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AnNa&ar dependence of roulh» —~sesslsted surface phasmon rasifsstion.

Comparison of theory anti experiment
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(Received 9 May 1977)

%e present a calculation of the angular distribution of surface-plasmon radiation from a rough surface. The
radiated fields are calculated to 6rst order in the surface-rmqPmess height 5, and the results are compared
with our earher measurements. The present result is found to compare more favorably with experiment than
a previous calculation by Kretschmann. The strength of the "backscattering" of surface plasmons from small
surface features is determined and used to discuss certain features of the experimental results.

I. INTRODUCTION

A number of calculations of light scattering from
rough surfaces have been reported recently. %bile
not a complete list, Refs. 1-10 l,ist a few of the
important contributions. In an earlier paper, "
we reported measurements of the angular distri-
bution of. the radiation emitted in the decay of
surface plasmons at a rough silver surface. The
geometry associated with that study is shown in
Fig. 1(a). Surface plasmons, excited optically
by the attentuated-total-reflection(ATR}method"
at the air-silver interface, undergo radiative
decay in the presence of surface roughness with
intensity distribution P(8) In wha. t follows, 8 is
taken to be positive if measured cIoclovise, and
negative if measured counterclockwise, from the
normal (y axis) to the surface. The measure-
ments were made for several samples and the re-
sults fell into three categories: (i} a single lobe
in the +8 quadrant (forward direction), (ii) a lobe
in the +8 quadrant along with a weaker lobe in the
-8 quadrant (backward direction), and (iii) lobes
of approximately equal intensity in the +8 and -8
quadrants. Figures 1(b)-1(d) show plots of inten-
sity as a function of scattering angle 8 for the
three categories mentioned abgve. In Ref. 13., we
pointed out that the growth of the radiation lobe
in the -8 quadrant was always accompanied by a
shift toward smaller values of 8 of the peak in the
forward direction. In this paper, we present the
results of a calculation of the angular distribution
P(8) for a simple model of the scattering pro-
cess. The results of the calculation are compared
with our previous measurements as well as the
results of an earlier calculation by Kretschmann. "

H. SCA I II'RING FROM A SINGLE DEFORMATION

To model the plasmon-roughness scattering pro-
cess, we reduce the problem to two dimensions
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FIG. 1, (a) Geometry of the experiment in Ref. 11,
defining the forward and backward directions relative
to the direction of propagation of the surface plasmon;
(b) sizgIe-lobed plasmon radiation pattern; (c)
intermediate plasmon radiation pattern; (d) double-lobed
plasmon radiation pattern.
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y=d

SP

plus the scattered field H, . Under the assumption
that 0, can be written as a power series in p, we
write

HK g pnHI
n~l

FIG. 2. Geometry of the surface-plaamon (SP)
scattering calculation.

and consider the scattering of surface pLRsmons
from a single surface deformation described by
the function f(x). The method used to calculate
P(8) is based upon the formalism developed by
Chen" and applied to the problem of scattering
a guided wave from a surface deformation by Tuan
and Ou. " The technique (to be described below)
can be applied to the problem of a surface plas-
mon scattered at the interface between two semi-
infinite media (air and metal) or to the problem
of a surface plasmon at one surface of a thin-met-
al film sandwiched between two semi-infinite di-
electrics. 'The algebra associated with both prob-
lems is very similar, as is the resulting P(8},
and so we describe only the former in detail.

Figure 2 shows the geometry for the calculation.
The (smooth) interface at y = d, separating media
I and II, is interrupted by an irregularity described
by the function f(x). The height of the surface is
given by the equation

y = d[1+[&)f(x)],

where p is a small parameter related to the height
of the bump on the surface, and the distance d
from the origin to the surface is arbitrary. The
incident surface plasmon (wavy line) is specified
by the z component of the magnetic field (ff, ) for
surface plasmons propagating on a smooth surface
(y = d) in the x direction

0', (x, y}=Cexp[-K, (y -d)]
&& exp[-t(Kx —vt)], y &&f

dnd

H", (x, y) =C exp[fan, (y -d)]
x exp[ -i(xx —&d t)], y «f,

where

ffn g ~))ffIt

ffwl

(6)

The boundary conditions on the fields are that the
tangential component of the electric and magnetic
fields are continuous across the boundary. The
former can be written in terms of the gradient
of the magnetic field

[&) V[«', ~ )&' )],=( . &) &&{Hp+«,")
Kl

(6)

I'+H' =e"+0"4+ g (7)

on the surface. Expanding Eq. (7) in a Taylor's
series about y =d and equating coefficients of equal
powers of [t gives (to first order)

H'(x, &f) =0"(X d) (6)

„( &ff, (x, y)
ay

sffII-H" (x d)+df(x) ' ' (9)
sy

To deal with Eq. (6}, the operator n ~ V must be
expanded and written in terms of f(x), the function
describing the deformation of the surface (see
Ref. 14). The operator takes the form

pg 'V= 1+ Pd

where n is the outward normal to the surface and
I and II represent, as before, air and metal, re-
spectively. The latter boundary condition becomes

c([0) is the dielectric function for the metal (me-
dium fO, E is the plasmon wave number, and C
is a constant. The region above y =d (medium O
is assumed to be vacuum.

The total field in each region of space will be
given by the sum of two parts, the incident field and

80] 1 80
sy ~ e (97) sy ~~g

Using Eq. (10}in Eq. (6), again expanding in a
Taylor's series about y = d, and equating coef-
ficients of equal powers of p results in (to first
order}
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»', (,y) d Bf(X) BH', (.y), d („)
B'H', (,y)

-d ' + df(x) — ', 'y . (12)
e((d) By „~ Bx Bx ~ By

Equations (8), (9), (11), and (12}can be combined
to yield a pair of equations which describe the
boundary conditions up to first order in p, and

M(() = M(x) exp(i$x) dx
wig

H', (x, d) —H", (x, d) = df(x)[():((o) -1]

x BHg(x, y)
8y

and

BH', (x, y ) 1 BHt,'(x, y)
By e ((()) By

Bf(x) BHi(x, y) 1 BH,i(x, y)
Bx Bx c(&u) Bx

(13)
N($) = N(x) exp(ifx) dx. (2o)

These may be used in conjunction with Eqs. (15)
and (16) to give integral relations for H', (x, y) and
H", (x, y),

oC)

H', (x, y)= 2„M(])exp(-i4)exp[-if, (y -d)]d5
mCO

i~(~) " N(t)+H, M($)—
2x ~ (')( exp i~x

&&(
)(x'((l(x, x)»'zl'(x, x))

e(~) By'

(14) and

x exp[-j],(y -d)]d( (21)

The right-hand side of Eqs. (13) and (14) can be
evaluated using a specific form for f(x) and the
field expression given in Eqs. (1) and (2). For the
sake of brevity, we define the right-hand side
of Eqs. (13) and (14) by M(x) and N(x), respective-
ly,

i~(~) " N(~)+(,M(~)
5. -e(~)f,

x exp(-Hx) exp[-H, (y d)] dh ~-

(22}

and

H', (x, d) H',~(x, d}=-M(x)

BH', (x, y) 1 BH", (x, y)
( )

By ~ f ((()) By

(15) Since H', (x, y) and H", (x, y} satisfy the wave equa-
tions in their respective media, we have $', = ((d/
c) —f and $2= c(&o)((d/c) —( . The singularities
in the integrals in Eqs. (21) and (22) can be shown
to occur at the wave number

To determine the first-order scattered fields
H', (x, y) and HP(x, y) subject to the above first-
order boundary conditions, we follow Tuan and
Ou" and use a Fourier-transform technique. We
define the Fourier transform of H', (x, y) and
H"(x y) as

x', (xx) (x ) ff x', ((, (,)x=xx( i(x)-
x exp[ H, (y -d-)ld(d(, (17)

& = + ((o/c)[c ((o)/(c ((o) + 1)]'i', (23)

which is the familiar surface plasmon dispersion
relation for this geometry. The singularities
correspond to surface waves reflected (+) and
transmitted (-) at the surface irregularity.

To calculate the angular distribution of the ra-
diation emitted into medium 1 (air), we solve Eq.
(21) for H', (x, y) far from the surface by the method
of steepest descents. " As a specific example, we
assume that f(x} has the form of a Gaussian

and f(x) = exp[-(x/c)'], (24)

&"(x,X)=(„)jf &l'((, (.)xxX(-i(x)

x exp[-i$, (y -d)]d(d$, . (13)

with a a parameter describing the width of the
bump. With Eqs. (2) and (3), M(x) and N (x) be-
come

Similarly, the Fourier transforms of M(X} and
N(x) are

M (x) = df(x)K, C[1 —(.((o)j exp(-iKx} (25)
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)(x)) d=(:[ (- (i)i]i)('f-(r)}exp(-i)(i).iX sf(x) 72-

70

Using Eq. (24), the Fourier transforms M(f) and

N($} are found to be

M(() = «'~'dCK, [1—c(a))]exp[-~~(K —$)'o']

(2V)

—68-
CO
W

266.
Q

ce 64-I

(26)

Solving Eq. (21) and adopting a set of coordinates
g -d= pcose ancl g= pslne gives the result

,
( )

kocos8
( )

.
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N($)+g(iM($)
2s
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FIG. 4. Calculated de@mdence of8~ I:the angle at
which P(6') is amaximum] upon cr within the Gaussian
model. 8~ is given in degrees and a is given in
1000 A units.
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FIG. 3. Comparison of calculated (solid line) and
measured (crosses) angular distribution P (8) for
single-lobed surface plasmon radiation pattern.

where ( = ((d/c) sin8 and $, = (&u/c) cos8. The radia-
tion patterns are obtained from ~pH', (p, 8) ~' nor-
malized to the value at 8= 8, where 8 is the
angular position of maximum intensity.

A plot of the radiation patterns as determined
from Eq. (29) for a Gaussian surface deformation
shows P(8) to be lobed in the forward direction.
Adjusting the parameter 0' serves only to shift
the lobe's peak position and change the width of
the lobe. In Fig. 3, we present a comparison of
the calculated P(8) with one of our measured an-
gular distributions. The parameter 0 has been
chosen by requiring the peak position to be the

same for both plots, in this case o must be taken
as VODO k The dielectric constants chosen were
those appropriate for silver" at X=6328 A,
Re[c((d)] = -16.64 and Im[c(v)] = 0.52. The agree-
ment with experiment is quite good for the single-
lobed distribution. Varying 0', the only adjustable
parameter, does not lead to the growth of a second
lobe in the backward direction. The forward-lob-
ing characteristic of the calculated P(8) does not

appear to be strongly dependent upon the shape
of the surface deformation. Another choice, such
as a rectangular f(](), also leads to a strongly
forward-lobed P(8). We have displayed the Gaus-
sian lobed P(8) because for the shapes we have
tested it provides the best fit to experiment. The
dependence of 8 upon the value of 0 for the
Gaussian f(s) is shown in Fig. 4. The peak position
is quite sensitive to o, allowing a precise value of
o to be assigned to the surface within the limits
of this model.

Kretschmann" has calculated P(8}based on a
model of radiating dipoles located (in air) at the
air-metal interface. We find that there exists
no value of 0', using a Gaussian autocorrelation
function or any other reasonable choice, for which
P(8) determined from Kretschmann's calculation
contains a lobe in the forward direction. We be-
lieve that the present calculation provides a more
satisfactory description of the experimental re-
sults. It would appear that any slight deviation
of a surface from planarity results in plasmon
radiation in the forward direction. This is reason-
able since a surface plasmon needs to reduce its
momentum component parallel to the mean sur-
face by only a very small amount to decay into a
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photon. At the present time, we do not fully un-
derstand the origin of the discrepancy between
Kretschmann's and our own result.

There remains the question of the origin of the
plasmon radiation lobes in the backward direc-
tion. In our earlier paper, "we offered the sugges-
tion that the mechanism responsible for these
lobes is the scattering of surface plasmons from
grain boundaries near the surface of the metal.
That is, we postulated that a plasmon encounter-
ing a grain boundary would suffer appreciable
"back reflection. " The subsequent decay of the
"back-reflected" wave would lead to a lobe in
P(8) in the backward direction. Referring once
again to Fig. 1(a), the effect of grain boundaries
is to produce surface waves traveling in both the
+x and -x directions. Each will decay into phot-
ons (upon encountering small irregularities) con-
tributing lobes in both the forward and backward
directions. 'The formalism described herein al-
lows us to calculate the level of "back reflection"
to be expected from small surface irregularities.
Equations (21) and (22) can be solved for the re-
flected fields by contour integration. The residues
of these integrals corresponding to the poles at
5 =+(&o/c)(e/e+ I)'~' give the amplitudes of the re-
flected fields. The power associated with these
fields is evaluated from the Poynting vector. When
this is normalized to the incident power, the ex-
pression for the fraction of the incident energy
carried by the eave reflected from a sman Gaus-
slail bump ls

than one scattering center. We generalize the no-
tation slightly, for convenience, and let 5 be the
average height of the irregularities, and 5, be a
height parameter such that the product 55, gives
the height of the ith bump. The surface function is
then given by

f(«}= 5 g 5, exp
i g

(32)

where o, is the width of the ith bump. The pro-
cedure of Sec. II gives, for the (unnormalized)
.radiation pattern P (8),

f, -e((o)&,

(34)

and all other variables are as defined earlier.
Similarly, R, the ratio of reflected to incident
surface wave energies is given by

ft = v5' ' Q 5,o, exp(-f2K«, ) ex(p-K' o)%Op+I

(35)

To be useful, Eqs. (33) and (35) must be averaged
over the ensemble of scatterers. Defining f(k)
to be the Fourier transform of f(«),

P(8) = iF(8) i Q 5)o') exp[-a($ -K)«,]

x exp [-~(K $)'-o~] (33)

where x, is the location of the center of the t,th
scatterer

8 = s ' exp(-K'o }
&o +1

f(a) = y(«) exp(f)t«) d«,
ass

(36)

Differentiating Eq. (30) with«espect to o, we
find that the value of 0 which yields the maximum
value of R is obtained from

o = 1/[2 Re(K')], (31)

and is reminiscent of Bragg scattering. At A. = 6328
A, 8 has a maximum value 8 = (4.13 x 10 '
A"')5'. For realistic values of 5 (say 10 A), 8
=4 X 10 %. Even for 5=1000 A, 8 is only 4Q.
We must conclude, then, that the back scattering
of surface plasmons does not occur with appreci-
able intensity from smaQ surface irregularities.
This supports our suggestion of the grain-bound-
ary mechanism. A grain boundary would very
likely contribute to more severe scattering than a
small "bump. "

III. SCA a aiRING FROM SEVERAL DKFORMA'IIONS

The theoretical results of Sec. II are
quite easily generalized to the case of more

and letting ( ) represent the ensemble average,
the (averaged} expressions in Eqs. (33) and (35)
become

and

P(8) = (I/ ) iF(8) i'&if(K - &) i')

ft = 5'iKK, /[e((d)+ I] i(i I(-2K) i') .

(37)

(38)

Some care should be taken in using Eqs. (3'7) and
(38) because the form of F(8), for example, de-
pends upon the Gaussian choice for f(«) given in
EQ. (32).

The expression for the radiation pattern P(8)
given in Eq. (3 I}canbe rewritten in terms of g(k),
the Fourier transform of the surface autocorre1a-
tion function. That is,

P(8) = (1/') I+(8}I'&(K—t). (3~)

If the random variables (5„o&, and «, ) appearing
in Eq. (32) are such that the standard assumption



1562 9. Q. HALL AND A. J. BRAUNDMKIKR, JR.

of a Gaussian 3utocoj relation function is appro-
priate, then

g(K —$) = so' exp[--,'(K —&)'c ], (40)

and P(8) becomes identical to the results of Sec,
II of this paper. 'That is, the Gamssja@ choice for
g(K —$) leads to a radiation pattern for the several-
deformation problem which is the same as that
for a single Gaussian-shaped scatterer arith width
equal to the parameter o in g(K —() in Eq. (40).

1V. SUMMARY AND CONCLUSION

On the previous pages we have presented a cal, -
culation of the angular distribution of surface
plasmon radiation. A compariso@ with experi-
ment shows that the theory provides a very ac-
ceptable level of agreement for sample surfaces
yielding a single scattering lobe ig, the forward
direction. The ca,lculation demonstrates that the
interaction between surface plas. mons and small
scale surface roughness is not likely to produce
lobes in P(8) in the 8quadra-nt. This is consist-
ent with earlier work by Tuan and Ou" who fouad
essentially the same result for the scattering of
guided waves in a thin-film vraveguide. The cal-
culated results are consistent with our earlier
suggestion" (made on empirical grounds) that the
mechanism producing the lobes in the backward
direction is the scattering of surface waves from
grain boundaries near the surface of the sample.
In particular, when the average separation be-
tween graig. boundaries is a value mhich SelXills
the Bragg condition, the back reflection of surface
plasmons should be appreciable, contribuhag to a
large lobe in the -e quadrant.

It is clear that more detailed work is necessary
before a completely satisfactory surface model
can be tound. Bennett" has recently reported the
results of measurements of the surface autocor-
relation function by scanning fringes-of-equal-
chromatic-order (FECO) interferometry. Her mea-
surements indicate that the usual assuxnption of a
Gaussian autocorrelation function is not a particular-
ly good one for the surfaces she exaxnined. In fact,
the autocoz relation function did not appear to have
any simple form. Basigni ef al. '9 have recently
reported measurements (using a different tech-
nique) of the surface autocorrelation function which
indicate that a Lorentzian rather than Gaussian
gives the best fit to their data. Our choice of a
Gaussian form for f(x) [see Eq. (24)] should not be
viewed as being in conflict with beefs. 18 and 19.
A Gaussian f(s) does not necessarily imply a
Gaussian autocorrelation function. In fact, it is
possible to find a suitable arraement of Gaus-
sian shaped bumps on a sample which would yield
virtual'ly any kind of autocorrelation function.
%hat is significant in this work is that the Gaussian
shaped bump is the best choice of those functions
we have tried for predicting the measured radia-
tion patterns.

The ca).culatfon can certainly be improved upon
by repeating the procedure allowing roughness
in two dimensions rather than just one dimension.
However, since the experiment" measured the
photons emitted in the x-y plane, it is doubtful
that this would have any effect upon the agreement
reported in this paper. It would permit more gen--
eral comparisons to be made with future experi-
ments, and is therefore a desirable extension of
the present work.
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