
PH YSI|"A L RE VIE% B VOLUME 17, N UMBER 4 15 FEBRUARY 1978

Tunneling of solitons and charge-density waves through imyurities
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In the presence of impurity potentials which couple directly to the phase of the charge-density waves the
ground state as well as soliton excitations are pinned. The quantum-mechanical tunneling of a sine-Gordon
soliton through an impurity potential is calculated. The small tunneling probability for even a moderate
impurity potential means that the conductivity due to solitons will be greatly reduced. %'e also study the
electric field and temperature dependence of a charge-density wave pinned by impurities when quasiclassical
tunneling is taken into account. The temperature dependence is found to be dominated by simple thermal
excitation and the conductivity is activated in both the strong- and weak-pinning limits.

I. INTRODUCTION

g = gt gg — -H, -H~

(1.2)

where

H, = diam 1 —cosQ x (1.3)

H, = —P V, cos[Qx, +P(x, )].

H
y

des c ribes the coupl ing of CD% with an externa l
sinusoidal potential. Examples of such a potential
are the commensurate energy or the interchain
coupling in cases like TTF-TCNQ (tetrathiaful-
valene-tetracyanoquinodimethane) which consist
of oppositely charged chains. The ground state is
clearly pinned by the external potential. However,
it has been pointed out by Rice et al. ' that there
exist excited states that are the soliton solution
to the sine-Gordon equation. Such sol.itons are
able to move freely and contribute to the conduc-
tivity. The Hamiltonian H, describes the coupling
of impurity potentials located at random sites x,
with the CDW. We shall assume for simplicity that
the impurity strength V is constant. We note that

There has been considerable interest in the pin-
ning of charge-density waves (CD%} in one dimen-
sion by impurities' ' or by external sinusoidal po-
tentials. ' At sufficiently low temperature, ampli-
tude fluctuations may be ignored and the charge
density p(x) is described by the phase variable
y(x)

p(x) —p+ p n(eceox+Ib (x))

'The dynamics of the CDW can be described by the
Lagrangian'

e = Vf/vr. (1.5)

For e»1, i.e. , if V is largeorif the impurities
are dilute, we have the strong-pinning situation.
At every impurity site the phase satisfies Qx,
+ p(x&}= x(2n+1) to take advantage of the impurity
potential. The phase then interpolates linearly
between impurity sites in such a way as to mini-
mize the elastic energy. On the other hand, if
E «1 we have the weak-pinning situation. The
phase is slowly varying over some characteristic

in our model the impurity couples directly to the
phase. Such a model is appropriate for charged
impurities as the impurity potential will couple
to the oscillatory component of the CD%. This is
to be contrasted with the model studied by Fogel
et a/. ,

' where the impurities couple to the gradient
of the phase, i.e. , the impurity couples to the net
charge accumulation upon compression of the
CDW. While Fogel et aE. have shown that soliton
propagation is not seriously affected in their mod-
el, it is clear that the existence of impurities
which couple to the phase directly will inhibit the
motion of the solitons. More specifically, we shall
consider the interaction of a single soliton with a
single impurity. The impurity will pin the phase
of the soliton. In order to pass through the im-
purity and contribute to the conductivity, the soli-
ton must tunnel through the impurity site. In Sec.
D we shall study the probability amplitude for
such a tunneling process.

The problem of impurity pinning alone in the
presence of H, is also of great interest. ' ' Let
us suppose that the impurities are on the average
l apart. In the absence of H, there is clearly a
competition between the elastic energy term given
by vz/F and the impurity pinning energy V. Fukuy-
ama and Lee' have introduced the dimensionless
parameter
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length L, in such a way to take advantage of the
fluctuation in the impurity potential within this
length. The length Lo is determined by minimizing
the free energy

t) /E +V(I ))l)'~'.

The dynamics of the problem have been studied
by Fukuyama and Lee' who concluded that there
is a finite restoring force in both the strong- and
weak-pinning cases. The conductivity therefore
has a peak at finite frequency and the dc conduc-
tivity is zero. Similar conclusions are also
reached by Gor'kov' in the strong-pinning case
starting from a microscopic Hamiltonian and by
Efetov and Larkin' in the weak-pinning case.
Three-dimensional and Coulomb effects are al.so
included in the latter work. So far, the discussion
has been restricted to zero temperature. In this
paper we shall study the dc conductivity at finite
temperature and in finite electric field.

Phenomenologically the current is given by

In order to carry a current the phase must in-
crease as a function of time. In particular, some
mechanism must be available for the phase to
increase at the impurity sites. The mechanism
might be thermally activated hopping or quantum-
mechanical tunneling. In Sec. III we consider the
tunneling probability in both the strong- and weak-
pinning limits. In Sec. IV we discuss the implica-
tion for the temperature and electric field depen-
dence of the dc conductivity.

II. TUNNELING OF A SOLITON THROUGH AN IMPURITY

In this section we consider the interaction of a
single soliton with a single impurity potential lo-
cated at the origin. There are two separate re-
gimes, depending on whether the impurity poten-
tial V is large or small compared with the soliton
energy E~, and we shall study these two cases
separately.

~ ~
e ~

X

FIG. 1. Tunneling of a soliton through an impurity
located at the origin. Solid line and dashed line are
the initial and final states, respectively. Dotted line
depicts the rapid tunneling at the impurity site.

Recently, Maki' has considered the tunneling
problem in the presence of an electric field for
the H, only problem. He uses a method in imag-
inary time proposed by t'Hooft' which we also find
convenient to use here. The probability ampli-
tude is given by e", where the action A is obtained
by minimizing the function J dry(r), where the
Lagrangian 2 is the same as that given in Eq. (1.2),
except that (s4/st)' is replaced by —(sQ/sr)'. The
justification is clear in the case of a single-par-
ticle tunneling through a potential barrier. 'The

probability amplitude for semiclassical tunneling
is given by exp(-f drq(r)), where q(r) =(2m[V(r)
-E]P~'. We can interpret q(r) as the momentum
for a particle of negative mass (or moving in
imaginary time). In this case, we have J dr[8(r)
+S]= f drq(r), where Z(v) = -2m(er/Sr)' —V(r)
and E is the energy of the system. This argument
can clearly be generalized to the case of tunneling
of a field variable )f)(x).

We first consider the case V»E~. Our prob-
lem is to find @(X,r) which changes from the ini-
tial to the final state illustrated in Fig. 1 while
minimizing the action. It is convenient to change
variables to To = e7', where e is the phase mode
velocity given by n =mr(m/m*)'~' and m*/m is the
ratio of the effective mass to the electron band
mass, and rewrite the action in the form

A= — d&'dx, + — cosQ —1 — 5x cos Q (2.1)

It is apparent that there are two separate regimes
in the tunneling process. 'The phase at the im-
purity site will tunnel through in a short time &,
to mini, mize the impurity potential energy while
the change in phase of the soliton away from the
impurity site will proceed more slowly. To de-
scribe the tunneling at the impurity site, let us
write the following trial solution:

for 0&v'&r", and ~x~ &I, . (2.2)

Since V «E& the contribution from n, cosQ in Eq.
(2.1) may be ignored and we obtain a contribution
to the action for this time interval equal to
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A, = —— — 0, + —+&0' (2.3)

Minimizing with respect to l„ it is clear that l,
=To and

A, = -(m~/m)'~'( —,
' w+ I,V/vw) . (2.4)

82y 92y„+,= -2m sing for x, ~' &l, .ex' vy
(2.5)

This equation is now isotropic in (w, r } space. The
right-hand side of Eq. (2.5) may be ignored if tv/vw

is less than I/w', where w is the characteristic
size of the spatial variation. Since this size is
less than the soliton size I, - (te/vr) ' ', the condition
is marginally satisfied. Equation(2. 5) is then ap-
proxirnated by the bvo-dimensional Poisson equation

'The next tunneling regime we consider takes
place away from the impurity site when the phase
changes from the solid curve shown in Fig. 1 to the
dashed curve. Now the impurity potential no longer
plays a role. The phase then obeys the equation

It remains to determine the cutoff l,. This is
done by minimizing the sum A, +A2 The result
ls

A, +A, = -2(m*/m)'~'[c+In(V/E, )], (2.8)

where c is a number of order unity (c= —,'+-', w within
our approximation). It is interesting that the ac-
tion depends only logarithmically on the impurity
potential. The large action means that the con-
ductivity by solitons will be greatly reduced.

We next consider the opposite case when V«E~.
In this case, the impurity potential is a small
perturbation and the soliton will maintain its in-
tegrity in the tunneling process. The phase can
be described by P,(w -x,(t)}, where Q, is the soli-
ton solution and x, describes the location of the
soliton. We then have the effective Lagrangian

8 = -',m, (x,)' —V(1 —cos[P,(-w, (t))]), (2.10)

where m, = Ew/v' and we have a single particle
problem described by the parameter x,. The tun-
neling amplitude is given by e" where

82 Q2

„Q+ 2/=0 for x, 7'&l, , A = — 2m, V 1 —cosQ, ~'dx, . (2.11)

subject to certain boundary conditions. Under the
condition I, » I, (which can be verified a Posteriori)
we can solve Eq. (2.6) in cylindrical coordinates
r and e. A simple solution is given by /=28. The
interpretation of this solution is as follows. For
&'- -, P = —r for all x. Let us restrict our at-
tention to x & 0. As w' increases toward zero, the
phase P changes from -m at the origin to being
zero at infinity over a shorter and shorter dis-
tance. As v' passes through zero the phase at
@=0 suddenly jumps to m and eventually for w'

-, Q = r everywhere. In the region in time and
space near the origin where the phase jumps from
-m to &, the impurity potential needs to be taken
into account. However, this is precisely the first
tunneling regime we treated earlier in arriving
at Eq. (2.4). Thus we remove a circle of radius
l, at the origin from our present consideration.
Putting this solution into the action

'This can be simplified by noting that

dQ 4m' (2.12)

Changing the integration variable to Q„ Eq. (2.11)
becomes

A = -2w(2m, (v„V/4wtv)"'

= -8[(m*/m)V/E ]"'. (2.13)

H~, = + V 1 —cosQ, ' dx'5 x

Our quasiclassical treatment is valid only if ~A
~

»1. If this is not obeyed, a full quantum-mechan-
ical treatment of Eq. (2.10) is required. We sim-
ply note here that if the soliton momentum p is
sufficiently small the scattering of the soliton by
the impurity is described by an effective Hamil-
tonian

+ 6(x) .p VEg
2m~ 2' (2.14)

(2.7)

the integral is clearly logarithmically divergent,
in analogy to the energy of a vortex in two dimen-
sions, 'The natural cutoffs for the radial integra-
tion are l, and l,. &e obtain

(2.8}

The soliton-impurity problem becomes identical
to the usual electron-impurity problem. 'There is
an extensive literature dealing with the localiza-
tion in one dimension of this problem. '

III. TUNNELING THROUGH RANDOM IMPURITIES

The numerical factor in this expression is ac-
curate, the only correction will appear inside the
logar j.thmic term.

In this section we study the problem of tunneling
through impurities in the absence of the external
potential H, . First we treat the strong-pinning
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case e»1. In this case, the phase must change
from the initial to a final state in which the phase
has jumped by 2& between two impurity states.
This problem is similar to the soliton-impurity
problem discussed in Sec. II. The tunneling prob-
lem is again divided into two parts, the rapid
tunneling at the impurity site and the slow change
of the phase from 0 to 2w in between impurity
sites. The result is the same as Eq. (2.9}except
that we must replace the soliton size l, by the im-
purity spacing ~x, -x, ~. If we set ~x, -x,

~

=I, we
obtain

A = -2(m*/m)'~ Inc, (3.1)

where e is defined in Eq. (1.2).
We next consider the weak-pinning case. Let us

suppose that a section of length I o [defined in Eq.
(1.3)] tunnels from one state to another of similar
energy in the time w,'. In general, such states are
well separated in P(x) space. Unlike the strong-
pinning case, the phase wit. l go smoothly from the
initial to the final state and the action is roughly
given by

lV. RESISTIVH'Y

In this section we discuss the resistivity in the
presence of random impurities in the absence of
external potential 0,. We begin with the strong-
pinning case. Let us first discuss a very artificial
model in which the impurity spacings are all equal
to l while the pinned phases are random. The non-
linear conductivity can be discussed very simply
in this model. The phase will tunnel from the
initial state shown in Fig. 2 to the final state. The
energy gained from the electric field equals eEl,
where l is the size of the tunneling segment. The

x,

FIG. 2. Vertical lines denote impurity sites. Solid
line is the initial ground state and dashed line is the
final state.

'The last term is an estimate of the fluctuation in
the impurity potential. Minimizing with respect
to to and using the expression for I 0, we obtain

(3.3)

where c is a numerical constant of order unity.

elastic energy is different in the initial and final
state only in the first and last impurity sections.
In the one-dimensionaj. problem we should add the
resistance from different segments in the chain.
'The resistivity will be dominated by those seg-
ments with the largest resistance. In the present
case, -this means segments in wMch the impurity
phases are almost equal so that the elastic energy
difference is given by 2vr(2s)'/4sl. The number
of impurity sites we have to tunnel through is given
by balancing the electrical energy gained with the
elastic energy eEI =mr(2&)/I, and the resistance
is given by

p = e px[(2&v+/eEl ')(m*/m)'~' Inc]. (4 1)

By averaging the resistance of different types of
segments weighted by their probability, we can
show that the result given in Eq (4.1). is unchanged.

Next, we consider the resistivity at finite T. The
energy can be supplied by a thermal bath instead
of an electric field. The density of such excitation
is givenby exp( 2'~/37kT-). Such an excitation
will diffuse by tunneling through one impurity at a
time and the tunneling rate is what we calculated
earlier. The resistivity is then given by

p = exp(ver /I AT}exp[(m ~/m)'~' Inc]. (4.2)

We note that the activation energy can be written
&V/a and is thus small, er than the impurity
potential for c»1.

Unfortunately in reality the impurity spacing is
not uniform. The distribution of impurity spacing
is Poisson, i.e., P(l) = I 'exp(-I/I ). The resis-
tance will be dominated by segments in which the
impurity spacing is short. The shortest spacing
allowed without going over to the weak-pinning
regime is given by I = I/e. In Eq. (3.2) for the
temperature-dependent conductivity, l should be
replaced by I/e and inc replaced by unity. Thus,
the activation energy is given by the impurity po-
tential V. In this case, the thermal bath supplies
an energy V and tunneling is in fact unnecessary.
The resistivity is simply p= exp(-V/kT). Similar
consideration applies toward the electric field de-
pendence. The probability of having n short im-
purity spacings, each of length l, is of order a ".
As long as (m*/m)'~'&In@, the small probability
for the existence of this segment is overcome by
the large action and Eq. (4.1) for the nonlinear con-
ductivity must be modified by replacing I by l /c
and inc by unity. The dependence on E remains the
same but the characteristic field becomes much
larger.

Recently nonlinear resistivity of the form
exp(E, /E) has been observed in NbSe, .' However,
putting numerical estimates into Eq. (4.1) indicates
that an extremely large value of l is required to
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produce the observed characteristic field of the
order of 1 eV/cm. Furthermore, there is the
difficulty already noted by Maki' that the energy
suppl. ied by the electric field can also be supplied
by the thermal energy kT. Thus, the observation
of such a small characteristic field at a. relatively
high temperature (-100 K) cannot be explained by
the present model.

'The resistivity in the weak-pinning case is much
more complicated and we can present here only
a qualitative discussion. The physical picutre for
the ground state consists of regions of size L,
inside which the phase is slowly varying. There
may be other metastable states with similar ener-
gy. However, the phase will be very different
from the ground state and generally speaking, the
smaller the energy difference, the longer is the
segment l over which the phase function is dif-
ferent. The only way to make transition to these
low-lying states is by tunneling, and from Sec. III
we know that the probability is very small, being
given by exp[-n(m~/m)'~'], where I=f/I. , With-
out knowing the dependence of the typical excita-
tion energy on n, we cannot study the temperature
dependence of this mechanism. However, at very
low temperature the situation actually becomes
more simple in one dimension, the reason being
that it is the segments with the largest resistance
that dominate the resistivity. Such a segment may
consist of impurities that happen to have the same
phase within &P. The probability of having such
a segment is given by (&P/2s)', where f is the
length of the segment. Inside this segment we
have basically the case studied by Maki and Rice
et al. , with the impurities playing the role of an
external sinusoidal potential. Conduction is by
thermal activation and propagation of solitons.
'The soliton energy E~ and size l,' are roughly es-
timated by minimizing

V(f,'/r ) + vz/f,',
from which we obtain l=e ' 'l and E~ =g-'~'V.
Combining with the probability of having a seg-
ment of length l, we obtain the resistivity from
such a segment,

there will be a contribution to the resistivity of
the form exp(e '~'V/kT). However, we see that
the activation energy in this case is smaller than
that given in Eq. (4.3) and we expect Eq. (4.3) to
dominate the very low-temperature dependence
of the resistivity.

V. CONCLUSION

We have studied the temperature and electric
field dependence of the resistivity for pinned CDW

in one dimension. In a system like TTF-TCNQ,
where chains of opposite charge present to each
other an external potential, it has been suggested
that solitons may provide conductivity with low
activation energy. If impurities are also present
we show that in order to conduct, the solitons must
tunnel through each impurity. As a result, its
conductivity is reduced by the tunneling probability
exp[-4(m "/m)'~'in(V/E~)] if V»E~. On the other
hand, for very weak impurity potential the prob-
lem reduces to the electron-impurity problem in
one dimension. In the case of random impurities
alone, we have studied the tunneling probability
through the impurity potential and the contribution
of tunneling to conductivity. However, we find that
in the strong-pinning case the resistivity is dom-
inated by regions where the impurities are close
together and the resistivity is simply that of clas-
sical thermal activation, exp(V/kT). The weak-
pinning region is more complicated, but the low-
temperature resistivity is still activated, with an
activation energy given by E V.

Finally, we should discuss the validity of t-he

quasiclassical approximation to the tunneling prob-
ability. 'The criterion for small quantum-mechan-
ical corrections is that m*/m» 1, so that the tun-
neling probability is small. We recall the formula
m*/m = 1+4&'/X&oo, where & and &o, are the energy
gap and the phonon frequency, respectively. The
condition m /m»1 is satisfied if &» &X+0. On
the other hand, if &« ~Ace„ the problem is much
more complicated since the possibility of super-
conducting fluctuations will have to be considered. "

p= exp[a '~ 2/VkTe ' 'ln(2v/&P)]. (4 3) ACKNOWLEDGMENT

Note that this makes a large contribution to the
total resistivity if kT «V, since &ft) can be such
that ln(2w/&P) is a number of the order of unity.

Stil.l another contribution to the resistivity is
by thermal excitation. In this case, the typical
excitation involves a segment of size L, and an
energy of e '~'V as shown in Eq. (1.3). Thus,
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