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Electron charge distibution around a proton in Al and Mg has been calculated self-consistently using the
Kohn-Sham density functional formalism. The exchange-correlation potential has been treated both in the
local-density approximation and including the first gradient correction. The results are used to compute the
heat of solution of hydrogen in Al and Mg. Comparison has been made with earlier theoretical and

experimental values.

Heat of solution of hydrogen is defined as the
energy of a hydrogen atom dissolved in a metal
minus the energy per hydrogen atom in a hydro-
gen molecule. Freidel® first treated this problem
by solving a set of single-particle Schrodinger
equations self-consistently in copper. More re-
cently, Popovic et al.? have theoretically estimat-
ed the heat of solution in Al and Mg, using their
nearly self-consistent electron densities calcula-
ted within the Hohenberg-Kohn-Sham® (HKS) form-
alism in the local-density approximation. They
have obtained 0.45 and -0.05 eV as the respective
heats of solution for Al and Mg, which compare
favorably with the corresponding experimental
results 0,65 and 0.25 eV.

The purpose of this paper is twofold: First, one
would like to know how the heat of solution would
change if one were to use fully self-consistent
electron densities (obtained to a high degree of
accuracy) in the local-density approximation,
since the theoretical® heat of solution in Mg not
only disagrees with experiment in magnitude but
is of the wrong sign. Second, the influence of the
gradient correction to exchange-correlation energy
on the heat of solution has never been reported
before.

We have closely followed the procedure of Pop-
ovic et al.? In calculating the nonlinear electron
density around a proton, we have not considered
the effect of periodic arrangements of ions (the
calculation is done in the jellium approximation).
Thus, our results are only meaningful for simple
metals where band structure effects are negligi-
ble. The heat of solution can be written

AH=15.86+ AH,_, eV . (1)

The first term in Eq. (1) is equal to the sum of the
ionization energy of a hydrogen atom (13.6 eV) and
the dissociation energy of a hydrogen molecule

(2.26 eV). The second term is the change in en-
ergy of an electron and a proton in the solid as
compared to that in vacuum. Following Popovic
et al.? AH,_, can be expressed as,

AH, ,=AH, + AH, , (2)

where the contribution AH, depends only on the
properties of the perfect crystal. This has been
evaluated by Popovic et al.? for Al and Mg in the
linear-response theory using the Heine-Aberenkov
form for the electron-ion pseudopotential. The
term AH, depends on the nonlinear response of
the electrons to the presence of a proton and is
expressed

AH,= ;, S(@)W(@)an(@)+ E o » (3)

where S(§) is the lattice structure factor and W(§)
is the bare-ion pseudopotential of the host lattice.
An(§) is the Fourier transform of the displaced
charge density An(¥)=n(¥) —n, around the proton

An(q)= j; ) dr 4rr2an(Ti(qr) . (4)

The first term in Eq. (3) can be viewed as the in-
teraction energy between the electron-screening
charge around the proton and the lattice ions.
Thus the magnitude and phase of the Friedel
oscillations in the displaced charge density play
an important role in the determination of this
contribution. The second term in Eq. (3), E,,
is the electron-proton correlation energy and can
be calculated using Feynman-Hellman theorem

1dz
E pre= f E'V:nt(z) , (5)
(1]
with V,..(Z) as the interaction energy between the
electron and a fictitious point charge Ze (the value

of which lies between 0 and 1),
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V@)= e [arZ an(z ), (®)

where An(Z,r) is the displaced charge density
around a heavy point impurity carrying a charge
Ze and needs to be evaluated for 0 <Z < 1 using

a nonlinear response theory. Popovic et al.? have
evaluated An(Z,7) in a nearly self-consistent way
by using the density functional formalism of
Hohenberg-Kohn-Sham?® and by treating the ex-
change-correlation energy in the local-density
approximation. Our result differs from that of
Popovic et al.? only in that we have evaluated An
An(Z ,r) self-consistently to an accuracy of about
0.1% using for the exchange-correlation energy
per particle the result of Vashishta and Singwi*
in both local density and using first gradient con-
tribution. Our result for the heat of solution in the
local-density approximation differs appreciably
from that of Popovic et al.? This discrepancy is
due to the sensitivity of the heat of solution to the
value of An(Z,r) since AH in Eq. (1) is a result
of cancellation of two large numbers. In what
follows, it is emphasized that an accurate know-
ledge of the displaced electron density around a
proton is necessary.

Using the procedure outlined in our earlier
publication,® we have calculated n(r) for Z =0.25,
0.5, 0.75, and 1 for r,=2.07(Al) and » = 2.64(Mg)
in local-density approximation and using the first
gradient correction to exchange-correlation en-
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ergy. All our charge densities are self-consistent
to an accuracy of about 0.1%. Since the charge
density for Z =1 corresponds to a proton in a
jellium and determines the interaction energy of
the screening electron with the lattice ions, we
have compared the local density result with that
of the gradient correction for Mg in Fig. 1. The
results for Al are similar. The Friedel oscil-
lations are exhibited on a magnified scale since
these are important in the calculation of the elec-
tron-ion interaction energy. Note that there is a
noticeable change in the phase of the oscillations
and that the magnitude of the Friedel oscillations
using first-gradient expansion is bigger than the
corresponding local-density result, which in turn
is a reflection of a larger pile up of electrons on
the proton site.

In calculating the contribution to the heat of so-
lution in Eq. (1), we have taken for AH, (which
depends upon the properties of perfect crystal)
the values of Popovic et al.? for Al and Mg. The
nonlinear contribution to the heat of solution AH,
in Eq. (3) is evaluated as follows. For the compu-
tation of the electron-proton correlation energy,
Eq. (5) is used with An(Z,7) computed for Z =0.25,
0.5, 0.75, and 1.0. Our results in the local-den-
sity approximation and including the gradient cor-
rection are listed in Table I for both Al and Mg.
It is appropriate to compare our local-density re-
sult with that of Popovic et al.? who used “approx-
imately self-consistent” charge densities. In
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FIG. 1. Electron-charge
density distribution around
a proton in Mg. The
dashed curve corresponds

nirl/n,
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to local-density approx-
mation while the solid
curve is obtained by in-
cluding first-gradient
correction to exchange-
correlation energy. The
indent exhibits the charge
distribution around a pro-
ton for r < 3a,.
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TABLE 1. Heat of solution AH of hydrogen in Al and
Mg.

Al Mg

AH, V) 2 —4.00 -3.62

in local E corr €V) -14 40 -13.44

density AHy(eV) -11.22 -11.97

approximation AH ;.. (eV) +0.64 +0.26
AH yp (V) +0.65°  +0.25¢

with E corr(eV) -14.22 -13.37

gradient A Hy(eV) -11.06 -11.83

correction AHpeor (€V)  +0.80 +0.41
AHeqi(eV) +0.65°  +0.25¢

2 Reference 2.

bW. Eichenauer, Z. Metallkd. 59, 613 (1968).

¢Z. D, Popovic and G. R. Piercy (unpublished, quoted
in Ref. 2).

Al, our result for the correlation energy (-14.40
eV) is 0.2 eV more negative than theirs (-14.20
eV), while in Mg our result of E_ . is 0.10 eV
more positive than theirs. Although this discrep-
ancy amounts to less than 2% correction, it is

a large factor compared to the experimental heat
of solution (0.65 eV for Al and 0.25 eV for Mg.
Similarly, our result for the electron-ion inter-
action term, AH, in Eq. (3) (listed in Table I)
also differs from that of Popovic et al.? This is
because of the fact that the amplitudes of the
Friedel oscillation in our fully self-consistent
calculation are somewhat larger than those in the
calculation of Popovic ef al.? Combining the con-
tributions AH, and AH,, we obtain the heats of
solution of hydrogen in Al and Mg in the local den-
sity approximation to be 0.64 and 0.26 eV, respec-
tively. These compare well with experimental
values of 0.65 and 0.25 eV for Al and Mg, respec-
tively. The corresponding values of Popovic et
al.? for Al and Mg are 0.45 and -0.05 eV.

The discrepancy between the present values for
the heats of solution and those of Popovic et al.?
could be due to two reasons: (a) Our calculation
of the electron density is fully self-consistent,
whereas that of Popovic et al. is approximately
self-consistent. (b) We have used for the ex-
change-correlation energy the form given by Va-
shista and Singwi,* while Popovic et al. have used
the values given by Hedin and Lundqvist.® Re-
cently, Zaremba ef al.” have also done a fully
self-consistent calculation using the Hedin-Lund-
quist values. The difference of 0.28 and 0.08 eV
in E_ .. for Al and Mg, respectively, between the
values of Zaremba et al. and Popovic et al. has to
be due to the use of approximate self-consistent
charge densities in the latter calculation. The
corresponding difference of 0.09 and 0.17 eV

between our calculation and that of Zaremba et

al. should be attributed to the use of different
forms of exchange-correlation potential. In order
to assess the accuracy in our calculated numbers
for the heat of solution, we have repeated the com-
putation by taking charge densities of the last two
successive interations (ninth and tenth iteration in
our case). We find that our results are accurate
to only the first place of decimal. The striking
agreement between theory and experiment should
be treated with caution in the light of what follows.
One element of uncertainty is in the choice of the
electron-ion pseudopotential that enters into the
calculation of both AH, and AH,. We have used
the same Heine-Aberenkov-type model potentials
for Al and Mg as Popovic et al.? did.

Calculations of the two contributions to AH,
were also carried out for Al and Mg using the gra-
dient correction to the exchange-correlation poten-
tial. Results are quoted in Table I. The electron-
proton correlation energies for both Al and Mg
are found to be slightly more positive than the
corresponding local-density result. The electron-
ion interaction energies are also slightly different.
Our calculated heats of solution using gradient ex-
pansion are 0.80 and 0.41 eV for Al and Mg, re-
spectively. Thus it is seen that the gradient cor-
rection worsens the agreement with experiment.
While the first-gradient correction is known to
overestimate the effect, the inclusion of higher
gradients in the expansion of the exchange-cor-
relation energy is not expected to improve the
agreement between theory and experiment sub-
stantially.

From this we draw the following conclusions:

(a) The heat of solution of hydrogen depends quite
sensitively on the nature of the nonlinear electron
distribution around the proton. In order to assess
the success of a given model, it is necessary to
demand a high accuracy in the electron-charge
density and the form of exchange-correlation po-
tential for a homogeneous electron gas. Jellium
approximation with local density formulation of
the HKS theory gives a reasonable description of
the heat of solution of hydrogen in simple metals.
(b) While the inclusion of the gradient correction
in the exchange-correlation energy destroys the
remarkably good agreement between theory and
experiment, heat of solution of hydrogen in a
simple metal can still be understood, at least
semiquantitatively, from first principle calcula-
tions.

No calculation of the heat of solution is yet avail-
able in which the effect of the periodic arrange-
ment of ions on the electron-screening cloud has
been taken into account. Undoubtedly, both the
contributions to AH, will be modified. One can
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take this effect into account in an approximate
way in a spherical solid model where the effects
of ions lying at a fixed distance from the proton
is angular averaged. However, such a calculation
would still be considered semiquantitative, since
the accuracy of a spherical solid model has not
been adequately established. A convincing way
of carrying out a quantitative calculation of the
heat of solution is to treat dilute hydrogen in a
metal as forming a superlattice (with proton at
the center surrounded by enough host ions so that

hydrogen-hydrogen interactions could be neglec-

ted) and the self-consistency imposed through the
HKS? procedure. Obviously, this is an enormous

task, but the availability of high-speed computers
provides room for optimism.
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