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We have measured the low-voltage footlike features of the I-V characteristics of tin variable-
thickness superconducting microbridges as a function of temperature. We find these to be con-
sistent with a voltage-dependent enhancement of the supercurrent induced by the disequilibrium
of the quasiparticles during the Josephson cycle. We discuss the physical origin of this effect and
the more-specific microscopically based models of Golub and of Aslamazov and Larkin. We find
the predictions of these models to be complementary, and in good agreement with many aspects

of our experimental results.

I. INTRODUCTION

One of the most interesting ideas in recent studies
of nonequilibrium superconductivity is the realization
that perturbations which decrease the number or alter
the energy distribution of quasiparticle excitations,
may actually increase the magnitude of the energy gap
and other superconducting properties. This idea has
been used successfully in explaining the enhancement
of the critical currents and energy gaps in supercon-
ducting films and junctions induced by microwaves
and phonons.!

Recently, Golub? and Aslamazov and Larkin® (AL)
have suggested that, because of the long relaxation
time of the excitations, a similar enhancement will oc-
cur in short superconducting weak links with increas-
ing voltage, leading to an increase in the average su-
percurrent flowing through the weak link. Gubankov
et al.* have noted the qualitative similarity of their ex-
perimental /- V characteristics of tin variable-thickness
microbridges to the shape obtained by Aslamazov and
Larkin. In this paper, we discuss why the effect oc-
curs and compare specific quantitative predictions of
the theories of Golub and of Aslamazov and Larkin
with our measurements of the properties of short tin
variable-thickness microbridges. We find reasonable
agreement in the regimes where the theories should
be applicable.

II. EXPERIMENTAL PHENOMENA

The experimental phenomena to be explained have
been observed in tin and indium microbridges made in
various laboratories.® Our samples are tin variable-
thickness microbridges, whose fabrication has been
discussed elsewhere.® Briefly, the sharp straight edge
of a diamond knife is pressed through a thick (1—3-
wum) film perpendicular to the direction of a groove in
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the sapphire substrate. This leaves a small bridge in
the groove which connects two much wider thicker
banks. The thick banks provide increased cooling to
minimize the buildup of Joule heat.® They also par-
tially justify the usual theoretical assumption that the
equilibrium properties of the banks can be imposed as
boundary conditions at the ends of the narrow-bridge
section.

In Fig. 1, we show the overall /- V characteristics of
these microbridges. At high voltages there is a sub-
stantial amount of curvature due to heating.” At
lower voltages one observes the characteristic features
of subharmonic-gap structure.® Finally, at the lowest
voltages (0—50 wV) there is a characteristic "foot,"
shown in detail in Fig. 2. Near T, the change to the
resistive state above /. is simply marked by a steep
rise in voltage and a curve without inflection points.
The curve shows an apparent excess supercurrent 1:,
defined as the zero-voltage intercept extrapolated from
the higher-voltage parts of the curve. Near T,, I isa
fraction of the order of 0.6—0.8 times the critical
current /.. At somewhat lower temperatures, the
resistance in the vicinity of 10 uV appears somewhat
depressed. At still lower temperatures, this feature
develops continuously into an initial region (up to
~5 wV) of constant differential resistance, which is
much smaller than the normal resistance Ry, followed
by a rapid growth of the voltage with very little
current change at a characteristic current /.;. Above
this region, there is an apparent excess supercurrent I
which now appears to be related to /., rather than /..
Because of the well-cooled nature of our bridges,
heating-related hysteresis’ appears only at low tem-
peratures, which allows us to follow the development
of this "foot" over a wide range of temperatures. We
find that the ratio /.,/I.¢ increases as the temperature
is decreased, reaching a maximum of as much as two
in some of our bridges at temperatures of order 3.2 K.
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FIG. 1. [I-V characteristics as a function of temperature for bridge No. 2. The inset defines the equilibrium critical current /.,
" the excess supercuirent I, and the maximum enhanced supercurrent /.. The dotted curves show the shape above I, predicted

by Aslamazov and Larkin.

At still lower temperatures this ratio decreases—an II1. THEORETICAL INTERPRETATION
effect which we attribute to heating. The magnitudes ‘
and temperature dependences of the differential resis- A particularly simple and useful model of the equili-
tance at low voltages, of the ratio /,,/1.¢, and of the brium behavior of weak links such as metallic point
apparent excess supercurrent I, are the experimental contacts and variable-thickness bridges has been pro-
facts to be accounted for. posed by Aslamazov and Larkin.” This model is based
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FIG. 2.. Low-voltage part of the I-V characteristics of Fig. 1, showing the development of the foot as a function of temperature.
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on the realization that if the length of the weak link is
smaller than the temperature-dependent coherence
length £(T), the gradient term in the Ginzburg-
Landau (GL) equations will dominate inside the weak
link. In the simplest form of the model, the complex
order parameter in the banks is assumed to have the

é . .
values Yo and nl;oe' 0, where ¢y is the phase difference
between the two sides, and to vary linearly across a
one-diménsional bridge of length L connecting them

W=l —x/L +e*x/L) . M

Thus the magnitude of the order parameter is fixed at
| ol at the ends of the weak link, and oscillates at the
Josephson frequency between Iwol and 0 at the very
center of the weak link. In this model, the super-
current I; « Im(y* V) is a sinusoidal function of the
phase difference ¢, with a maximum value
I.o=mA%/4eTRy in agreement with the form for tun-
nel junctions near T.. (Temperature is measured in
energy units.)

The above model has served as the starting point
for several previous considerations of the effect of the
relaxation of the order parameter based on time-
dependent Ginzburg-Landau (TDGL) theory and
ad hoc extensions of it. Likharev and Yakobson!'® and
Kramer and Baratoff'! have numerically solved the
TDGL equations for current-biased bridges of various
lengths. Relaxation effects become important for
times comparable to the Ginzburg-Landau time
1L =mH#/8(T, — T), which becomes significant pri-
matrily at high voltages. Likharev and Yakobson em-
phasized that end effects near the banks cause an
“insufficient voltage," or apparent "excess super-
current" of magnitude 0.75/, at high voltages, and
found the appearance of an additional phase-
dependent conductance which had little effect on the
I-V curves. Jensen and Lindelof’ subsequently noted
that the phase-dependent conductance would have a
much greater effect on the I-V characteristics if the re-
laxation time were taken to be two orders of magni-
tude longer; it then leads to features in the /- V charac-
teristics which are qualitatively similar to the foot of
interest here. However, the use of such long times
was given no physical justification, and Kramer and
Baratoff have noted that it leads to inconsistencies
within the analytic approximations that Jensen and
Lindelof use. Deaver et al.'? have noted similar .
effects on the I-V characteristics resulting from time
lags in a simple phenomenological nonequilibrium
model.

Recent theories which go beyond the simple TDGL
description take explicit account of the relationship
between the nonequilibrium occupation of quasiparti-
cle states and changes of the superconducting order
parameter. We will first suggest qualitatively how
such a relationship can lead to an enhanced super-
current and the foot on the /- V characteristic, and

then we will review the more-specific calculations by
Golub and by Aslamazov and Larkin on which this
picture is based.

A. Qualitétive picture

To start, let us assume that the simple variation of
the order parameter equation (1) also describes the
space and time variation of the energy gap, whose
magnitude determines the energy of each excitation
through the relation E, = (e? + A)'2, where ¢ is the
energy of an excitation in momentum state k in the
absence of the pairing interaction. The occupation of .
states with a given energy will relax toward the equili-
brium value given by the Fermi function
fo(E) =[1+exp(BE)]~! by two processes, inelastic
scattering (primarily by phonons) to and from states
of other energy, and spatial diffusion at constant ener-
gy to and from adjacent regions with different occupa-
tion. Diffusion over a distanice L will occur over a
characteristic time 7p = L?/D, where D is the diffusion
coefficient; for dimensions of the order of 1 um, 7p is
comparable to 7. = §2/D. ) Thus at energies which
exceed the energy gap in the banks Ag, the occupation
will tend to be fixed by diffusion at fo(E). Here we
are neglecting the effects of Joule heating which would
tend to increase the occupation of these states. Such
effects are minimized by the variable-thickness
geometry (which allows diffusion in three dimensions
away from the bridge), and are insignificant at the
low-voltage levels of interest here.

When the magnitude of the energy gap in the bridge
is depressed below Ay, however, the only mechanism
for relaxing the occupation of states with energies
below A involves inelastic phonon scattering, which is
characterized by a relatively long time 7 which for tin
is of order 107°—107'" sec. Thus we should expect
different regimes of behavior depending on whether
the Josephson period is long or short compared to 7.

At very low voltages where the Josephson period 7,
is much longer than 7., the relaxation will occur
quickly on the scale of 7, and the corrections to the
equilibrium model will be small. As the Josephson
period decreases with increasing voltage, the rate of
change of the order parameter will increase and the
disequilibrium will become more important. Let us
assume that the gap follows the equilibrium behavior
and then estimate the correction to it due to the dise-
quilibrium. When the magnitude of the gap is de-
creasing (which occurs while the bridge is carrying
current in the forward direction) the energies of the
quasiparticles Ej = (e + A2 "2 will be reduced. In the
absence of inelastic scattering and diffusion, the occu-
pation fraction of any state will remain unchanged and
therefore will be smaller than the equilibrium occupa-
tion at the reduced energy. Inelastic scattering and
diffusion will tend to restore equilibrium, but to the
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extent that there is a lag in this process, there will still
be fewer excitations than in the equilibrium model, as
if the bridge were cooler. Thus the magnitude of the
order parameter will be somewhat larger, and will lead
to a larger forward supercurrent during this half of the
cycle. On the return part of the cycle, the gap is in-
creasing, the occupation numbers are larger than ther-
mal, the magnitude of the order parameter is de-
creased, and the supercurrent (which is negative in
this part of the cycle) is therefore less negative. Thus
during both parts of the cycle an extra positive super-
current occurs, compared to the equilibrium model,
and its magnitude should be proportional to the rate
of change of the gap, and hence the voltage. Since a
current-biased junction at low volfages already carries
a current ~/,¢ in the equilibrium model (because
most of the time is spent near the maximum of the
forward supercurrent part of the cycle), this additional
supercurrent proportional to the voltage will result in a
characteristic which starts from /. and rises with a
slope smaller than the normal resistance of the link,
up to voltages of order h/2er; (several uV for tin).
This describes the observed foot.

As the voltage begins to exceed h/2e 1, the quasi-
particle occupations cease to follow closely the equili-
brium values and there should be a deficiency of
quasiparticles in those states below Ay throughout the
entire cycle. This suggests that the enhancement of
the magnitude of the order parameter will reach a lim-
iting value (corresponding to no relaxation at all), and
the supercurrent will be enhanced in both the forward
and reverse part of the cycle. Thus there should be a
transition to a regime with the usual behavior of the
weak link (imperfectly understood though that may
be) but with an enhanced critical current parameter
I.,. This is the region on each /- V curve which ap-
pears to have a critical current /.; and a value of I,
which is a fraction of /..

The key to a more-quantitative treatment of the si-
tuation described above is the derivation of general-
ized Ginzburg-Landau equations for the order param-
eter which contain terms depending explicitly on the
quasiparticle distribution function, together with
Boltzmann equations for the quasiparticle distribution
function. Both Golub and Aslamazov and Larkin
adopt this approach, but they make rather different
physical and mathematical approximations. As a
result, Golub’s theory is more appropriate to describe
the time variation within the Josephson cycle at low
voltages, while Aslamazov and Larkin’s is more ap-
propriate to describe the time-averaged limiting
behavior near /.

B. Golub’s theory (7, >> 7f)
Golub describes the derivation of a modified form

of the Ginzburg-Landau equation appropriate to the
short weak-link geometry, and a perturbation scheme

for solving it at low voltages. The equation has the
form

o

where the order parameter ¢ = Ae'®/A, is normalized
to its magnitude in the banks, and the times are nor-
malized to the current relaxation time To=TgL/ Uy,
where uo=n*/14{(3) =5.79. The usual TDGL equa-
tion would correspond to the values ur=uq and

u; =0. Instead, Golub shows that w7 is very small
and the new term is the most important one. As we
shall see, the smallness of ur is related to the fact that
the quasiparticle diffusion length rather than the
coherence length governs the variation of quasiparticle
electrochemical potentials, and the more important u;
term arises from the slow relaxation of disequilibrium
generated by the mechanism we discussed above.

Golub’s equation is derived within the particular mi-
croscopic picture described by Schmid and Schon'?
(which Golub relates to the work of Larkin and
Ovchinnikov'?). In this picture, the distribution func-
tion f(E) of quasielectron states as a function of en-
ergy E (with the convention that states inside the Fer-
mi surface have negative energies) is given by the
equilibrium Fermi function f,(E), with odd and even
correction terms associated with the longitudinal and
transverse modes, respectively. The longitudinal
correction f; adds equal numbers of electronlike and
holelike excitations, respectively, above and below the
Fermi surface, and is related to changes in the magni-
tude of the order parameter. The transverse correc-
tion f7 is associated with changes of the gauge-
invariant electrochemical-potential difference
u—p,=0= %(29(p+ 9¢/01), where ¢ is the phase of
the order parameter and ¢ is the scalar potential; it
adds quasielectrons both above and below the Fermi
surface corresponding to a net charge.

In computation the distribution function f(E) is
weighted by appropriate functions N,(E), N,(E), and
R,(E) which are rounded off by the lifetime-
shortening effects of inelastic electron-phonon scatter-
ing characterized by the time 7;. Figure 3 shows the
shape of these functions for three different values of
7gA. N,(E) is the normalized density of states,
rounded off by phonon broadening which leads to the
existence of a small but nonzero density of states
between —A and A. R,(E) looks similar to the densi-
ty of states, but it is an odd function of E and falls as
A/E far from the Fermi surface. For large 7zA,

Ry (E) ~A/(E?— AH)'2, which is the usual weighting
factor for the quasiparticle occupations in the BCS
self-consistent gap equation; moreover, this form is
precisely N, (E) 8E/3A, where E = (e + AD!/2, The
physical significance of N,(E), which is important
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only in the region of "unphysical" states between —A
and A, is less clear, but it appears to pick out states
for which the transverse imbalance equilibrates rapidly
with the superconducting condensate. )

The steady-state Boltzmann equation for f7 bal-
ances inelastic electron-phonon scattering, spatial
diffusion, and a transverse-mode quasielectron sink
rate 2AN,f7. In situations where the spatial variation
of fr'is slow, the equation has the approximate solu-
tion

3o | N(E)
3E |N\(E) +27,ANy(E)

Sr= 3)

which is like the distribution function for a normal
metal, except for the missing energy range between
—A and A where the sink rate is large. This solution
also approximately satisfies the condition of electro-
neutrality

o= [ aENE s . )
The generalized GL equation which depends on f7 is

aD |20 3¢ A2 | _, [~

—A + —1]=A dE N , 5

87. dx2  Ox Ox f —oo 27 ©)

which for f7 given by (2) can be shown to reduce ap-
proximately to

divig=(1/r\}) (a/e)® , (6)
where
Ao= (D ‘f'Q)l/2 = (DTETc/A)l/Z >> rf(T)

is the branch-mixing quasiparticle diffusion length'
and o is the normal-state conductivity. With
J,=—(o/e) YV ® and the continuity equation
div(d, +7,) =0, this establishes Ao as the length scale
for variations of ®.'¢ ' :
The steady-state Boltzmann equation for f; bal-
ances electron-phonon scattering, diffusion, and the
generation of disequilibrium at a rate

8/0|0A
RaSE [ar

which for large 7A reduces to

/0| 9E 8A

NUSE [oa o

This justifies our interpretation of the origin of the
disequilibrium as arising from the changes of the
quasiparticle energies as the gap changes. Golub as-
sumes that this disequilibrium relaxes by spatial
diffusion alone (although the effect of phonon scatter-
ing does enter through the broadened density of
states), which leads to the solution



164 M. OCTAVIO, W. J. SKOCPOL, AND M. TINKHAM 17

L’ |af0l Ry  9A
12D | 9E |N? —R} ot

fi= ; @)
where L is the length of the weak link. Thus f;,
shown in Fig. 4, is a function localized between —A
and A where the coefficient (NZ —R%) of the
diffusion term in the Boltzmann equation is small.
The insets of Fig. 4 show, in exaggerated form, the
shape of the total quasielectron occupation

f(E) = fo+ fL (with fr=0). Increased quasielectron
occupation at negative energies corresponds to fewer
holelike excitations below the Fermi surface. Thus we
'see that a decreasing gap decreases the number of
electronlike and holelike excitations, as suggested
qualitatively above, and an increasing gap increases
the number of excitations, compared to the equilibri-
um model. The resulting corrections to the gap are
obtained directly from the generalized Ginzburg-
.Landau equation (neglecting unimportant static terms)

wD
8T

7w dA

8T Y +f dE R, f1

2

(8)

The two real equations (5) and (8) can be combined
into a single complex equation of the form (2), where
the ur and u, terms arise from the integrals of fr and
/1, using the forms (3) and (7).. At the level of ap-

~ proximation which leads to Eq. (6), ur = Buy is simply
76L/7o and is small because the quasiparticle diffusion
length Ao = (D 7,)!"? is much longer than the coher-
ence length & = (D 7g1) ' so that the quasiparticle
current and hence the supercurrent must be nearly

100.0 T T
TglA= 100
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=
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N
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FIG. 4. Shape of the longitudinal correction f; to the
equilibrium distribution function f as a function of E£/A.
The inset shows the overall distribution function with the
nonequilibrium correction greatly exaggerated for the cases

~dA/dt >0 and dA/dt <0.

100 200 300 400 500
FIG. 5. Variation of /,, with 7gA.

uniform on the length scale of the bridge. The other
term u, is given by u; = (1 +y — B) u,, where
y=1,(T./A) (L} D)rg} and
4 (-
l,= d
V32 Jdo=

E

A

R} (N —R$H)™ . (9)

The variation of 7, with 7zA is shown in Fig. 5. For
large 724, 1, is relatively independent of 7f, and the
diffusion time L?/D plays a major role.

Even for ur =0 it is difficult to obtain an exact solu-
tion to (2), but Golub has obtained a perturbation
solution which is valid at low voltages. He assumes
that the solution to (2) is of the form ¢ = yip + s,
where Y is given by Eq. (1) and ¢, is a small none-
quilibrium correction. Then one only needs to solve

@ (pl uy Z |‘Zl;|zi?'0'sm¢° , (10)

with boundary conditions ¥;(0) = (L) =0. In Fig.
6(a) we show the real versus the imaginary part of the
order parameter at equal time intervals for

Yo(ur =u; =0) assuming that Yo(L) = ei¢°, P(0) =1,

§2

“and d ¢o/dt =1 (voltage-bias). Each line corresponds

to a projection of the spatial variation of the order
parameter onto the complex plane with the ends of
each line corresponding to the value at the ends of the
bridge. In this case the supercurrent I, = /I,4sing, is
forward during the first half of the cycle and reversed
during the second half. In Fig. 6(b), we show a simi-
lar plot but now w7 =0 and u; =5 so that ¢ = Y5 + ¢;.
Now, because of the disequilibrium, during the first
part of the cycle the order parameter (which is de-
creasing in magnitude) is larger in the middle of the
brige than the #; =0 (equilibrium) value. At the mid-
dle of the cycle there is little difference from the
equilibrium case because the magnitude of  is sta-
tionary at ¢o= . But in the second half of the cycle
the order parameter in the middle of the bridge
(which is now increasing in value) again lags and is



now smaller than the equilibrium value. Thus, as dis-
cussed qualitatively earlier, the magnitude of the su-
percurrent is increased during the forward part of the
cycle and decreased in the reverse part of the cycle
leading to a net enhancement of the supercurrent
through the bridge. Golub’s analytic expression for
the supercurrent is only approximate in that at a given
time the actual supercurrentis not spatially uniform
along the bridge as required by Eq. (8) so that
Golub’s solution (like that of Likharev and Yakobson
for ur=ug,u; =0) is based on the spatial average of
the supercurrent. In general, the deviations of J;
from spatial uniformity are small compared to the
enhancement.
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FIG. 6. Plot of the complex order parameter at equal
time intervals; each line corresponds to the values of the ord-
er parameter along the length of the bridge. (a) Equilibrium
case, ur=u; =0; (b) nonequilibrium case for L =¢, ur=0,
up do/dt =5. -
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If one uses Golub’s expression for the supercurrent,
one then obtains an effective conductance at low vol-
tages due to the increasing supercurrent as the voltage
is increased which is given by

ULLz/fz

1 . 1 urL?/ €
24 ’

S = 1
Rer  Rw 15 an

where Ry is the normal resistance of the link.
Although this was derived under the voltage-bias as-
sumption, we assume that in the current-biased case it
will describe the differential resistance of the foot
above I.o. As will be shown later, for the materials
and temperatures of interest here y >> B8 so that at

.low voltages the effective resistance of the linear foot

is given by -
Rew _ 1 (12)
Ry 145 (Ut yuel?/8

Because of the initial assumption of steady state
Boltzmann equations for the quasiparticles at each
point of the Josephson cycle, and because of the as-
sumption of small corrections necessary for the per-
turbation method of solution, Golub’s results should
only be valid at small voltages.

C. Aslamazov and Larkin’s theory (7, << 7j)

At higher voltages, the approach taken by Aslama-
zov and.Larkin is more appropriate. They write the
nonequilibrium Ginzburg-Landau equation in the
form

aD| & _ A T=Te\  703) 45
8T | ox? (Vo)A T. A 87r2T<-2A
> f(E)dE

+A A TE—'Z—T—_A2)1/2 —0 N (13)

where f'=f — f, is the difference between the none-
quilibrium distribution function and the Fermi func-
tion. This assumes that the occupation of electronlike
and holelike excitations is equal, i.e., that the
transverse mode is irrelevant to the problem. Note
that with the neglect of certain terms, this equation is
completely equivalent to Eq. (8). In particular

A(E?— AY) ™12 is just the limiting form of R,(E) for
TEA — o0, .

The real difference between the two approaches lies
in the calculation of the nonequilibrium distribution
function of the quasiparticles. Golub retains an expli-
cit time dependence of the order parameter and in-
tegrates over energy, so that the magnitude (and sign)
of the correction to the equilibrium distribution func-
tion of the quasiparticles depend explicitly on the time
evolution of the gap. Aslamazov and Larkin, on the
other hand, calculate the distribution function using
an approach in which the quasiparticle distribution in
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the weak link is averaged over space and time very
early in the calculation, and only the energy depen-
dence is explicitly retained. This leads to rather
different physical and mathematical approximations,
and is justified only when the Josephson period is
much smaller than the relaxation times. At low vol-
tages where the linear foot is observed the inelastic
scattering time 75 (of the order of 107°—107'? sec for
tin) is comparable to the Josephson period. Thus, the
low-voltage predictions of Aslamazov and Larkin -
should not be applicable. At higher voltages they cal-
culate a time-averaged distribution function for the
excitations of the form

SE)=+{1- (2T 1 - (1 - E/A)%]}  (14)

for £ < Ag. At energies above A, they assume that
the distribution is thermal, because of the rapid
diffusion. This function corresponds to a smaller than
equilibrium occupation number for those excitations
with energies less than Ag, just as was the case for
Golub’s theory during the most-important (forward-
current) part of the cycle. Using (14) for f, they ob-
tain that the last term in Eq. (13) which they denote
¢(A) is given by

Y A

d)(A =T—7Tll ——Zo—r

3
(15)

When this and the gradient terms are assumed to be
the most important ones, the order parameter varia-
tions are characterized by a length scale

n=&T) (T~ T)/ T,V

If the length of the bridge L is >>r they obtain that
the supercurrent is enhanced and its maximum is
given by

Ia/lo=KL/m , (16)

where K is a numerical coefficient not calculated but
of order one. This result, unfortunately, is derived
under the rather stringent assumptions that

& >> L >> m, which can be satisfied only extremely
near to T,, since ¢ and m differ only by a factor of
three even at 0.997,; nevertheless, it may be useful
enough for comparison with the data. For currents
larger than /., Aslamazov and Larkin calculate the
shape of the I-V curve based on certain assumptions
about the current-biased nature of the weak link near
the forward current portion of the Josephson cycle.
The result that they obtain is that the /- V relation
should be given by ‘

V=I,RU/I,—D' . 17

Since this depends on the pulselike nature of the
response of the current-biased junction, it is presum-
ably valid only for currents which do not greatly
exceed /..

IV. DISCUSSION OF EXPERIMENTAL RESULTS

Taken together, the Golub and the Aslamazov and
Larkin models provide a semiquantitatively satisfacto-
ry explanation for the /- V curves that we observe.

In Fig. 7, we compare Golub’s prediction equation
(11) of the normalized resistance of the foot region as
a function of temperature for several values of the
bridge-length parameter, with experimental data from
six different bridges of similar geometrical lengths but
varying resistances, as shown in Table I. In generat-
ing the theoretical curves, we have assumed an aver-
age value of A throughout the cycle of 0.84,, a value
7 =8 % 107! sec corresponding to that determined
experimetally by Skocpol et al.,'” and a coherence
length £(0) =0.13 wm appropriate to our moderatly
clean films (mean free path ~0.1 wm). The calcula-
tions are relatively insensitive to the value of 7. be-
cause for temperatures less than 0.997,, 7zA is at
least 100, so that /,, does not depend strongly on it.
For bridge lengths of 0.5—0.8 wm and temperatures of
0.9—-0.987,, the parameter vy in Eq. (12) is typically -
10—20, while uo=5.79 so the corrections to Ry are
substantial.
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FIG. 7. Normalized differential resistance of the foot vs
temperature. The data points are for the six different micro-
bridges listed in Table I, and the dashed curves are Golub’s
predictions for several values of the bridge-length
parameter L.



TABLE I. Bridge parameters.

dlg
Bridge No. Ry (Q) T (mA/K)

1 0.06 8.98

2 0.14 5.05

3 0.20 5.8

4 0.33 1.69

5 1.14 092

6 0.09 7.69

The agreement between theory and experiment is
fairly good if we use bridge lengths of 0.7—0.85 um.
Although scanning electron microscope pictures of our
samples show that the distance between the edges of
the banks is usually 0.2 uwm smaller than that, the ap-
propriate length for comparison with the theory is not
well defined and may well be longer than that dis-
tance. Near T., the experimental effective resistances
are somewhat higher than predicted by the theory.
This may occur because the temperature dependence
of the theory is not quite right, or it may be a result
of the differing 7. of the bridge compared to that of
the banks, so that additional contributions of the
proximity effect affect the results. For 7, we have
used the temperature at which the linear temperature
dependence of the critical current extrapolates to zero,
which may differ by ~10 mK from the temperature at
which the critical current actually appears to go to zero
and by ~10 mK from the temperature at which the
additional resistance of the entire banks is observed.

One feature of the prediction which is difficult to
verify but appears somewhat suspect is the strong L*
length dependence (arising from the L?/D in y togeth-
er with the additional L2/£?* arising from the calcula-
tion of the enhanced order parameter). Our fabrica-
tion method is unable to make bridges with substan-
tially shorter geometrical lengths, and attempts to
make longer bridges by moving the knife sideways
have been inconclusive because the first cut appears to
always leave a noticeably deeper cut than the scraped
elongation. Such bridges have normalized differential
resistance values comparable to those of unelongated
bridges. We have also varied the mean free path of
the films, and found that the normalized differential
resistance of moderately dirty films also does not
differ decisively from the range observed in our
moderately clean films. Since the theoretical assump-
tion of a well-defined length with rigid banks is obvi-
ously an idealization, the extent to which quantitative
agreement with the normalized differential resistance
and its length dependence should be expected is not
clear.

Golub’s approach does much better than the expres-
sion given by Aslamazov and Larkin for the slope of
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FIG. 8. Ratio of the enhanced critical current /. to the
equilibrium critical current 1.y as a function of temperature
for the same bridges as in Fig. 7. The dashed curves
correspond to the Aslamazov and Larkin prediction, for
different values of KL, where K ~ 1.

the foot, calculated assuming 7z >> 7,. The latter is
several orders of magnitude smaller than the data.
Since 7, is comparable to 7 throughout the foot re-
gion of our bridges, that expression should not be ex-
pected to apply, although the extent of disagreement
is somewhat surprising and may indicate some
difficulty in that particular calculation by AL.

At voltages above this initial region, the Aslamazov
and Larkin solution is more appropriate. According to
their model the supercurrent is enhanced up to a
current /.; which is of order (L/%)I.. In Fig. 8, we
plot the ratio /.;/1.¢ as a function of temperature for
the same six samples used in Fig. 7. Near T, the ra-
tio grows very rapidly in a manner consistent with the
temperature dependence I./1.q < (1 — 1)/ At lower
temperatures the ratio seems to saturate and remain
constant rather than continue growing as predicted by
theory. At much lower temperatures (not shown),

‘where heating effects which lead to hysteresis may

reduce the apparent value of /., the ratio decreases.
The dashed lines in the figure correspond to Eq. (15).
The appropritate values for KL vary from 0.5 to

0.7 um. For K =0.8 the range and systematic varia-
tion of the effective lengths from sample to sample is
in agreement with the values determined in Fig. 7.
The saturation observed at low temperatures for this
ratio is not contained in the theory. As previously
mentioned, the theory was derived under the condi-
tions m << L << &(T); both of these conditions are
only marginally satisfied in our bridges in the range
shown. At most, the length of our bridges is two
times the nonequilibrium length 7, and at low tem-
peratures where the saturation is observed, the coher-
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ence length becomes shorter than the length of the
bridge. Nevertheless, at least the order of magnitude
of the enhancement effect is correctly given by the AL
theory.

For a limited range of currents above /i, AL’s
prediction equation (17) for the shape.of the I-V
characteristic can be fit to the experimental data rea-
sonably . well, although the test is far from stringent.
Figure 1(a) includes three theoretical curves of this
form fit with the same value of R and adjusting /.,
and /.o to an appropriate value for each curve.

For still higher voltages the theoretical situation is
not at all clear. This is the region of apparent excess
supercurrent I; which is a feature of both the phase-
slip model of weak links'”'® and the TDGL
theory.!%!'! Both predict that I, should be a definite
fraction of I.. Presumably in the nonequilibrium si-
tuation described here the relevant critical current is
I.,, the effective critical current for the actual operat-
ing conditions. In Fig. 9, we plot I, I, and I, for a
typical bridge. Near T, I is about 0.6/, while at
lower temperatures, it is about 0.7/.;. The qualitdtive
changeover to a dependence on I is clear cut, and
within this interpretation tends to support I, as the
effective critical current under operating conditions.
Note that /.o, not 1.}, has the linear temperature
dependence extrapolating to 7, expected for the zero-
dissipation critical current.
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1 . 1
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FIG. 9. Plots of the equilibrium critical current /., the
excess super-current I;, and the enhanced supercurrent /| as
a function of temperature for bridge No. 2.

Some comments should be made about the material
dependence of the effects discussed. The characteris-
tic feature of interest has been observed only in mi-
crobridges made of tin and indium. Since these ma-
terials are very similar the theory should describe both
equally well. On the other hand the /- V characteristics
of short aluminum microbridges do not show similar
effects.” We have calculated the effective resistance of
the low voltage region for aluminum microbridges of
lengths similar to ours and find that the change from
the normal resistance would be much smaller than
that predicted for tin. This is due to the very long
coherence length of aluminum which will tend to op-
pose changes in the order parameter different from
the equilibrium case. In order to observe the super-
current enhancement in aluminum, one would require
microbridges with L /¢ ratios comparable to those of
our tin microbridges. However, because of the longer
inelastic scattering time of aluminum'® the enhance-
ment would appear at very low voltages where it might
not be practical to observe it. In the case of lead,
which has a shorter scattering time, the transverse
time might become comparable to the longitudinal
one, but it is not presently feasible to fabricate bridges
satisfying the condition L < £(T) because of the
shorter coherence length in lead.

Klapwijk and Mooij® have suggested that the foot
might be a result of flux flow. We believe that our
bridges are, in most cases, too narrow to contain a
single vortex. Yet, the enhancement is observed in all
of our bridges. In order to test the flux-flow concept,
we have fabricated lead microbridges where one might
expect flux flow to be more important.?’ Our lead mi-
crobridges show a linear temperature dependence of
the critical current near 7. as well as strong Josephson
effects up to voltages comparable to those in tin.®
However, the I-V characteristics are quite different
and do not have any footlike features. This would
seem to rule out flux flow as the origin of this feature.

V. CONCLUSIONS

In this paper we have presented systematic evidence
which supports the idea that the supercurrent through
tin variable-thickness microbridges at nonzero voltages
can be enhanced by the effect of disequilibrium of the
quasiparticles inside the weak link. We have present-
ed a qualitative discussion of the physical origin of the
enhancement, based on the more specific calculation
by Golub and by Aslamazov and Larkin. These
theories have a fundamentally similar point of view,
but they make rather different physical and mathemat-
ical approximations and provide complementary con-
tributions to the description of the complete I-V
curves. - ’

By comparing the various quantitative predictions of
these-theories with our experimental data, we have
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found many points of agreement in the regimes of ap-
plicabitity of the theories. While the validity of some
of the physical and mathematical appreximations can--
not be settled simply by comparisen with experimental
data, the general agreement ingicates that these
theeries are a promising appreach to uaderstanding
nonegquilibrium systems.
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