is calculated
using the exact equations of motion. Next, an ef-
fective quadratic Hamiltonian is introduced with
quasiboson operators. This is diagonalized by a
canonical transformation. In Sec. VI we calculate
the contribution of three-particle Green's func-
tions to the self-energy, which leads to damping
of the excitation. The lifetime is determined in
Sec. VD. Finally the effect of cubic anisotropies
present in real hydrogen is considered.

II. HAMILTONIAN

Following Raich and Etters' we express the
S=1 spin operators in terms of two creation and
annihilation operators. The creation operators

a'= (1/W)S; [1 —(Sf)'], (2.1)

6"= (1/~)Sj [1—(S')'I (2.2)

connect the M =0 spin state to the M =1 and M =- 1
states, respectively. The annihilation operators
a, and b, are given by the Hermitian conjugates of
(2.1) and (2.2). These are natural operators to
describe the excitations from the molecular-field
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ni =aiai y (2.3)

m, =btb„ (2.4)

take the value unity in the excited states N =+1
and M =-1, respectively, and are otherwis@ zero.
Since these operators are describing a S=1 sub-
space, they give zero if they act twice on a state

ground state M =0 of the quadrupolar system. The
number operators

tion for four one-particle Green's functions. These
equations involve higher-order Green's functions
which are then usually decoupled to obtain a closed
set of equations. Instead, we write equations of
motion for the higher-order Green's functions and
formally obtain a Dyson's equation for the single-
particle Green's functions.

It is convenient to represent the four Green's
functions as a 2 x 2 matrix. Consider the column
vector X&, with components

a'=b~ =0i i

They also satisfy the relations

(2.5)
X~=b~,

2Pg=a g,

(3.1)

(3.2}
a,bi =b,a, =a,bit=0. (2.6)

The dynamics of the quadrupolar system are
complicated by the fact that the creation and an-
nihilation operators are neither bosons nor paulion
operators. In fact they satisfy the commutation
relations

(2.8}

S~i =ni —mi,
3' = N(a~+b, ) .

(2.9)

(2.10)

The spherical tensor operators (1.3) are given by

q, = +L02(i}= (~)(n, +m, )- 1,
L,'(i) = T-,''(a', —b,),
L,'(i}= a~b, . (2.13}

The isotropic quadrupolar Hamiltonian (1.6) now

takes the simple form

(2.12)

36=- Q &„{(3)Q,Q, + (k)(a) b))(a~ —b))-
+a)bP a~) ~ (2.14)

We note that the commutator of the operators ai
and b, with the quadrupole operator Q, is diagonal

[.„~,1= (-.'},6,,„ (2.15)

[b;, Q, 1 = (2)b, b,,, (2.16)

The other commutators with I,' and L follow
directly from Eqs. (2.6)-(2.8).

III. EQUATION OF MOTION OF GREEN'S FUNCTIONS

[a„a,'1 =(1 —2n, m,.)6. .. (2.7)

[b„bJ]= (1-n, —2m, )6, ~.
The other commutation relations between a, and

b& or b J follow from (2.6).
The transformation (2.1) and (2.2) can be inverted

to express the spin operators in terms of the crea-
tion and annihilation operators

where k is the momentum vector in reciprocal
space q and

b-= — e~ 'ib1
k (3.3)

if ribt1
i& (3.4)

are the Fourier transforms of the lowering and
raising operators. The Green's functions to be
studied form a 2 x 2 matrix with elements «Xri
X,")), (a, P=1,2),

) «br. br)) (&briar') )
)t)))-

(3.5)

We shall represent this symbolically simply as
«Xr', X&~)). The Green's function &&A;B))s is the
temporal fourier transform of the double-time
Green's function «A(t);B(t')), taking the retarded
and advanced functions in th upper and lower half-
plane, respectively,

(3.6)

We shall be discussing only the Fourier transform
«A; B))s and shall drop the subscript E which indi-
cates this. For a review of the Green's function
method, the reader is referred to Zubarev" and
Mavroyannis. "

The equations of motion of the Green's functions
are determined by the commutator of the operators
b, and at with the Hamiltonian. It is more conven-
ient to calculate these commutators in real space
and then transform to momentum space to obtain

[br) 3C ) = (der+ (d)ta~ +F(t ) (3.7)

—[ -a) ~=(dr -r+(dr a+ r) (3.8)

where

In order to study the dynamics of the quadrupolar
Hamiltonian (1.6), we form the equations of mo-

a-&0- ~&a (3.9)

(3.10)
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and 8& is related to the Fourier transform of the

quadrupolar coupling constant

1. /2

(df (0 It (df cJO 1 ~g ~0 (3.18)

—~ &&& (r~~~)Jo (3.11)

+ —L22(i)I.,'(j)+5~f1~2(j) . (3.13)

Prom the commutation relations (3.7) and (3.8)
follow the equations of motion for the Green's
functions

g(k, E) =8+ 6:(k,E), (3.14)
—E —(dr /

where S is the unit matrix, 6'(k, E) is a higher-
order 2 x 2 Green's function

5(k,E) = ((Er,Xiz)), (3.15)

and q, the order parameter (1.5), is the ensemble
average of the quadrupolar operator Q„

—q = 1 —3(n&) = ( [5&, b&~ ])= ( [a&, a&~ J) . (3.16)

In the molecular-field approximation -Q takes the
value unity, and we anticipate Q to be negative in
this treatment as well.

Before obtaining an equation of motion for the
higher-order Green's function 6:(k, E), we consider
the zero-order approximation (ZOA) in which it is
neglected entirely. Equation (3.14) can then be in-
verted to obtain

q, (E + (gz
g, (k, E) =

( —&dr —E + (dz

(3.17)

with the simplepoles+ co& occuring on the real
axis at

The coupling J,&
is assumed to depend only on the

magnitude of separation (r, —r~)", thus 8& is an even
function of momentum. On the simple-cubic lattice
with only nearest-neighbor coupling J,&

=J, the
parameters ~& and (d& both take the value 3J at the
origin k =0; ~& increases to a value of 6J at
(v/2a, v/2a, v/2a), whereas &or decreases to zero
and on to a value of -3J at (w/a, v/a, v/a), where-
as && increases to 9J (u is the nearest-neighbor
distance). The higher-order terms in the commu-
tator have been collected into the vector I'& with
components

I"', = —Q J~(-,'b, ( ~+ ~)+ —(n, + 2,)L,'(j)

—L,'I )L,'(j1+a&L,'(j't), (3.12)

5, = —Q J ~( ~(~+ -',
~) ',——(Sn, +,IL,'(j 't

As expected, the excitation energy shows no gap
at k =0. On the nearest-neighbor simple-cubic
lattice along the k„=k„=k, direction the energy
has a sinusoidal behavior reaching a maximum of
6WJ a,t (v/a, v/s, v/, ). .

The various correlation functions can be obtained
by taking the difference of the appropriate Green's
function across the real axis branch cut

nr = (1/-q)(artaz) = (1/ q)(b-ztbz)

= 2[(&u&/m&) cothzP&u&- 1},
itr = (1/-q)(a~be = (1/ q)-(b,' n'g.

((dr/2(dz) coth(p(dz/2) &

where P= 1/ksT is the inverse temperature. We
note that in the limit of zero temperature both
occupation numbers

(3.19)

(3.20)

nz —p((dz/(dr —1 )

Rg —(dz/2(dz ~

(3.21)

(3.22)

1 1n= —(n,) = —Q n
Q

f ~ a&

1~„
tl ——~S o~Z o

(3.23)

(3;24)

The expectation value of the quadrupole operator
Q, can be expressed in terms of the diagonal num-

ber operator n

q= 1/(1+ 3n)-. (3.25)

The off-diagonal number operator n should be
identically zero by Eq. (2.6). Note that n; takes
on both positive and negative values, whereas n&

is entirely positive, so that the integral (3.24) for
n is considerably smaller than (3.23) for n How-.
ever it is not identically zero. We return to the
question whether this is a serious fault of the the-
ory later. In both cases the integrand is singular
at q =0; however, the integral is convergent in two
and three dimensions.

are nonzero, reflecting that the molecular-field
ground state is not exact. Again considering the
nearest-neighbor simple-cubic model, n& and n&
both diverge as plus and minus 0.6124/ka, re-
spectively, near the origin. At (m/2s, v/2n, v/2n ).
n& has dropped to zero and n& has increased to
zero; n& continues to increase to the value 0.1768
at (v/a, v/a, v/a), and nz remains positive in-
creasing to the value 0.0303.

The thermal average of the number operators is
obtained by summing the correlation functions over
momentum. It is convenient to divide out the fac-
tor of -Q in the definition of this average
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In order to go beyond the zero-order approxima-
tion an equation of motion for the higher order
Green's function 8(kjE) must he obtained. To do
this we take the commutator of the second argu-
ment Xrt of Iy(k, E}with the Hamiltonian, rather
than the first Ff. Using the Hermitian conjugate
of the commutation relations (3.V} and (3.8}we
obtain the equation

jy(k, E)9,'(k, E) =4'(k, E), (3.26)

where the right-hand side is the sum of two terms

(y(k, E) =(y, (k) + (y, (k, Z) . (3.2V)

The first is a static term related to the ensemble
average of the commutator of F& with Xt,

(&[Zr bk]& -&[Zr.a~]&)

I,&[~„b,]& -
& [~„., ]&]

The second term is a still-higher-order Green's
function

(3.28)

Qo'(k, E) 9(k,Z) = S+Iy(k, E),
gives

9(k, E)=Q,(k, E)+9,(k, E)6"(k, E) 9 (k, E).

(3.14')

(3.30)

[P,(k,E) = (1j'9')«F, ~s]& . (3.29)

Combining Eti. (3.26) with the equation of motion for
the one-particle Green's function

If a self-energy operator is defined by

Z(k, E}=6(k,E)[8+9,(k, E) a (k, E)]', (3.31)

then we obtain formally a Dyson equation for the
single-particle Green's function

[90'(k, E) —Z (k, E)]9 (k, E)= 8 . (3.32)

The problem now is to determine the self-energy
operator Z(k, E).

IV. RENORMAI. IZED ZEROTHWRDER APPROXIMATION

The simplest extension of the zeroth-order ap-
proximation is to consider the effect of the static
term S2,(k) on the self-energy. Since it is time-in-
dependent, the poles of the Green's function re-
main on the real axis. The only effect is a tem-
perature- dependent renormalization of the excita-
tion. energies cog. We also approximate the self-
energy to the leading term in the expansion (3.31),

Z(k, E) = [t)(k, E) = [Po(k) . (4.1)

For the Heisenberg ferromagnet this has been
shown to be equivalent to the random phase approx-
imation. "

Using the commutation relations (2.7) and (2.8),
[Po(k) can be determined in a relatively straight-
forward fashion. Calculating the commutator of
F, with X„ in real space gives

and

[F[,5 ] ——(55,Z ( 2 )[ (n&+ 2&n)+ na[ L2', (2j)22,5'(j)[]a—',
2( ,25,5]+,25a]n, —2,))(l—,—2,)

(4.2)

[F]a,] —(I —2n, ,— )(5&,Z ja ( 2,&)[! (j)'—5l,(j'),] ~ 2 , (2,'5~+ 25 aa~ ang 5 2lll~)) (4.3)

A number of identically zero terms, such as b~t~~„, have been'included in (4.2) and (4.3) in order to obtain
(1—n„- 2jn„) or (1 —2n„- jn„) as a common factor. We have also dropped higher-order terms involving
L (&)L (2).

Consistent with the random phase approximation, we assume the product of quadrupole operator
(1 —n„- 2m„) or (1—2n„- m„) withtheotheroperators[inlargeparenthesesinEqs. (4.2) and(4. 3)]factorizes
when the thermal average is taken,

&[E,', bt]&=@ 6, „g (—,'Z„j)(3&a~pj&+3&btjbj& &at~j&-2(btbz&+2&btaj~&+ &btja~&)

—(2 Z, „)((ata,)+ 2(b', b,)—2(a~ a, & —3(bt b, )) (4.4)

and

&[F'„aF]&=(-@6, F g —Z (2& &~Fa &a&bFtb+„& &a„bz& (ajb-„)) +(—,'g, „)(& ajj&a+&b2tj&b+& 3, a&b+& 2, a)b)
I

(4 6)
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Finally, taking the Fourier transform, we obtain
an expression for the static contribution to the
self-energy operator

Po'(k} = (1/Q ){[E],b~]}

=-3n~f- 5Ff-3(R, —3,),
P."(k) = (1/0') {[P],s.g]}

=-3n(uf - 5'+ 2(S~- Ro),

where R-„and 5'„-are sums over the diagonal and
off- diagonal correlation function, respectively,

(4.6)

(4.7)

1
(dg gng,

4

(4.8)

Df = 2 I+ (-Q)PO'(k)

= (-Q)(Ri- [5ER+ 3(SO- So)]}

Qf=(of+ (-Q)Pt (k)

= (-Q)(&f- [5&r, —2(S.—&.)]}.

(4.11)

(4.12)

The poles of the Green's function are shifted but
remain on the real axis at +Gg, where

Qf= (fF QI} ~--

= (-Q)(~ + &f)"'. (4.13)

The shift &„- is determined in terms of the sums
(4.8) and (4.9). We note that the shift is zero for
zero momentum, so there is still no gap in the
excitation spectrum.

Equations (3.19)-(3.22) for the correlation func-
tions remain valid in the RZOA except that the
parameters ~-„,(d„-, and ~-„must be replaced by
their renormalized values Gg, ~-„, and ~g. How-

ever, now they must be solved by an iterative pro-
cedure, as the parameters Qg, 0-„, and Ag depend
on the correlation function ng through the order
parameter Q. At the same time the off-diagonal
correlations n~ can be calculated and the sum n

will stil1. presumably be nonzero, violating Eq.
(2.6).

Barma" as well as Fittipaldi and Tahir-Kheli"

g-=—W (agan~. (4.9)

Making the same approximations, one c~ show
the matrix eo(k) is symmetric, Po'(k) =P,"(k),
and in addition P,"(k)=P,"(k).

The renormalized zerotherder (RZOA) expres-
sion for the one-particle Green's function is simi-
lar to the ZOA expression

9'(k E)=
~

R f
~

(410)
E Qfj'

except that the coupling constants are replaced by
their renormalized values

has introduced a @allen-like decoupling proce-
dure to ensure that the off-diagonal self-correla-
tion sum rule n =0 is satisfied. This results in
four equations to be solved self-consistently,
which severely limits the extension of the theory.
They found this necessary in order to symmetrize
their random-phase approximation (RPA) decou-
pling, so as to obtain a unique result for the
diagonal self-correlation n. However our decou-
pling scheme is already symmetric and there
is no ambiguity in the value of the order pa-
rameter, whether it is calculated from (s~ta, ) or
(5, 5,) We .also note the violation of the self-cor-
relation sum rule is not a fault of the RPA but is
inherent in the ZOA, to begin, with.

V. EFFECTIVE HAMILTONIAN

The product of the two parameters

u~~;= -Qf/( 2qQf),

(5.3)

(5.4)

weights both poles of the off-diagonal Green's
functions

G'2(k E) = G*'(k, E)

1 j.
=Qug5g E g + (5.5)

We note that (-Q)va equals the diagonal correlation
function ng at T=o and hence is a relatively small
parameter. In the nearest- neighbor simple- cubic
model, it is zero at (v/2a, n/2u, v/2a) and small
throughout most of the Bril.louin zone (the diver-
gence at the origin is unimportant in three dimen-
sions). The factor (-@el is, on the other hand,

In order to determine the lifetime of the collec-
tive modes we must calculate the higher-order
Green's function 6', (k, E}. This is a rather formid-
able task. In order to simplify matters we replace
the Hamiltonian (1.6) with an effective Hamiltonian,
which contains only quadratic terms. The coeffi-
cients qf these terms are chosen to reproduce the
RZOA exactly. The quadratic Hamiltonian can be
diagonalized by a canonical transformation. We
then determine the Green's function (P,(k, E) with
the diagonal Hamiltonian.

It is convenient to introduce the new' parameters
u~ and e~, defined in terms of A~ and Ag,

u'„. = (1+0"„/Q-)/(-2Q), (5.1)

@2= (-1+Gf/Qg)/(-2Q) . (5.2)

These parameters weight the positive and negative
poles of the diagonal Green's function in the RZOA,

2 2
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close to unity over a large part of the Brillouin
zone, since

In terms of the transformed operators the effec-
tive Hamiltonian becomes

1
Qg ~ sf~ (5 6) 3C,(~=ED+ Q Gifts )I, (5.14)

Q~Qk~ y
—Age ~ ClgQk,

k

(5 'I)

the exact commutation relations

1
[bg, by]= bye- — (a~lai~ s+ 2bf~bf, g s), (5.8)

The product (-Q}ui vi equals the off-diagonal cor-
relation function Rg at 7=0 and hence oscillates in
sign through the BriBouin zone.

The first step to obtain an effective Hamiltonian
is to approximate the operators a& and b~ by quasi-
boson operators. If we assume

where the ground-state energy is

Eo g 1—'= —zZ +— (III —0-) .
N 2N

k

(5.15)

From the inverse of the transformation (5.13), it
is easily verified from Eq. (5.10) that the opera-
tors $-„and $& satisfy boson commutation relations

[4 4]=bus. (5.16)

Henceforth, we shall limit our attention to zero
temperature, where the expectation value of the
number operator &g~ Q) is identically zero.

[&',]=6LN--„g (2;";„bb;.,g, (5.9}
k

reduce to the quasiboson relations

[bg, b~y] = [ag, a~5]= (-Q) bag.

We now replace the exact Hamiltonian

(5.10)

k, lvm, a

Qi Ibi I ~ s[3(ala;a a~+5-bfbsb-)

3C = BNZO+ g [Q—f(a-ai+ blurb-„)+ vi(a fbi+ a.b~.)]

VI. POLARIZATION OPERATOR

We are now in a position to include the effect of
scattering, described by the time-dependent po-
larization operator 6', (k, E), on the self-energy
Z(k, E). The three-particle Green's function has
an imaginary contribution to the self-energy,
which pushes the poles of the Green's function off
the real axis. Accordingly the 5-function spec-
trum of the RZOA becomes Lorentzian.

With the approximation 0, =u„ introduced in
the preceding section the polarization operator
(3.29) reduces to

+ 6ai~af b~@bN+ 4a~~b;ba~ a&],

(5.11)
where the operators satisfy the commutation re-
lations (5.8) and (5.9) with the effective Hamilto-
nian

1
Q [IIi(o-ai+ b-bi}+ Qi(a; bi+ a„'-b )~i],

k
(5.12)

where fi=F~i= (F)}' is given by

fi== [2a)f gaN fa,~a~N
Q$

+ &;aN &a& &(a &- a&)].

(6.1)

(6 2)

b„=ay= (-Q)-(sf $„--vi t' -),
b~i=a~~= (-Q)(uf t'-'- viQ. (5.13)

where the operators satisfy the quasiboson com-
mutation relations (5.10). In addition we have as-
sumed a&-=5& (this accounts for the factor of 2 in
the denominator). The only effect of the interac-
tion terms in the Hamiltonian (5.11) which has been
retained is the renormalization of the coupling
constants (og and +g. The one-particle Green's
functions for this quadratic Hamiltonian are the
same as those for the exact Hamiltonian (1.6) in

the RZOL [that is, Eqs. (5.3) and (5.5)].
The quadratic Hamiltonian (5.12) is diagonalized

by the canonical transformation

This expression is now written in terms of the
transformed variable f&. Since the effective Ham-
iltonian is diagonal, the equations of motion of the
resulting three-particle Green's functions can be
readily determined. There are only two types of
terms which contribute to either &(f~,.fP) or
« fi; f i)). The first is the combination of three
annihilation operators with three creation opera-
tors «$, f $„;g.&~,(~.)} and its Hermitian conju
gate. The second is the aine permutations of
«(~t' t'„; g.(„'.4.}}and their Hermitian conjugates.
We shall show later that the second type does not
contribute to the scattering, at zero temperature.
It only leads to a further renormalizaiion of the
excitation spectrum. At present we consider the
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two terms corresponding to the first type; they
will contribute to the lifetime of the collective
modes.

For bookkeeping purposes it is convenient to
define the coupling parameter

KI(k) = 2&))f;u«- &&)«(u;+ v«) . (6.3)

K";(k) is defined by (6.3) with u replaced by v.
Considering on', ly the frequency-dependent contri-
bution the polarization operator can be expressed as

Rlld

16Q
V g tf . t tP, (k, E)= 2 Q [u&) yves «KI(k)u«, «, vs, fK«, (k)«gf f, $s I)«i $«. t'y, «, $„- I,))

$

jest

+ui).f vs «K-"(k)uI, .f v~, -, K«, (k)(&)N -
„$«&)$ «', $ ~.$«. g. $i). f&&],

16@
P, (k, E)= — Q [u&) «v~ -K-"(k)u5, «, v, -K"-,(k)&&t'f I $ «$«,

'
$«, )I, ; $j y,.&&

Co Se C'e ~'

+ u&) -vI.«K I(k)u&. «vs, «. K «(k) «tN'-.- t'g-s 5'-«' k-« t« -y &&) -r»] .

(6.4)

(6.5)

In the diagonal representation, the equations of motion of the three-particle Green's functions follow
directly

[E-«,.,(k) ]O,„-t«t«, &,'. &,'-.~t,'~.&&= [-E —«, ,0 ) ]&«,'-~&,'~&t~; &:&«~&;g&= n, 'f(k), (6.6)

where the simple pole is at the sum of the three
energies

««y(k) =Q«~+Q«+Q«, (6.7)

and the right-hand side reduces to a sum of ~-func-
tions at zero temperature

I

and similarly A~«t$(k) for the negative pole. Quite
generally a Green's function obeys the symmetry
property ((A;B)&»

= ((B;A})&»7' This relates the
two diagonal elements of the polarization matrix

P",'()&, E) = P-&'(k, E) = Pr(E)/( Q), -(6.12)

n"'"(k}=5««(5««" «~ -}

+ 5«rw(5i& «+ 5s r~~)
+ 5., g pe, «+ 5«, r~) . (6.&)

(6.13)

and implies the off-diagonal elements are even
functions of frequency

P(k, )E=P,"(k,-E)=- P«(E)/(-Q).

The final expression for the polarization opera-
tor follows from inserting the solution (6.6) into
Eqs. (6.4) and (6.5). Summing over the momenta
q' and p', we define

%e have assumed a cubic lattice so that all Green's
functions and coupling parameters are even func-
tions of momentum k. Also the general symmetry
relation ((B';A~) &»

= ((A;B))&» implies the two
off-diagonal elements are equal,

U« f(k) = (u& mf;+ u«vN&}IP«(k)

+(~V «+u««4+)
+ (u«v«&+ur m )IP«(k), - (6.9)

A""(k)= 16(-&I)}u&&~~~(k) V«s(k}, (6.11)

and V«&(k) by the same equation, except u and v

are interchanged. The weight for the positive pole
of the diagonal Green's function &&fr~f«$ is

A«'«(k) =16(-0)' u«v«~IP«(k) fI«, f(k), (6.1o)

and for the negative pole APs(k), which is the same
expression with u and e interchanged. The weight
for the positive pole of the off-diagonal Green's
function «f«ifQ) is

P"(k E) =P"(k E) (6.14)

) &);)=( g) "'i%&&

«,«( E —««, (k) -E- «sg))
(6.16)

These general symmetry relations also follow from
the explicit form of the coefficients X and A. For
instance, Eq. (6.13) implies the coefficients". '"(k)
is unchanged by the interchange of u and v, wVen

divided by the energy denominator [E —««, «(k) ] and
summed over q and p. This follows directly from
(6.9) and (6.11}by interchanging the first factor
us~&IP«(k} with the six factors making uP V«gk)
and suitably changing the dummy indices in the
sum (6.5) over q and p.

The final expressions for the frequency-depen-
dent contribution to the polarization operator are
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1
P~(z)= — +At»(») -) +

+))
.

LS

(6.16)
Before proceeding with determining the lifetime of

the collective modes, we shall examine more
closely the terms we have neglected in the polar-
ization operator. There are nine pairs of three-
particle Green's functions of the form «$((t;gg»(")}.
At zero temperature, five of these pairs are zero.
In the remaining four pairs, the sum of three
fre(luencies e& &(k) is reduced to the single term
0„-by the &-function constraints on the right-hand
side:

(E-Qf)«hg~kg@k;» +54 -, &g~ &&
= 6gg6p, f,

« —Qf}«4&4&4' (g &g& 4~ &&
= 6g, ;(6g;0+ 6s,e,r»

D(E}= E2 —[P1(E) —Pq( -E)]E

-{[0;+P-„(E)] Q-„+P~(-E)]

[Q; P"„-(E)]'). (V.2)

To obtain the spectral density J.„~((d), the differ-
ence of the Green's functions across the real axis
branch cut must be taken. Accordingly, we define

from a 6 function to a Lorentzian behavior, the
width corresponding to the finite lifetime of the
excitations.

In terms of the polarization operator Pg(E) and
P1(E}, the single-particle Green's function be-
comes

E+ [Q-„+P1(-E)] —[Q-„—Pl(E) ]
D(E) -[Q1 —P-„(E)] -E+ [Q-„+P;(E)]

(V.1)

with the poles determined by

(E- Q;)&«~ &&, ;~';; &,'.&& &. &„'-,.&&=6&,.-(6a. 6a;-),
(E- Qa) «4-y 5y-g 5'-; 5-; (y -g 5-„'-y »

7;((d +is) = R-„((d) +iIg((0),

P;((0 +i() = R-„((d) +iI-„((o),

(7 8)

(7 4)
= (6a,+ 6a (,"„)(6s. ,+ 65, ;.,;) . (6.17)

(6.18)

&&&'(;f- », = (-())'&"'(k) (~ ~ +
@ ~ ). (()(())

The coefficients B(k) and B(k) are given in the
Appendix.

Since the static contribution has poles identical
to the RZQA poles, the only effect is to split the
poles +0-„of the single-particle Green's function
into four levels +0«'„. The relation between the
splitting and the coefficients B(k) and B(k) is also
given in the Appendix. The magnitude of the split-
ting will be second order in the interaction. We
shal. l not consider these effects further here.

VII. LIFETIME OF THE EXCITATIONS

In this section, we consider the effect of the
time-dependent contribution to the polarization
operator on the excitation spectrum. From Eqs.
(6.15) and (6.16), it is clear that the polarization
operator has a branch cut along the real axis. As
such, it contributes an imaginary as well as a
real part to the single-particle Green's function.
Thus the poles of the Green's function move off
the real axis. The correlation spectrum turns

The static contributions to the polarization opera-
tor d', (k, E) are given by a sum over these three-
particle Green's functions and their Hermitian
conjugates. Because the denominator (E —Q~) is
in.dependent of the internal momenta q an. d p, the
expression for these contributions simplifies to

where the real part R-„((d) is given by the appro-
priate principal part integral and

2

(~( )=w(— p [&-" -'(»)()[ —~;;(»)]

-A"'."(k}5[(d+e--(k)]),

i,.( )= (
— PA.'.'[ll[ e. .(k)]

(7.5)

(V.6)

D((d a is) = (d' —Q-' + 2iQ-I'-((o) ~ (7.7)

-6[(d + e- -(k) ]).
The real and imaginary parts of P.(-E) are ob-
tained by interchanging the parameters u and v;
hence the real part corresponding to 2 -„(-E) is
R.(-(d) and the imaginary part is T„( )&(»-T.he.
real and imaginary parts R-(+) and 7 (&o) are .even
and odd in frequency, respectively. The same is
not true of R-(up) and I„-(&o) because of the differ-
ence between A-" ."(k) and A" -"(k).

a,s N)

The real part of the polarization operator re-
sults in a frequency-dependent renormalization of
the coupling parameters Qt and Q-„, which deter-
mine the position of the poles in the limit of small
damping. Consistent with previous approxima-
tions, we shall neglect this contribution, which
is second order in the interaction. The imaginary
part of the polarization operator is also second
order in the interaction. However it is the leading-
order contribution to the damping and we consider
now its effect on the excitation spectrum.

%'ith this approximation the denominator (7.2),
when evaluated on both sides of the branch cut
along the real axis, simplifies to
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The poles are shifted off the real axis an amount
determined by

I"-„((o)= ((uk [I-„((o)+ I~(-(o) ] + AP [I„-((o)-71(-(u) ]
+ QII-„(v)]/A-

P y- -(k) {&[(u —e- -(k)]

peaks rather than & functions

JI(&o) = 2(e~" —1) '

2((o + Q-„)Q11';((u) —((o' —Q-'„)I„-(-(o)
(&u' —A~2)'+ 4QII'N(v)

(7.13)

where

5[~+&. .(k)]), (7.8)
J-„((o)= 2(e~" —1) ~

2A-Af I'-((o) —((u' —Q-„') I1(&u)

(~2 Q2)2+ 4A2F2(~)
k k k

(7.14)

y .(k) = v[c- -(k)&{A"P(k) -A-"'"-(k))

+ A-g(A" "-(k) +A."'"-(k))

+ Q-„A-"'f(k) ]/Q. . (7.9)

The spectral intensity og the two-time correla-
tion function

(7.10)

is obtained, as usual, by taking the difference be-
tween the Green's function across the real axis
branch cut. From Eq. (7.1), it follows that

A'((o) = e ' z-,"(-(o)= z-„((u), (7.11)

J;"(~)= J;"(~)= ~-„(~), (7.12)

where the spectral intensities show broadened

6=+(0 —0»
~ (7.15)

for positive and negative frequencies, respective-
ly. Assuming the damping I"„-(&u) to be a smooth
function of frequency, it can be replaced by its
value at ~= +Q-. The diagonal spectral intensity

k
reduces to

The detailed balance relation (7.11}between the
spectral intensities for {b!(0}b&{t))and
(a&(0)u-„"(f)) indicates there is no ambiguity whether
the o. rder parameter is determined using Z'-'(e) or
J2'(u&). The off-diagonal intensity also satisfies
the detailed balance relation J (-&u}= e~ Z-(ur}.

k
In the limit of small damping the spectral inten-

sities approximate Lorentzians of width I'.(Q.).
k k

We expand about the zero-damping poles +0-„, let-
ting

)-( )
(I+As/A-„)I'I(Q;)+~[1;(A-„) -71(+A;)]/A;

e'+ I'(Q )
(7.16)

and the off-diagonal intensity to

(Q /Q )F (Q ) &I (Q )/Q
e 2+ I'-'(A-)

k k

(V.17)

at + =+Ok, respectively. Since the damping is
second order we expect II/A„to be sma-ll so that
the spectral intensity reduces to a Lorentzian
with half-width I'f(AI). The height of the peak for
J-„(ro) is 2(-Q)s2/I'.„(A-„) at &o= QI and
-2(-Q)u2/11(QIf at ur = -Q-„. The value of Zg(v) at
4) = +Ay 1S k2(-Q)@yves/II(A1).

The integrand y- .(k) in the integral (V.8) over
momentum q and p is singular along the lines q
=0, q=p, and p=k. The singularity arises from
the parameters u'; and v'; which diverge as I/q for
small values of the argument. For k 4 0, only two
of the three parameters in y- -(k) will be singular
at the same point so the integral is convergent in
two and three dimensions. For k=0 all three pa-
rameters are singular at q = p= 0; however the co-
efficient y;;(k) approaches zero as k' for small k.
Thus both the damping I"1(AI} and the excitation en-

ergy Ak approach zero as the first power of the
momentum 0 for small momentum.

VIII. EFFECT OF ANISOTROPIC TERM ON LIFETIME

The isotropic Hamiltonian (1.6) is not a realistic
model for quadrupolar solids, such as hydrogen.
It is, however, possible to include the effect of
some anisotropic terms within our treatment. In
particular, we consider a perturbation of the form

V= Q {{&,q+i p, ,)[I,'(i) + I, ',(i)]I',(j) + H. c.], (8.1)

which is of cubic order in the creation and annihi-
lation operators. Other possible anisotropies,
such as L',(i)E,'( j), have a quadratic term and will
change the zero-order excitation spectrum.

Our discussion will be limited to the effect the
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[b- 36] —(v.b- —(o9s~ = E-'

-[s~b 36] —~|bi —~%si~ =E„.
We shall not consider the renormalization of the
excitation energies by the static term (E.,X P,
but rather take the leading-order contribution to
the damping from the higher-order Green's func-
tion «Ef, E~&&. For this it js sufficient to use the
effective Hamiltonian (6.7) with the parameters
determined by the ZOA. With this approximation
(u, =b, ) the remainder term E.„ in Eqs. (8.2} and
(8.3) reduces to

(8 2)

(8.3)

perturbation (8.1) has on the lifetime of the col-
lective mode. Neglecting the cubic term Eg, aris-
ing from the isotropic Hamiltonian, the equations
of motion (3.7) and (3.8) become

(8.10)

where the coefficient A.",« "(k) is given by

A."'"(k) = Q2n-n-v- -(n-v- -+n- -v-) .
k Q

From (8.10} it is easily seen that A."'"(k) is sym-
4

metric under interchange of I and v when the sum
over q in Eq. (8.9) is performed. Thus P (E} is
an even function of the complex energy variable

The analysis of the previous section to obtain
the spectral intensity of the various correlation
functions follows here with the simplification that
both the diagonal Pf(E) and off-diagonal terms
Pf(E) of the polarization operator are replaced by
Pf(E). Also, the RZOA parameters are replaced
by their ZOA counterparts. The imaginary part
I„-(&u) of P-„(&o -fe) is given by the sum over mo-
mentum

E,' = [b„V]= -W2 Q c.,((1 —2n, }n~,

z;= [s,', v]= z,'.
(8.4)

(8.5)

If(&o) =
& g A-",'"(k) [6(&u —&u; —u&~;)

v(-q&

—6((d + (d + &d ) ] ~ (8.11)
The diagonal and off-diagonal terms of the fre-

quency-dependent polarization operator 6I &v'(k, E)
are identical

The width of the Lorentzian peak in the spectral
intensity turns out to be simply

6""'(k E) =—«E ' E'» I'~(u)) = J,I;(u))l(of (8.12)

, (P.(z) P.(z))

q ( P.,(z) P.,(z) ] ' (8.6}
Equations (7.13), (7.14}, (7.16), and (7.17) for

the spectral intensity remain valid, with the imag-
inary part Il(&u) and 1-(~) both replaced by I-(&u).

The leading contribution to the polarization op-
erator is a two-particle Green's function

2

~0 «0
aee'

(8.7)

The two-particle Green's function is evaluated
by transforming to the diagonal representation.
At zero temperature the only nonzero two-particle
Green's functions are

Using the transformation (5.13) and the equations
of motion (8.8), the expression (8.7) for the polar-
ization operator reduces to

{8.9)

(E —~- —~- -&&&5- -5- b
= (-E- ~- -~- -)&&V- -t'-; t' -,]
= 6...+5., - -. (&.8}

IX. CONCLUSION

We have systematically developed a Green's
function theory of an isotropic quadrupolar model,
through a Dyson's equation approach. Two terms
contributing to the self-energy have been calcu-
lated: a static term which leads to a renormaliza-
tion of the excitation spectrum and a dynamic term
which results in a Lorentzian spectral intensity.
Our approach has led to symmetrized equations
so there is no ambiguity in applying the results
either to calculate the long-range order or the
spectral intensities.

The perturbation theory developed here has
assumed the interaction coupling is small com-
pared to the quadratic coupling term (&3-„«&u-„}.
The equation of motion formalism expresses a
lower-order Green's function in terms of a higher
one. At some stage the procedure must be trun-
cated and further Green's functions neglected.
We have included the three-particle Green's func-
tion in our treatment. As in many cases where
the Green's function formalism is applied the
interaction term here is not small. However, the
coupling parameter does oscillate in sign, being
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positive in one half of the Brillouin zone and neg-
ative in the other half.

A study of the results developed here requires
detailed numerical analysis. The renormalization
of the excitation spectrum involves a single sum
over momentum and the damping involves a double
sum; in both cases the integrand is singular but
the integral is convergent in two and three dimen-
sions. We plan to carry out the numerical investi-
gation in a following study.

APPENDIX

The static contribution to the polarization op-
erator 6",(k, E) is determined by the coefficients
B"'"(k) and B"'"(k) through equations (6.18) and
(6.19). Inserting Eg. (6.2) into (6.1) and collecting
the terms corresponding to the four pairs of non-
zero three-particle Green's functions (6.17), we
obtain the following expression for these coeffi-
cients:

Z" "(k) = -Qfg'[K-"„(k)]'+ 2u[T~u K."(k) + 1'.v K "(k)] + [T u. + T v ] ');
B"~"(k}= -Q(n~K."(k)K-"(k)+n(T,[vs-"(k)+uK.„"(k)]+T-[vs."(k)+uKP(k)]j+ [T u, + T v ][T v. + Tu„])

(Al}

(A2)

In these equations, the parameter T- is a sum
over momentum. It can be expressed in terms of
the sum S-„, defined by equations (4.8) and (4.9)

T = Q u A."(k) = 2S., —(S,+ S,), (A3)

T.= Q u-K f(k) = 2S. —(So+ So) . (A4)

If only this static contribution to the self-energy
is considered, then the only change in the solution

(4.10) for the single-particle Green's functions is
that the simple poles at +Q, are each split into two
levels +0'-,

(n',)'= (n,+ 8,)'.-y', (A5)

where

8 = Q [u'.B""(k)+ vH! (k) —2u-v-B""(k )], (A6)

y'. = -Q[uP (k)+ v-'3""(k) —2u-v-B""(k)] . (A'I)

The poles remain on the real axis, so these terms
do not contribute to the lifetime of the excitations.
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