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A self-consistent method is developed to treat the propagation of electromagnetic waves in composite media.
The theory reduces to the effective-medium approximation in the static hmit, but unlike the latter is not
necessarily limited to composites in which only electron-dipole scattering contributes. The self-consistency
condition on the e6ective complex propagation constant kQco)=[&/AD)]'"~/c reduces to the requirement
that a~ be chceen so that the "forward-scattering amplitude" of particles embedded in this medium should
vanish on the average. The approximation is applied to far-infrared absorption in a model granular metal.
Absorption due to induced eddy currents, properly included in the new theory, but neglected in the existing
quasistatic theories, is shown overwhelmingly to dominate the classical absorption coefficient of such
composites below the insulator-metal transition even for very small particles.

I. INTRODUCTION

The propagation of electromagnetic waves
through composite media is often treated by as-
cribing to the composite an effective complex di-
electric function c,«(ro).' Numerous approxi-
mations for calculating c,«are available in the
literature. Most, however, are based on the
"quasistatic approximation" —that is, they are
derived at zero frequency from consideration of
the static electric field and electric displacement
in the composite, and are extended to finite fre-
quencies in a naive manner. Two well-known ap-
proaches of this kind are the Maxwell-Garnett
approximation (MGA)' and the effective-medium
approximation (EMA). ' " Both become exact for
a composite consisting principally of one com-
ponent and containing only a small volume fraction
of a second, but the latter shows certain new fea-
tures, for example, a metal-insulator transition
in a composite consisting partly of metal and part-
ly of dielectric. The condition for extending these
approximations to finite frequencies is believed"
to be that the characteristic particle dimension a
in the composite is small compared to the charac-
teristic wavelength X. For shorter wavelengths,
electromagnetic scattering becomes important
and these theories as presently formulated cer-
tainly break down.

In this paper, we extend the EMA to finite fre-
quencies, using a full multipole expansion to treat
scattering from small particles. The main output
of the theory is an effective complex wave vector
k„,(~) which describes the phase velocity and at-
tenuation of a plane electromagnetic wave of fre-
quency &, or equivalently an" effective dielectric
function" c «(ur) defined by k,«(e) = [c,«(rv) j'~2 u&/c.

The new theory, unlike the old, is not necessarily

restricted to particles small compared to the
wavelength of radiation in the composite, but
could in principle continue to be useful even for
quite short wavelengths, so long as the attenuation
length [essentially (Imk„,) 'j is large compared to
characteristic particle dimensions. While in prac-
tice it might appear that this condition will be sat-
isfied only for small-particle composites, it may
also hold for larger but weak-scattering particles,
or even possibly systems in which strong scat-
tering by individual particles may sometimes tend
to cancel out, still leaving quite a large attenua-
tion length (or "photon mean free path").

To illustrate the new predictions of the "dynamic
EMA" (DEMA), we have applied it to an important
special case, namely, far-infrared absorption by
a composite consisting of small metal particles
and dielectric. We find that the static EMA is
drastically in error at concentrations of metal
below the so-called percolation threshold (i.e.,
that concentration at which the metal forms a
closed conducting path). The DEMA, in contrast,
predicts an absorption coefficient hundreds to
thousands of times greater than the static EMA
even for quite small metal particles. The extra
absorption, which results from eddy currents in
the metal particles (or, equivalently, induced
magnetic dipole effects) is in agreement with the
predictions of the classical Mie theory in the
small concentration limit, for which calculations
have been carried out by other workers. '

The new DEMA is most conveniently formulated
by considering the fields generated inside the par-
ticles that make up the composite when an elec-
tromagnetic wave propagates through it. In the
spirit of the EMA, these are calculated as if all
the material in the composite (metal and dielec-
tric) were formed into spheres embedded in a
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II. FORMALISM

We consider a plane electromagnetic wave of
frequency v propagating through a composite such
as is showin in Fig. 1(a). The wave will be attenuat-

(o)
eff

FIG. 1. Illustration of the self-consistent embedding
principle as applied to electromagnetic wave propagation
in composite media. The electric field and electric
displacement in the ith grain are calculated as if the
actual environment of the grain (a) were replaced by an
effective environment of dielectric function ~,& (cu). The
requisite fields are then found by solving the boundary-
value problem illustrated in (b).

uniform effective medium of dielectric function

e,«(&o) (the special assumption of spherical shape
is inessential and can be removed). c„, is then
determined self-consistently by requiring that
the appropriate Fourier components D(g&o) and

E(q&o) in the composite be related by a constant
of proportionality c,«(v). This condition is im-
posed at a magnitude of q corresponding to that
of the propagating electromagnetic wave, i.e.,
0= [&,gr(~)] N~=&en.

The DEMA as formulated in this way can be re-
cast in terms of the scattered fields rather than
the interior fields. The self-consistency condition
just mentioned will be shown rigorously equivalent
to the requirement that the forward-scattering
amplitudes of the particles in the composite, mea-
sured relative to g,«, should vanish on the aver-
age. Now if e,«were nondissipative [Im&,«=0]
the forward-scattering amplitude would be re-
lated, by the optical theorem, to the total cross-
section (absorption plus scattering). Since Imc„,
e0 in the case at hand, the analogous "cross-sec-
tion" can be positive or negative, and in this sense
the DEMA is equivalent to choosing &,«so that a
wave propagating through this medium shall ex-
perience, on average, no further scattering. This
interpretation permits a connection of the DEMA
in spirit to other self-consistent theories of dis-
ordered systems.

The formulation of the dynamical MGA is some-
what subtler and will be deferred to a subsequent
publication.

We turn now to the body of the paper. The BEMA
is formulated in sec. II. The application to far-
infrared absorption by granular metals is pre-
sented in Sec. III. Several mathematical details
are contained in the Appendix.

ed and retarded as it moves through the medium,
because of multiple scattering amongst the par-
ticles composing it and also because of actual ab-
sorption. W'e wish to take these two effects into
account in an average way by means of an effect-
ive propagation constant k,«= k, + ik„or equiva-
lently a complex dielectric function e,«(~) which
we define by e,«(&o) =c'k', «/uP.

We shall determine &,«(ur) by means of a sim-
ple approximate argument based on self-consis-
tency. First, we note that if wave propagation
through the composite can indeed be described by
an effective dielectric function, then, for a
macroisotropic medium, the electric field and
electric displacement associated with such a
wave propagating in the z direction must be relat-
ed by

(2.1)

where k,«and &o are related by k,« = [z,«(&u)]' 'ru/c.
No averaging is necessary in (2.1), despite the
randomly nonhomogeneous nature of the composite,
because the Fourier components already involve
an effective space average. Now although (2.1) is
in principle exact, it cari only' be evaluated ap-
proximately because the fields in the composite
are spatially varying in a random way. We there-
fore calculate the fields in each grain as if the
grain were spherical and embedded in an "effective
medium" of dielectric constant &,«(&) (the re-
quirement of spherical shape is inessential and
can be removed as noted above). This embedding
assumption shown schematically in Fig. 1(b), makes
the problem tractable irrespective of the frequency
of incident radiation or the diameter of the grain.

Consider, for example, the ith grain, which for
convenience we assume to be homogeneous, of
volume v„and centered at the origin. Under the
embedding assumption described above, the elec-
tric field incident on the grain is

E E +fkegts k~t (2.2a)

and the magnetic field is

(2.2b)

It is convenient to choose the incident wave to have
polarization such that E,=ff+fy (If the co.mpon-
ents of the medium exhibit no birefringence, all
the results that follow can immediately be applied
to lineerly polarized waves. } The fields inside
the grain and the scattered fields can be found by
expanding interior and exterior fields in a multi-
po1.e series and matching boundary conditions in
a standard way first developed by Mie." The in-
terior field can then be used to calculate the in-
tegral over the grain volume,
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required to find the integrals in (2.1). As is well
known from the Mie theory, an incident field of
the form (2.2) will result in an integral I, which
can be written in the form

(2.3)

I, = (2+ ig)I, .
From definition (2.1}it then follows that a,„
=2, e,I, /Z, I, or equivalently,

Q 5c)I)=0.

(2.4)

(2.5}

Here 5c]=c]-4 ~, and the sum runs over aB the
grains in the sample. Note that the integral I, can
be calculated as if the ith grain were centered at
the origin.

The crucial element in this calculation is the in-
tegral I,. As is shown in the Appendix, this quan-
tity is intimately connected to the sccNered field
in the forward direction. The exact relation is
there shown to be

Iq = (4vic,~~/Ia 5(e)S(( )0, (2.6)

0 being a unit vector pointing radially outward
from the origin. Substitution of (2.6) into (2.5)
gives

g S,(O) =0 (2.Sa)

where 8,(8,@) is the amplitude of the scattered
wave in the far (radiation) zone, defined by

(2.7)

and

limS, (e, P) =S,(0)(f+f/) xx,

Equation (2.9) can be viewed as defining an effec-
tive total cross section, but, if the embedding
medium has a complex dielectric constant, the
new "cross section" does not have to be positive.
In this language condition (2.8) simply means that

ff is to be chosen so that a wave p ropagating
through the effective medium shall experience, on
the average, no further scattering. This intuitively
appealing statement of the self-consistency con-
dition is analogous in spirit to that which defines
the coherent potential approximation of alloy the-
ory. '4

Condition (2.S) can also be interpreted from a
slightly different point of view. If we consider
the electric field at point x in the composite, it
will be made up of the propagating wave (2.2) plus
the sum of the scattered wavelets from the vari-
ous grains in the composite,

E(x, t) = E)~~(x, t) + Q E,",
~t t(x, t),

where E,",,'« is the wave scattered from the ith
grain (cf. Fig. 2). If that grain is sufficiently far
from x, then the principle of self-consistent em-
bedding shows that this scattered field at x will
be of the form (2.7). In order for this picture to
be self-consistent, we must require that the sum
of the scattered wavelets vanish, i.e. ,

QE,"„'„(x,t)=0

in some average sense. If we assume that all the
fields E,"'«can be approximated as radiation
fields, then it is possible to show, using an argu-
ment based on the principle of stationary phase, "
that the "ensemble average" of (2.10) (i.e. , an
average over possible environments of the point

or equivalently,

(S(0))= 0, (2.8b)

C, = (4v/k') Res, (0) . (2.8)

where the brackets denote a volume average, i.e. ,
( ) =N'Z„N—being the number of grains in the
composite. Equation (2.8) is therefore a self-
consistency condition which determines z,«with-
in the (dynamic) EMA.

The result (2.8) can be used to make a connec-
tion in spirit with other approximations in the
theory of disordered systems. If e„,(&a) were real,
then, from the optical theorem, the real part of
the forward scattering amplitude S,(0) would be
equal, within a constant of proportionality, to the
total cross-section C, (absorption plus scattering)
for the ith particle. The exact connection is (for
the phase convention used here)"

O~
)], =

))
O)i

i j)
FIG. 2. Alternate way of viewing the dynamic effective-

medium approximation. The field at x is the sum of the
propagating wave, which has field Roe'~~' ~, plus that
of all the wavelets scattered from the various inclusions.
The scattered field at & is dominated on average by
forward scattering from the inclusions lying in a narrow
cone to the left of x. Self-consistency then requires k
to be chosen so that this forward-scattering amplitude
vanishes on the average.
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4»0

S,(0)=—g (2l+ 1)(a"'+h"')

where a'," and b', "are the electric and magnetic
multipole coefficients characterizing the scat-
tered field. These coefficients are given by the
standard expressions

(2.11)

x) is dominated by scatterers lying in a narrow
cone along the negative z direction relative to the
point x (cf. Fig. 2). The sum (2.10) is then found
to involve an average over the forward-scattering
amplitudes of the particles contained in this cone,
and condition (2.10) becomes identical to (2.8).
Thus condition (2.8) can be obtained by an intui-
tive argument based purely on scatterin con-
siderations, without any explicit reference to in-
terna/ fields within the grains themselves.

It is useful to express (2.8) in a form suitable
for calculation. The forward-scattering ampli-
tude for the ith particle, which is assumed to
have radius R, and dielectric function eg(~), is"

the sum in (2.8) is very rapidly convergent. For
illustrative purposes, we shall neglect all terms
but the electric and magnetic dipole coefficients
u,"',b',"and keep only the leading terms in these
in an expansion in powers of x, . The result of
such an expansion is

8 3 E+ 2f e~g
(3.1a)

(3.1b)

where «, = (tuR»/c)(e„, )' ' as before. Substituting
(3.1) into (2.11) and (2.8) gives

n -x' ' "'+~x' ' -j. =On 4S~~+ 2~e~r jeff
(3.2)

where n, is the number of particles per unit vol-
ume of type i. This can be simplified to the form

~R
+ Keg~ C

(g) Pg(yg)( g(xg)»4»7»(y»V»(«)g
&g(yg)&g(xg) —

» «g(yg)4'(xg) '

h(g)» »4»(yg)4»(«g) Pg(yg)k»(«g)
» g((»g(yg)&g(xg) —»(g(yg)&g(xg)

'

where

(2.12a)

(2.12b)

where fg is the volume fraction occupied by part-
icles of type i. Lf the magnetic dipole term were
neglected, only the first term in brackets would
remain (that is, the result would correspond to
setting ~R»/c = 0). The corresponding "static
limit" would then read

xg [e gg((3)) j
&R

[eg((0)f

J"» [eg(R)/fog»(M)1 yg/«g 3

Pg(x) =«i g(x),

t (x)=xa "(x)
and the primes denote differentiation with respect
to the argument. j, and h,'" are spherical Bessel
and Hankel functions. With (2.12), approximation
(2.8) is explicitly described in the form of a tran-
scendental equation (or, in the case of a collection
of particles described by some continuously vary-
ing parameter such as radius, an integral equa-
tion).

g egg-
%i+ 2feff

(3.3)

in agreement with the static "effective-medium
approximation" of Bruggeman, ' Landauer, ' and
various subsequent workers. However, the new
term arising from the induced magnetic dipole
moments has a profound influence under certain
conditions as will be illustrated shortly.

Vfe shall assume, for purposes of illustration,
that the composite consists of only two types of
particles, of dielectric function e„and c~, and
present in volume fractions f„=fand fs= I -f. We
also assume for mathematical simplicity that each
type of particle is formed into approximately
spherical shapes of the same radius R. [If a range
of radii is present then (3.2) is evidently an inte-
gral equation. ] Then (3.2) takes the simple form

HI. NUMERICAL EXAMPLE

To illustrate some of the new effects predicted
by the formalism of the preceding section, we
consider the special case of electromagnetic
waves propagating through a composite made up
of particles small in comparison to the wavelength
of light in the medium. En that case, the various
spherical Bessel functions can be expanded in
powers of their arguments, and it is found that

4 (1 — '" 4 y(4 —4„,)
= 0, (3.4)c~+ 2z,~,

where y =~»&u'R'/c' Equation .(3.4) is seen to be
a cubic equation for ref f which reduces to a well-
known quadratic in the static limit (y=0). The
material we shall study is a composite in which
material A. is a free-electron metal and material
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B is a dielectric of dielectric constant unity. We
take c„(&o) to be a Drude dielectric function,

e~(ILI) = 1 —&dI, /[&d(&d +f/7)] =—e (tu), (3.5)

c~, -1+3f[(c —1)/(e + 2)+ y(c —1)]. (3.6)

The oerresponding attenuation constant is (to low-
est order in f)

where ~~ is the plasma frequency and w is a re-
laxation time. Such a composite is representa-
tive of a variety of granular metals '"' which
have been of considerable experimental and the-
oretical interest in recent years.

The far-infrared attenuation constant a
= Im(&o/c)[c, «(&d)]'I' resulting from the solution of
(3.4) and (3.5) is shown in Fig. 3(a) for several
values off and for a scaled particle radius or~a/c
= 1 and relaxation time &op= 100. (This radius
would correspond to a particle of radius -100][
in Al. ) The constant a is essentially the inverse
of the effective "skin depth" of the composite. As
calculated here, it takes into account, in an
average way, both absorption and scattering of
energy out of the incident beam, but at the long
wavelengths considered here the scattered com-
ponent is very small and e is certainly almost
entirely a measure of absorption.

At low concentrations (f(-', ) and sufficiently low
freiluencies (u «I/r), it is evident from I'ig. 3(a)
that e is proportional to uP. This is in accord
with previous results in this regime, "but the
magnetic dipole term (II,) enormously enhances
the predicted absorption, as is illustrated by a
plot of the "quasistatic" absorption coefficient
(y = 0) for f= 0.15, shown in the same figure.

The enhancement factor due to magnetic dipole
effects can be obtained analytically in the limit of
small f by expanding EII. (3.4} in powers of f, and
retaining terms up to first order only. This pro-
cedure gives

ipse

I I

(Q»
I I I I I III I I I I I I I II I I

(p-s

CtJ/CaJp

io-2

FIG. 3. (a) Absorption coefficient n(f, ~) calculated
for the model granular metal described in the text. The
effect of magnetic dipoles (eddy currents) can be seen
by comparison of n(f =0.15,~) with the corresponding
quantity calculated in the quasistatic approximation.
Units of n are such that co& =1 and c =1; to convert to
cm ~, multiply by w&(sec )/3x10 . (b) Extinction co-
efficient per unit number density of metal spheres, in
units of m2, plotted for a dilute collection of metal
spheres in vacuum. Except where shown, all calcula-
tions were carried out by summing the fu11 Mie series
to convergence. The corresponding coefficient, calcu-
lated with only the dominant parts of a& and 5&, is
shown as a dashed curve for (d& 7 =100 and ~&a/c =1.

Qf &u' 1 f &oa'
2 c &u~2r 20c c 1+ (Idr)' ' (3.7}

The first term is due to the induced electric di-
pole, while the second results from the magnetic
dipole. In the regime w«1 both vary as (d' with
the magnetic and the electric coefficients contri-
buting in the ratio

a I I,[i0, j' (3.8)

1 1 co~a ' 1
2 c 1 —3(o(&0+i/T)/47~ 30 c 1+ f/alT

i

on using (3.5). In the far-infrared region (&o «e
but not necessarily &o«1/r) this inay be expanded
in powers of ILI/&d~ to give
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z„,(~)=1+( / },S (0), (3.9)

where n is the number of metal spheres per unit
volume, and we have used the fact that for a di-
electric sphere of radius R, I, =e„ the volume
of the sphere. This corresponds to an extinction
coefficient [Eq. (2.9)]

For the parameters chosen in Fig. 3 this x;atio
is about 110. For larger particles the ratio is
evenlarger, increasingas a' if r is assumed in-
dependent of particle size. At higher frequencies
(I/r «o «a&~) the magnetic contribution saturates
but the electric coefficient continues to increase
as (O'. This leads to the "shoulder" in n near co

= I/r, seen in Fig. 3. Eventually, the electric
coefficient becomes dominant again, at a frequency
which depends on 7' and a. In Fig. 3, this return
occurs near co&=0.1. But at this frequency a pure
(d' behavior is no longer seen; instead, the ab-
sorption curves begin to be influenced by the well-
known electric dipole resonance whose peak occur s
in the vicinity of 0.5~~. In the EMA the resonant
absorption sets in at lower frequencies for f= 0.25
than for f=0.15, as can be seen from Fig. 3.

Considering the dominant influence of the mag-
netic dipole term as illustrated in Fig. 3(a), it
may appear insufficient to truncate the Mie series
as done in Eq. (3.1). However, this truncation is
adequate at least in the long wavelength limit. In
that regime x, and y, are small and the coefficients
a', "and b,"' vary as x',."' and x,"", respectively.
Since e„(&o) varies as I/&u at lower frequencies,
one must keep all terms through order x,' to avoid
missing any part of the e' absorption coefficient.
Only a» +, and b, contribute in this order; the
appropriate expansion (see, for example, p. 144
of Ref. 13) can be used to show that in fact only
the terms included in (3.1) actually contribute to
the ~' coefficient, so that the present expansion
is indeed adequate in the far infrared. The
adequacy of (3.1) can also be numerically confirmed
for j«1. In this regime, the self-consistency
condition (2.5) can be shown to reduce to

l2

O 8

—I,O

0.8

I

0.2 0.4 0.6
f

0.8

0.6 b

04 v

b
0.2

FIG. 4. Left-hand scale: the function A(f ) = n(f,
co =0.001)/fco2) plotted for the BEMA. Right-hand scale:
o(cd =0.001,f )/cr(~ =0.001,f =1), as calculated within
the BEMA.

able from those based on retention of only the
leading portions of the a, and b, coefficients.
(This is no longer the case, of course, at larger
+, but even for ~~a/c as large as 5 and &u- &o~

the Mie series converges in only a few terms. }
For reference, we also show in Fig. 3(b) the far-
infrared values of C as calculated in the noninter-
acting limit for several other choices of ~p and

~~a/c, using the full Mie series.
Although o'. at low frequencies reduces to the

"noninteracting limit" as f- 0, it shows progres-
sive departures from that limit as f increases.
This is shown in Fig. 4 where we plot A(f, &o)

= &/(f&u') versus f at &o= 0.001 &u~. In the nonin-
teracting limit this quantity would remain a con-
stant, independent off. As may be seen, the ratio
instead increases rapidly with f, becoming singu-
lar at f= 3. This is the concentration at which a
metal-insulator transition occurs in the static
EMA. This concentration is unchanged when "dy-
namic" effects are included in the theory. The
behavior of A(f, ur} can be obtained analytically
for f&f, and &o « I/r by multiplying out (3.4),
making a low-frequency expansion of all terms,
and setting the coefficients of ar ' and co' equal to
zero. This gives

4n'
C =

( / }2 n ReS (0), (3.9a)
c,(f) = I im Re&„,(f, &o) = (1 —3f) ', (3.10a)

which ia precisely the extinction coefficient of a
collection of n metal spheres of radius a in unit
volume. " Thus, the effective dielectric function
calculated from the DEMA gives the correct ex-
tinction coefficient in the low f limit. The value-s

of the dimensionless constant Clnva', as calculat-
ed from (3.9a), using the full Mie expansion, "
are shown in Fig. 3(b) for &u~v' = 100 and a~a/c = 1.
As may be seen, when &o& 1/7, the exact results
for +~a/c = 1 and v~r = 100 are nearly indistinguish-

e, I.im~ ' I=-me, «(f, u&) =

and hence that

10 c 1 —3

(3.10b}
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A(f, (o) = c,/(2f c v z, )

9 1-f 1 a ', 1 f-
2c ~'r{1—Sf)'~' 20 c ~ (1 —Sfp" '

(3.10c)

IO
0,4 0.6 08 I.O

VJ
C/l

0

or, if we introduce an effective frequency-depen-
dent conductivity by o,« = (u&/4w) Ime, «(&o), then
cr~, - (d" '. The corresponding behavior of n is

u{f (o)-(o'I (3.12)

IQ I I I I I I I

lQ
NQ

(d QJ&

FIG. 5. e(f =f ~
= ~3, co) vs u, calculated within the

DEMA. The corresponding quasistatic result is nearly
indistinguishable from that shown.

which diverges near f, as expected. '"~'
In contrast to the far-infrared behavior of a in

the insulating composite (f&-,), the behavior on
the metallic side is not grossly affected by inclu-
sion of dynamic terms in the EMA. By way of
example, Fig. 3 shows n(&u) plotted for f= 0.55,
in the metallic regime. At very low frequencies,
n exhibits typical metallic behavior [o =A'(f)~&].
We find numerically that the proportionality con-
stant A'(f) diminishes with f and approaches zero
near f= ~ according to the law A'(f)~ (f—f,)'~'.
This behavior corresponds to a metal in which the
static conductivity diminishes linearly with f, ap-
proaching zero as (f—f,)"at f=f„as can be seen
from Fig. 4, where we plot o(f, &@=0.001)/ (fr= 1,
&v=0.001) versus f for f & &. This is precisely the
behavior predicted by the static EMA.

Another type of behavior can be investigated by
studying of c,«(&o) and a(&o) at f=f, =-, . The be-
havior of a(~) at very low frequencies (&a « I/r)
is shown in Fig. 5. We have found numerically
that real and imaginary parts of c„,(&u) obey pow-
er laws; these are found numerically to be

(3.11)

-IO

FIG. 6. Static dielectric constant &~ =lim~ ~0 Reeeff {M)
from the EMA or the DEMA. Note change of scale.

These results are in accord with the previous
results of Webman et al. ,"based on the quasi-
static EMA. Moreover, the coefficient of ' '
proves to be nearly identical in the two cases.
Certainly, the true values of the exponents are
expected to deviate from the present mean-field
numbers.

The DEMA can also be used to compute the
static dielectric constant, Res„,{&u= 0)= c,. This
quantity is obviously given by the static EMA [Eq.
(2.5) with y= 0]. The result is shown in Fig. 5 as
a function of f. In the dielectric regime (f& 3), e,
is a positive and an increasing function of f, di-
verging as (f, -f) ' near f=f„as noted above. In
the metallic region, a is negative, as is illustrat-
ed. The anomaly near f=f,= 3, &, first increas-
ing, then falling through zero, is characteristic
of a continuous metal-insulator transition, as
previously discussed by several authors. ""The
discontinuity at f= 3 only occurs in systems where
the dielectric component of the composite has
strictly zero conductivity.

It is of some interest, finally to compare the
preceding far-ir predictions with experiment. The
major prediction is of course the enhancement in
absorption arising from the induced magnetic
dipoles in the metal spheres. This enhancement
is apparently insufficient to explain anomalously
large far-ir absorption seen in -50-A Al parti-
cles4 but may suffice to explain the order of mag-
nitude of the absorption data on larger particles
of Pd embedded in KCl." These latter data also
exhibit the "shoulder" in the absorption curve pre-
dicted here. (The Al data may require consider-
ation of other effects, such as quantum size ef-
fects" or absorption in amorphous oxide overcoat-
ings. ") The present calculations also predict
that the absorption per particle is strongly depen-
dent on concentration (cf. Fig. 2). Thus the ab-
sorption is predicted to be enhanced if the metal
particles in the composite are "clustered" in re-
gions of locally high concentration, as may be the
cKse in some granular metals.
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We conclude by pointing out some further pos-
sible extensions of the present approach. Treat-
ment of shapes other than spheres would require
only a straightforward application of Eq. (2.8),
although the multipole coefficients would then be-
come much more difficult to calculate. The meth-
od could also be used to treat composites made of
couted particles. "'" Such particles are often pre-
sent in real metal-dielectric composites, in which
it is often found that the metal is coated with ox
ide or the dielectric itself. For example, in the
composite Ag~, (810,), „"electron microscopy
reveals a "correlated" structure in which most
metal grains are coated with dielectric, and not
the "random" or "cellular" structure presupposed
by the EMA and the DEMA as formulated above.
The presence of correlations raises the concentra-
tion of the metal-insulator transition to f -0.5
rather than the value f -0.15 characteristic of a
random cellular composite. If the medium is sup-
posed entirely correlated, so that all the dielectric
is present in the form of coatings on metal
spheres, and if the ratio of coating thickness to
the diameter of metal particles is assumed to be
the same for each particle in the composite, then
the self-consistent embedding procedure leads,
in the quasistatic regime, to an effective dielectric
function which is identical to the Maxwell-Garnett
form. ~ That is, the MGA is in effect the EMA
applied to highly correlated composites. And, in-
deed, the MGA is much more successful than the
(random) EMA for calculating the optical density
of Ag, ,(SiO,)~,.'~ Extension of the DEMA to
such correlated systems would be straightforward
and probably useful in the study of systems of
this kind.
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APPENDIX

The integral defined in (2.4) can be written

where

E,*z ~ 5&,E x dx,
25~,

(Al)

E,(z) = (P+ig)e'" k '0x E,(z) (A2)

and 5z&=z& —z«f. (We shall compute I& for real
k. The resulting value can then be analytically
continued to complex k). Extending the volume of
integration to a large sphere V of radius R, in-
tegrating by parts, and using (A2), we get

lq= 2 Ef(z) ~ Vx Vx(5z)E)dx.
2k 5cq

(A3)

Now Maxwell's equations for a source-free re-
gion of space can be combined to take the form

(V'+ k')D= —V&&»& (5z,E), (A4)

where k= (ur/c)(z«, }' ' as before. Substitution of
(A4} into (A3) and use of Green's theorem gives

2k &~& s

S being the surface of the sphere. In deriving
(A5) we have used the relation (V'+ k')E, = 0 and
have written D= z«, (E,+ E„,«}outside the sphere.
Substitution of the asymptotic form (2.7) for
E„,«gives

g, (8, Q) = (1+cos 8)(f ig) ~ S,(-8, P) . (A6b)

The integra1 can be evaluated asymptotically to
order R, the other terms dropping out in the
limit R -~, and the result for I, is Eg. (2.6) as
desired.

~of f ~&~(1-cos&)
I, = — z«' i dS g, (8,Q), (A6a)2k'|)z,
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