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Ab initio self-colasistent-Seld method using linear combinations of atomic orbitals for the
calcuIation of surface states of three-dimensional crystaLs
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The resolvent method developed previously for the ab initio self-consistent-field linear-combination-of-
atomic-orbitals (SCF LCAO} treatment of a cluster of impurities imbedded in a one-dimensional periodic
polymer has been applied to the end of a semi-infinite linear chain. Generalizing the expressions obtained to
the case when the chain is periodically repeated in the other two dimensions a method has been worked out
for the ab initio SCF LCAO computation of the surface and chemisorption states of a threeMimensional
semi-infinite crystal. The matrix equations derived seem rather suitable to immediate numerical applications.

INTRODUCTION

In a previous paper" (hereafter called I), an
ab initio self -consistent-fiejd linear-combination-
of-atomic-orbitals (SCF LCAO) method was de-
scribed for the calculation of the extra states due
to a cluster of impurities (with an arbitrary num-
ber of impurity orbitals) imbedded in an one-di-
mensional periodic system. This resolvent method
(which was a generalization to the SCF LCAO case
of the method of Koster and Slater' and that of
Kertesz and Biczo') can provide also the surface
states belonging to the two ends of a finite linear
chain, if we intersect the loop formed by the chain
at some point. ' In this paper it will be shown hom
one can generalize the same procedure for the
calculation of the surface states of a semi-infinite
three-dimensional crystal in the Hartree-Fock
(ab initio SCF LCAO) level. In this respect one
should mention that the resolvent method has been
applied already before the study of surface states
in the simple tight-binding (LCAO) approximation
by Koutecky. '

It should be emphasized that in the present paper
only the resolvent method will be used which
means that only surface levels not lying inside the
bulk energy bands can be obtained. Further no
attempt mill be made to find out hom much local-
ized are the wave functions belonging to the sur-
face states. ' In connection with this it should be
mentioned that Hoshen and Kopelman, ' using a
partition of the Hamiltonian, have already investi-
gated successfully in the case of a simple-cubic
molecular crystal the localization of surface exci-
ton states in terms of the exciton-transfer integral
Z and the environmental-shift integral D (in the
nearest-neighbor approximation). The same prob-
lem was treated (using the method of localized
perturbation) also by Ueba and Ichimura. ' They
have found conditions not only for the localization

(existence) of surface exciton states, but also a
criterion to determine whether the surface exciton
states lie above or below the bulk exciton states.
Rather probably one could apply these methods
also for the investigation of the localization and
of the position (whether they are different from
the bulk band states) of the electronic ground-
state Hartree-Fock surface states. The treatment
of these problems and numerical applications of
the method will be discussed in subsequent publi-
cations.

It should be mentioned that a SCF theory of the
surface states of three-dimensional crystals is
already published in several papers. All these
works apply, however, either a model Hamilton-
ian"' or a general operator formalism"" which
is not very suitable for immediate applications.
On the other hand, the present ab initio SCF LCAO
method with its matrix formulation of the problem,
as we shall see, facilitates very much numerical
calculations.

PROBLEM OF THE FINITE LINEAR CHAIN

Let us assume that we have a three-dimensional
periodic crystal with 2N, +1, 2N, +1, and 2N, +1
unit cells in each direction and m orbitals in the
unit cell. Let us further assume that though N,
and N, -~, N, does not. Let us consider nom a
linear chain of cells in the first direction. The
position of this in the crystal chain should be char-
acterized by the integers q, and q, (R =q,a,T
+q,a,j, where a, and a„and x and j, are the ele-
mentary translations and unit vectors in the second
and third directions, respectively). In Fig. I we
show this chain in the crystal. Introducing periodic
boundary conditions the coefficients of the Bloch
orbitals of the electrons delocalized in the chain
can be calculated with the aid of the matrix equa-
tion"
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E,(k„q„q,) = g E,(q„q„q,)e" ' ',
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$ (k„q„q,) = g S~(q„q„q,)e'~~'~",
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(2b)

2N +
i

FIG. 1. A linear chain of cells in the three-dimensional
crystal.

F0(k„q„q,)dg(k„q„q, )

= e$(k„q, q }S(k, q, q )dg (k, q, q ), (1)

~here

[g,'(q„q„q,)P» = &x&""'~'IF'Ix,'~'"'~'&, (»)

[~ (q„q., q, )Q =(x '"' "'Ix,' "~'&. (2b)

E is the Pock operator of the periodic linear
chain and XI ~'&'&~is the fth orbital in the cell char-
acterized by the integers 0, g„q,.

If we now intersect the chain at the crystal sur-
face (q, =0), we obtain instead of the original loop
a finite chain. %e can ferrite then the Hamiltonian
matrix of the mhole finite chain in the form

H =II +0', (4)

where H0 is the Hamiltonian matrix of the original
periodic chain (loop)" and the matrix H' (which)
gives the deviation from the periodic case} is de-
fined (see also I) in the first-neighbor interactions
approximation by

F(0)

E(l)

E(1) ~ ~ 0 ~ ~

0

Eo(2N, ) —E(1)"

0 ~ ~ ~ 0e ~ ~ 0

0

Fo(2N, p —E(1) ~ ~ ~ 0 . P (1)

F(1P

E(0)

Here

(6)E(0) =E (0) -E(0), E(1) E0(1)-E(1).
The matrices E (0) and E(1) occur in the hypermatrix H, which can be written in the first-neighbor inter-
actions approximation as

H—0

E(0) E(1) 0 ~ ~ ~

E(if E(0) E(1)

0 F(1)" F(0)

E(1}"

E(l)" E(0) E(l)
~ ~ ~ (0) E(1) E(0)
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[F (1)] ()((0)~FQ(1)& (10)

of the matrix E,(1) give the interactions between
orbitals centered in the end- cell and in the next-
neighbor ceQ, respectively.

In full analogy to (4) we can write

From (7} it is clear that the elements of the matrix
E(0) (suppressing the indices q, and q,),

[F(0)]y =&)('y"IF'l)(,'"& =()(y'~'IF'IX'g"&, (8)

give interactions within the unit cell, while the
matrix E(1) provides the first-neighbor interac-
tions. The matrix E,(0) 4F(0) correspnnds to the
end of the chain, and its elements are defined as

[F (0}] (g(o))~~g(o)& (9)

Here g f can be different from g & due to chemi-
sorption [in the case if the end cell has a larger
number of orbitals (m =m +~„, , where m,h, is
the number of orbitals in the ehemisorbed mole-
cule) than the bulk cells]. Further generally
E & Il, due both to the change of the potential at
the chain end due to possible changes in the geo-
metry in the end cell. Correspondingly the ele-
ments

H =U H U $P=US U

we can write

(Hp- ASO» )U, c=-U, (H'- AS')c. (15)

The blocks of the unitary matrix ~U are defined"
as

1 2vipq,
(2N, +1)'~' ~ 2N, +1

If we introduce the resolvent matrix

(16)

c(q„q,) = -Z(q„q, )[H'(q„q, ) —AS'(q„q, )]

x c(q„q,). (18)

HALF-INFINITE LINEAR CHAIN

Inthecaseofahalf-infinite chain (N, -~, but one
end), we can repeat the preceding derivation, only
now our deviation matrix H' is defined as

Z(q„q, ) = U, [HO»(q„q, ) —AS, (q„q,)] 'Ut (IV)

and multiply E(I. (16) from the left by

U,(HIn- ASIn} '

we obtain the equation

S =SO +S', (11}

where the hypermatrix~S can be given by ('I) if
we substitute in it the corresponding overlap ma-
trices S(0) and S(1), respectively. The deviation
matrix S' has (in the first-neighbor interactions
approximations) again the form of (5}and we can
write it down if we substitute into (5), instead of
E(0) and P(1), the corresponding overlap matrices

S(0) =So(0) —S(0), S(1)=So(1)-S(1). (12)

p

-E(1)"
0

0

-F(1)
F(0)

E(1)"

p ~ ~ ~ p

F(I)

0 ~

0

(19)

In E(I. (12) the elements of S,(0) and So(1) can be
easily obtained if we substitute into (9) and (10)
instead of F~ the unity operator f." Further it
should be mentioned thai in the first-neighbor
interactions approximation, the matrix E,(2N, ) and
the corresponding matrix S0(2N, ) (which give the
interactions between the orbitals belonging to the
two different end cells of the chain) should be ne-
glected.

With the help of these definitions we can formu-
late the problem of our finite open chain as

Hc=(H~+H')c=ASc=A(S +S')c. (13)

Let us multiply this equation from the left by Ul~

(the unitary matrix which block diagonalises Ho

and +. By inserting U, U, =1 and collecting the
periodic matrices on the left-hand side, we obtain

1 0 1 1 1 Q 1 1 1U H U U c- A.U1S U1U

c=-Ulled'c-

A.U1S'c,

(14)
or by introducing the notations

-1 -lv-1 -1 -lgO Q l,l 1 W

CQ AIQ 1C 1 +1IIQ QCQ +AIQ 1Cl

-Cl =Ml 1C 1+&1Q~C+~11C

-c, =M, ,c,+M, oc +M, ,c, (i =2, 3, . . . ).

(20)

By performing the matrix multiplications in (18)
it is easy to show that the matrices MQ lp ~Q Q

and M, , (q = -1, 0, 1) are defined as

M =$, [-F(1}+AS(1)]", (21a)

M„=Z, ,[-F(I)+AS(1)]+Z, [F(O) —AS(O)]

+ Z, ,[F(1)—A S(1)]",
M~ ~ =Z~ 0[F(l) —AS(l)] (q = -1, 0, 1) .

(21b)

(21c)

and 8' has a similar expression. Substituting these
expressions for H' and S' into (19) we obtain the
following equations for the determination of the
subvectors (having only m components) of c:
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and cl we obtain the foil owing matrix equation:

C—0

FIG. 2 . The position of
the "-1"cell.

0 s6 01 0

lop lol 1

(23)

SURFACE STATES OF A THREE-DIMENSIONAL CRYSTAL

In the system of Eqs. (20) one has to take
into account that the part of the LCAO wave func-
tion, which has coefficients given by the subvector
c» does not correspond to any physical reality
because in a semif inite chain the electron belong-
ing to the surf ace states of the end cannot get to
the other end of the chain (which is in infin'ity) or
to the space outside the chain (we are discussing
here always-bound electrons). [We can visualize
this situation also with a finite loop which has been
intersected in two points (see Fig. 2}.] To rule
out the occurrence of these unphysical parts of
the wave functions and al so the occurrence of the
unphysical solutions (spurious states) of the sys-
tem of Eqs. (20), one has to leave out the first
equation and take into account only the second
and third terms in the sub sequ ent equations In
this way we can rewrite our Eqs. (20) as

-c =M c +~ c0 Oep 0 Mal

-cl -Ml~cp +Ml~ cl

-c, =M, co+M, ,c, (i=2, 3, . . .).
The definition of the matrices Q'0, M», etc..re-
mains however, also in this case the same [see
Eqs. (21)]. If we want to solve Eqs. (22) only for

Let us remember that the half-infinite chain
treated in the previous section can be periodically
repeated in the other two dimensions an infinite
number of times (N, -~, N, -~; see Fig. 1.) If
we introduce periodic boundary conditions in these
two other dimensions, all the matrices Q~ and
M, , (q = 0, 1, 2, 3, . . .) occurring in Eqs. (22) will
become cyclic hypermatrices. This can be easily
proved if we take into account that F(1}, S(1),
P(0), S(0), F(1), S(1}, and Z~„, (P, =0, 1, . . . ; s
=-1,0, 1) occurring in Eqs. (21b) and (21c) are
cyclic hypermatrices, and the product of cyclic
hypermatrices is also a cyclic hypermatrix. If
we have periodic (simple translation or a combined
symmetry consisting of a simple translation and
another symmetry operation, e.g. , rotation) sym-
metry in directions 2 and 3, we can immediately
see that the first six of the mentioned matrices
are cyclic hypermatrices. The matrices Z~, are
defined as

1 expfia, (p, —s)k, ] dk
&o E(k) —AS(k)

(P, = 0, 1, 2, . . . ; s = -1, 0, 1) (24)

[see Eq. (8.13) of I], where E,(k,.) and S,(k,) are
again cyclic hypermatric es due to the periodic sty
in dimensions 2 and 3. The inverse of a cyclic
matrix is also a cyclic matrix, but the inverse
of a cyclic hypermatrix is not necessarily a cyclic
hypermatrix. One can show, however, by inspect-
ing the elements of the matrices ~Z [see Eq.
(3.28) of I, which was derived by fully diagonalizing
the matrices H0(k, ) and S,(k,)],

([Z(q „q,)g, ,,j = g v,z(p„q„q,)v«, (p„q„q,)
k, l,eP ~ 1

x [s(p& qa qs)~l-' 'v& „(p„q„q,)v, ~(p, &«„qq)[s(p„„qq) ]&-'

1
n+

Jt dk, e [xikp, a,(P, —s)] b~«(k„k„k,)b~,,(k„k„k,)
1 1

x [e(k„k„k )&
—X(k„k~)] '

(f g= 1, . . . , m), (2 5)

that if we build up from those [the definitions of
the different quantities occurring in (25) were
given in I, so we do not repeat them here] the ma-
trices Z(q„q, )~, and from these blocks the ma-

trices ~Z they are cyclic hypermatrices.
Performing the matrix mulfiplications in ('23)

and knowing that all the four matrices Mp p ~p 1,
Ml p and M» are cyclic hypermatrices, we Can



AB INITIO SELF-CONSISTENT-FIELD METHOD USING. . . 1667

write det[M(X(k'), k')] =0 (34)

U»(~„+1)~U,~U, c, +U»M, ~~U~U»c, =0,t (26a)

U M ~U U co+ U»(M~~+1}U2~U»c, =0,

where the unitary matrix ~U, which block diagon-
aliaes the matriceskf, 0 and Q,, (q =0, 1) is defined
throughitsblocksas(ifweassume N, =N, =N, =N)"

2p Ip2e p3e Og v@3

=(2N+I) 'exp[i2v(P, q, +P,q, )(2K+I) ']l. (2'I)

Introducing the notations

for the determination of the 2m' surface energy
bands X,(k').

To form the matrix M(k') one has to write down
the individual matrices Mo~(k'), M, ,(k'), M, ,(k'),
and M,„(k'), respectively. The last of these,
M, ,(k'), is if we write it out in more detail,

M, ,(k') =Z»(k')[F(1, k') —X(k')S(l, k')], (35)

where, as one can show, ""
Z»(k') = Q exp[i(k, q,a, +k,q,a, )]Z, (q q )

~ eo

M»n, =~U~~M, ,~U~, D, = U,~c, (q, s =0, 1),

we can rewrite Eqs. (26) as

(~~~ +1)D~+Mo»PD, =0,

MpgDO+(Ms~n~ + 1)D, =0.

(28)

(29a)

(29b)

with [see Eq. (24) in the case of P, = 1, s =0]

Z„(q„q.)
exp[ia, (1 —0)k, ]

&u, ~ F,(k„q„q,) —X(k')S,(k„q„q,)

(36)

Taking into account the definitions (21) of the
M, , and M, „(q=0, I) matrices we can write for
instance Mpp as

MBD -U~ ~ U1,1 2~ Iyl 2'
= U~~~Z» U» U,~[E (1}—Jl S(1)]U2~

= ZI [P(I}»—x B(1)» ]. (30)

Since the product of block diagonal matrices is
again a block diagonal matrix, the matrix equa-
tions (29) can be reduced to such matrix equations
which have only the order of the number of orbi-
tals in the unit cell (~)." If we assume further
that N, = N, and introduce the continuous varia-
bles

k, = 2sq, /(2N+ 1)a„k, = 2 ', /(2N+ 1)a„(31)
we can write

[M„(k„k,) + 1]d (k„k,)
+~,(k„k,)d~(k~, k,) = 0, (32a}

M, 0(k„k,)20(k„k,)

+[M„(k„k,) +1]d, (k„k,) =0. (32b)

%'ith the notation k'=k, i+@,~, we can write Eqs.
(32) in the form of the hypermatrix equation

M{x(k'), k') d (k, '}

(M,„(k')+I M„(k') ) (Z,(k')~

M„o(k') M»(k')+1 ] Ed,(k')/

(33)

From the criterion of the existence of the non-
vanishing solution for the vectors B(k') one obtains
the equation

(3'I)
[An alternative way to define Z»(q„q, ) is to con-
struct it from its elements (25), substituting in them
again p, =1 and s =0]. Further F,(k„q„q,) and

S,(k„q„q,) were defined by Eq. (2),

F(l, k'} = g exp[i(k, q,a, +k,q,a,)]

&& [F,(I, q„q,) —F(1,q„q,)] (38)

and analogous expressions are valid for F(0, k'),
B(l,k'), and B(0,k'), respectively.

SELFXONSISTENT-FIELD PROCEDURE FOR THE

CALCULATION OF SURFACE STATFS

To be able to calculate the surface states in a
SCF way we need the definitions of the elements
of the matrices F(q„q„q,) =F(q), F,(0, q„q,),
and F,(1,q„q,), respectively. The elements of
the matrix E(q) belonging to the periodic problem
are"'" (see also I)

R(i&lr,. &xi&, ~ I=/ -&x,'&
rql

If ~v - Iql q2

&& (& x'x" Ix,"x.")
—

2 &x&x.'~ Ix."x,')}, (39)

where the elements of the generalized-charge-
bond-order matrix are defined as (Refs. 9 and 10
and I)
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1
p(q, g,)„„=— exp[i k(R~, —&q, )]

xd+(k), d(k), ,&k (40)

(~ is the volume of the first Brillouin zone in the

k space). In the case of the first-neighbor inter-
actions approximation used here in the formulation
of the problem, we have to substitute for q either
(0, q„q,) or (1,q„q,).

The elements of the additional matrix +0(0,q„q,)
are given by

4y/=0 ge 6o Ss 9=

N 0

r (o,@.~)j Z (r r(4a I.ce)[ ' ~
e j. csee r-ra 5 6

p(q4~ qs~ qei '6~ q8~ qe) ~.~
ItqV= J

(41)

where }(+=)(~0''ll'+s~ is the fth atomic orbital in the surface cell characterized by q„q, ,
X«4~5 ~6~ if q =O

g
X«4e+psp) if qIf

(42}

(43)

I+ = —,
' [s+(q,) +a+(q, )) .

og and ~ is the nuclear charge of the eth nucleus and the numb~~ «nucle~, respect»e&y» the bul
cell, wh'le Z and M are the same in the surface cell (which may be constituted from a Pure surface cell
and a chemisorbed molecule). Correspondingly, as mentioned before, tR =m +m~, where m~~ is the
number of orbitals in the chemisorbed molecule. Finally,

&(q.» qs~ qs~ q7. qadi qs)., = Q JI
d~2dks d ~.;p(&a~ ~s}~~. ..(~2~ ~3}

Ry3

x exp(i[@,a,(q, q)+0—a,(q —q }]] (q =0, q =0 or 1),

I' 9, k2, k3 F 1, k2, k3

I,L(l, k„k,) 0 (45)

%e can immediately obtain also the elements of
the matrix F(1,q„q,) if we substitute in(41) every-
where the orbital }(,"'2'+ instead of }(&~'2'3~.

After having all the necessary expressions for
the ab initio SCF LCAQ treatment of the surface
(and chemisorption states) of a three-dimension-
sional crystal, one can proceed in the following
way:

(i) One has to solve first the SCF problem of
the three-dimension(al periodic infinite crystal.

(ii) Next one has to obtain the A.,(k'} solutions of
Eq. (34). Very probably this is numerically the
most difficult step of the procedure. One promis-
ing way to do it is, as van der Avoird et aE."have
suggested it, to solve the eigenvalue problem of
the Hermitian matrix M" [M(X) is not Hermitian]:

iV (~(k')}d,{~(k') }= [a'(k') —~(k')S'(k')]

x M( Z(k') }d,{X(k') }
=E {A(k'})d{X(k')}, (44)

where

and 8'(k'} has an analogous expression. " By sub-
stituting into (44) different trial values of X(k'),
one can find out the zero eigenvalues Ez{A(k')}=0
of this equation. The values X(k') which provide
these zero eigenvalues will be the roots of the
equation det[M(&(k )}]= 0.

(iii) After having found the roots X&(k'), one can
substitutethese back into Eq. (33)and solve that for
the different vectors Zq~(k') and Z,„(k'), respectively.

(iv) With the aid of the vectors 8, 0(k') and d, ,(k'),
one can form again the matrices F0(0,q„q,) and E,(1,
q„q,), and with the latter ones the matrixM(X(k')).
In this way the whole procedure can be repeated
until self-consistency is reached.

Qne can hope that after coding the described
method one can obtain, in the near future, surface
states for three-dimensional crystals in an ab ini-
tio SCF way. Comparing the results of these
planned calculations with those of cluster calcula-
tions and of two-dimensional (layer orbital) calcu-
lations on simple metals (like Be crystal), one will
'be able on the one hand to decide better when
these approximations are justified. On the other
hand, the results of these calculations will give
also better answers on the following questions:
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(i) How nutny neighbors perpendicular to the sur-
face have to be taken into account in different
types of systems (metals, covalently bound cry-
stals, etc. ) to describe correctly the surface and
chemisorption states; (ii) how much are the sur-
face states localized or delocalimed in these sys-
tems; and (iii) how much effect may the (usually
experimentally not well-known) possible changes
have in the geometry of the surface cells as com-
pared to the bulk cells on the surface states. All
these studies mill serve of course the better under-

standing of the surface properties and in final an-
alysis of the catalytic properties of different sol-
ids.
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