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A general class of acoustical-phonon mode induced-polaron systems is considered. The electron-phonon
interaction for these systems is described by a Frohhch-intension H~»tonian involving Fourier
components proportional to q, where y is an arbitrary real number. The energy versus total momentum (E-
P} relations for these polarons are investigated. At weak coupling, in the context of the intermediate
coupling theory, it is found that when -1 & y & -1/2 a linear structure is present in the E-P relations. As

y decreases from —1/2 to —1, this hnear structure becomes apparent only for larger and larger values of
P. For y & —1/2, this liaear structure is not present, but rather the E-P relations cut ofF at a critical
value of P. When —1 & y & 0, the polaron mass for these systems grows large as the polaron velocity v

approaches the speed of sound s, but for y y 0 the polaron mass has a finite value as v ~s. As a function of
y, the self~ergy reaches a maximum value for y ——0.73 and the v ~0 polaron mass reaches a minimum
value for y = -0.25, independent of coupling strength. From a strong~upling theory appropriate for
moving polarons it is found that a linear structure in the E-P relations is obtained for all y g —1. At both
weak and strong couphng it is unclear that the E-P relations are meaningful when y & —1.

I. INTRODUCTION

Both the piezoelectric and the acoustical defor-
mation-potential (ADP) polarons have served as
simple, yet interesting, examples of a particle
interacting with a nonrelativistic linear field. Al-
though these are the only "acousticak-mode polar-
ons" thought to exist in nature, it was felt that it
might be interesting to consider a more general
class of electron, acoustical phonon-mode inter-
actions. Aside from the intrinsic academic inter-
est it was thought that it might be worthwhile to
investigate some of the properties of the pie2'o-
electric and ADP polarons in relation to this more
general class.

The systems we consider are described by a
Hamiltonian of the form

ff =p'+Q(g(q)ata, +Qq(q)(a, -at, ) e'"', (1)

ar(q) =q,

q(q) = (O'I/V)'~'q~,

and y is an arbitrary real number. In these equa-
tions r and p are the electron position and momen-
tum operators and a~ and a, are creation and an-
nihilation operators for phonons in an acoustical
mode q. The units 3ms' and I/2ms, where m is
the band mass and 8 is the average speed of sound,
have been used for energy and length, respectively;
the speed of sound is one in these units. 'Ihe di-
mensionless quantity a is the coupling constant
for the electron-phonon interaction and V is the
volume. It is assumed that the prefactor in the

expression for Q(q) can always be written in the
form given by absorbing any constants into g. For
y =--,', Eqs. (1)-(3) describe the piezoelectric in-
teraction and for y =+ 2, the ADP interaction.

In this paper we examine the energy versus total-
momentum (E-P) relations for the systems de-
scribed by Eqs. (1)-(3). Various authors' ' have
investigated the E-P relation for the piezoelectric
polaron. The E-P relation thought to be correct
for this pokaron is quadratic for very small P, but
at large P asymptotes to a straight line with slope
equal to the speed of sound. However, Bona and
Ayasli' recently have investigated the ADP polaron
and have indicated that the g-P relation for this
polaron should be nearly parabolic. A question
arises regarding the type of E-p relations to ex-
pect for the more general class of pokarons con-
sidered here. In Sec. II we briefly review energy-
level crossing arguments appropriate for an elec-
tron interacting with acoustical phonons. From
these arguments it is found that a linear structure
is expected in the Z-P relations for any acoustical-
mode interaction. In Sec. III we consider the E-P
relations at weak coupling in the context of the in-
termediate-coupling theory and find that a linear
structure in the E-P relations is predicted only
for a limited range of y. Finally, in Sec. IV we
consider the above systems in a strong-coupling
theory appropriate for moving polarons. From
this theory we find that at strong coupling a linear
structure in the E-P relations is predicted for any
acoustical-mode interaction for which y&-1.

II. REVIEW OF ENERGY-LEVEL CROSSING ARGUMENTS

In the energy-level crossing arguments' the de-
generacy inherent in a noninteracting system of
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PIQ. j.. (a) Crossing of an electron state and a one-
phonon state at moznentum P &. Q) Crossing of the
electron state and the one-phonon state eBminated by
the perturbation.

conduction-band electron plus acoustical phonons
is considered. ' Qf particular interest is the situ-
ation vrhere a state involving an electron with no
phonons present, and a state consisting of an elec-
tron plus a free yhonon have identical energies.
%e then turn on the electron-phonon interaction
and try to determine the type of E-P relation vrhich
might result from the splitting of the degeneracy
by this yerturbation.

The situation is depicted in Fig. 1(a), where any
yoint on the parabolic curve corresponds to a state
of definite momentum for a conduction-band elec-
tron. A straight line with slope equal to s can be
added to this curve at any momentum p, . This
straight line represents a free-acoustical yhonon,
and at momentum P~, for example, there are two
possible states, one consisting simply of the con-
duction-band electron arith no yhonons present and
the other consisting of an electron arith momentum

p, plus a phonon with momentum P~ —p, . At P~
these two states have distinct energies, but at P~
the energies of two similar states are identical. If
the electron-phonon interaction is neer introduced,
one might expect that the states arith momentum
Pr' would be split by the perturbation [cf. Fig. I(b)]
and, furthermore, that the resulting states near

P~ should be linear combinations of the zero-phonon
state and the one-phonon state (i.e., the resulting
states near P~ mould be something resembling a
polaron).

More generaQy, the curves for a state involving
a free yhonon can cross the zero-phonon curve at
any point for which the slope of the latter curve is
~s. Applying degenerate perturbation theory to
each of these yoints one obtains a curve vrhich is
Quadratic at small p (when the slope of the zero-
phonon curve is &s} and linear with slope s for
large P. Any other possible states involving a free
phonon must lie in the continuum above this curve.

These energy-crossing arguments are intuitivdly
appealing but in using them there is no consider-
ation given to the mechanism producing the elec-
tron-yhonon interaction. Thus, these arguments
might lead one to believe that the linear structure
should be expected regardless of the type of acous-
tical-mode interaction involved. Indeed, the type
of E-P relation predicted for the piezoelectric
yolaron agrees, at least qualitatively, with that
suggested from the @bove arguments. However,
as pointed out above, the E-P relation for the ADP
yolaron is thought to be nearly parabolic. On the
other hand, it seems reasonable that there are
other polaron systems (other values of y) for which
the linear structure shouM be expected. Thus, it
seems interesting to pursue further a study of the
E-P relations for the more general class of yol-
arons described above.

IH. E-P RELATIONS AT WEAK COUPLING

In considering the E-p relations for the systems
described by FAIs. (1}-(3}we will first focus atten-
tion on the intermediate-coupling theory. This
theory is regarded as being appropriate in de-
scribing the vreak-coupling regime and, in particu-
lar, is not an interpolation theory as the name
might suggest.

The intermediate-coupling theory is felt to be an
imyrovement over perturbation theory and the
Tamm-Dancoff one-phonon cutoff approximation.
For the piezoelectric yolaron one finds from both
yerturbation theory and the Tamm-Dancoff approx-
imation an indication that structure other than the
usual quadratic behavior should be present in the
E-P relation. ' Homever, the E-P relations ob-
tained using these methods are not fully believable,
vrhereas the intermediate-coupling theory gives
essentially the same type of curve as predicted
from the energy-crossing arguments. For the ADP
polaron, perturbation theory, the Tamm-Dancoff
approximation, and the intermediate-coupling the-
ory aQ give essentially the same qualitative re-
sults for the E-P relation with no indication of any
linear structure. '
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The intermediate-coupling theory is also useful
in that it yieMs an upper bound to the energy for
each value of the total momentum. Thus, if a lin-
ear curve is obtained from this theory it will al-
ways be lower in energy than a parabolic curve for
sufficiently high P. In addition, for the pieaoelec-
tric polaron, the present author and %hitfield have
shown that the states corresponding to the asymp-
totic part of the E,-P relation obtained from the
intermediate-coupling theory correspond to those
expected for a polaron (i.e., an electron plus can-
comitant lattice distortion) rather than to a state
involving a free phonon. s %e have also showa, at
least for a small range of coupling, that the lowest
state at high p for the piezoelectric polaron Ham-
iltonian [Egs. (1)-(2) with y = —,'] is not one con-
taining a free phonon but is very likely a polaron
state as described by the intermediate-coupling
theory. '

The state vectors used in the intermediate-cou-
pling theory are given by

ly„& =If,IJ, IG&, (4)

where

(5)

De=exp, u, -a,

The f, are determined from the condition

aE s &y„(Iffy„&
Bf Sf

and are given by

In these expressions it is assumed that P and v
point in the same direction. The integrals appear-
ing in Eqs. (11) and (12) can easily be performed
for a number of values of y (an upper cutoff q is
used; q =150 in the units used here). They can
aIso be computed numerically for a wide range of
y. The following results emerge. For y «-1 both
g and p diverge for any e so that it is not clear
that an E-P relation is meaningful in this case.
Ibis occurs because of the long-range nature of
the interaction for these values of y. It is pos-
sible that we could patch up this difficulty by in-
troducing a lower cutoff into the interaction, such
as was done by Bona and %hitfield' who investigat-
ed the effect of introducing a cutoff into the piezo-
electric interaction. However, this would take us
somewhat afield of the simpler problems we wish
to consider here. When -1&y& ——,

' one finds at
large I' that the E-P relation asymptotes to a
straight line with slope s. The E-I' relations for
some representative values of y in this range are
shown in Fig. 2 (in each case n =1.0). For y=- —,

'

the slope of the E-I' curve is already 0. 99 when
P=1.5 (in units 2ms). For y= ——,

' the slope is 0.99
only when P is as large as =8.0. For y=- ~ the
slope does not reach 0. 99 until P'= 40. 0 (in the fig-
ure the slope is = 0. 94 for P = 10.0). The reason
that as y decreases from —

& to —1 larger and
larger rriomenta are required before the slope ap-
proaches its limiting value of 1.0 can be seen from
the expression for P, Eq. (12). The linear struc-
ture occurs when —1& y « —

& because for this
range of y the total momentum becomes unbounded
as v —1. For larger negative values of y in this
range the divergence is stronger and, thus, larger

f, = e(q)l [q'+-~(q) -1| v],
where

(8)

(9)

(T =$+g&s,'a, ,

and the eigenvalues of 4 are denoted by 5 (note
[4,ff] =0].

For the Hamiltonian, Eq. (1), the energy and
momentum are given by

(10)

4ga.
E P -(P--, v)—

V q +&a(q)-g v

The state vectors given by Eg. (4) are eigenstates
of the total-momentum operator

I' ~ [q'+~(q) -4 v]' ' (12)

FIG. 2. E-p' relations in the intermediate-coupling
theory for the cases y=-~, -~, and —&&. In each9

case a=1.0.
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FIG. 3. Self-energy in the intermediate-coupling
theory as a function of y for 0, =1.0. There is a maxi-
mum at y= -0.73 and the curve diverges logarithmi-
cally as 'Y~-l.
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values of P are obtained for a given value of v
close to 1.0. It is interesting to note that the di-
vergence which occurs as e -1 is weakest
(logarithmic) for the piezoelectric case (y=- —,').

We should also point out that the self-energy E(0)
is larger for y = —

4 than for either of the cases
y=- —,

' or y=- —,0. As a function of y the self-energy
in this theory reaches a, mmimum value for y
=-0.73. The value of y at which this maximum oc-
curs is independent of coupling

strength.

This be-
havior of the self-energy results because of the
relative importance of the small-wave-vector con-
tribution versus the large-wave-vector contribution
to the integrands in Eqs. (11) and (12). As y de-
creases (y--1) small q values give the dominant
contribution to the integrals in Eqs. (11) and (12),
but as y increases and becomes positive the large
wave vectors assume increased importance. In
each limit the self-energy is a large negative num-
ber. The self-energy as a function of y is plotted
in Fig. 3 for the case 0, =1.0.

For y&- —,
' the expression for p does not become

unbounded even as v-1. Thus, there is no linear
structure in the g-g relations for these values of
y. In fact, for these values of y the E-P relations
given by the intermediate-coupling theory stop at
a critical value of P beyond which there are no
solutions. thus, it seems that a better theory
could be found to describe the systems correspond-
ing to this range of y.
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FIG. 4. {a) Polaron mass vs polaron velocity in the
intermediate coupling theory for several values of y
~0 {n=1.0). The curve for y= 0 diverges logarithmi-
cally as e 1. {b) Polaron mass vs polaron velocity in
the intermediate-cWpling theory for several values
of y» 0 {0.=1.0). %hen y & 0, there are finite values of
the mass for e =1.0.

The mass in this theory is most easily calculated
by using m~ =e P/8 v and is given (in units of m) by
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Just as for p and p, when y «-1 the integral in Eq.
(18) diverges for any v. However, we find that
even though the asymptotic linear behavior in this
theory occurs only for -1&y «--,', the mass be-
comes unbounded in the limit v 1 for -1&y «0.
Thus, the large mass in the limit v-1 is not suf-
ficient to cause the bneaz structure as might be
concluded from a study of the piezoelectric polar-
on. 1%e mass as a function of the polaron velocity
is shown in Fig. 4(a) for several values of y in the
range -1&y~0 (in each case a =1.0). For the y =0
curve the divergence as v-1 is logarithmic. In
Fig. 4(b) the mass is plotted as a function of vel-
ocity for several values of y&0 and these curves
are compared with the y =0 case. Even for y &0
it is noted that the mass increases slightly as v-l.
However, in each case for y &0 there is a finite
value for the mass at v=1.0.

In Fjg. 4(a) the curve for y =0 lies above that for
y =--,' for small v even though the strength of the
divergence as v 1 is much greater for the y = ——,

'
curve. For the same reason that the self-energy
as a function of y reached a maximum value, the

0 polaron mass as a function of y reaches a
minimum value in this theory. This minimum oc-
curs for y=-0.25, independent of coupling strength.
The curve m~(v-0) vs y is plotted in Fig. 5 for the
case o =1.0.

10

8(r) =Q d, (a,e'"' ate-'~' ), (15)

and where C ( r) is a bound-state electronic wave
function whose exact form may vary depending on
the range of the electron-phonon interaction. " The
parameters d, are determined vMiationally to be

d,

=Iraq)(p,

+p, )i[~(q) -v 0] (18)

p, = d'~@~ r e"'e
The factor e'"'~ allows the entire system to move,
with w also determined variationaDy and given by

d'rat(f) pC (r) .
2 (18)

The state vectors, Eq. (14), are not eigenstates
of 6'. The E-p relations in this theory are ob-
tained in terms of the expected value of 6 which is
introduced as a constraint

p=(y Ittly ).
The Lagrange multiplier associated with this con-
straint is proportional to the polaron velocity.

The energy and the equation relating the momen-
tum and velocity are given by

E =P'- ( P --,' v)'+ J" d'r@tP'4

IV. E-P RELATIONS AT STRONG COUPLING

A version of strong-coupling theory appropriate
for moving polarons" also gives a linear E-P re-
lation for the piezoelectric polaron. " %e briefly
consider the appbcation of this theory to the gen-
eral class of polarons described in Eqs. (1)-(3).

The state vectors used in this theory are given by

) elw r~@(«r «r) ee( r) IQ) (14)

where

4va q'"Ip. l'~ ~(q)-v. l ' (20)

FIG. 5. e 0 polaron mass vs y in the intermediate-
coupling theory for +=1.0. There is a minimum for
y~ -0.25 and the curve diverges logarithmicaQy as

v 4va 4q'"Ip, l'
I' ~ I:~(q)-v 4)' '

The structure we are concerned with here is not
affected by a reasonable choice of the electronic
wave function. As in the weak-coupling case, it
again is not clear whether the g-p' relations are
meaningful for y ~-1. However, for all y&-1 one
finds that as v-1 the momentum grows large.
Thus, from this theory an asymptotic linear be-
havior is predicted at strong coupling for all
acoustical-mode polarons (y&-1) including the
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deformation-potential case. Unfortunately, since
the E-p relations are calculated in terms of the
expected value of 6 rather than in terms of an
eigenvalue of g it is not clear how meaningful
these relations are.

V. CONCLUDING REMARKS

%e have considered a general class of acoustical-
phonon mode induced-polaron systems character-
ized by a Frohlich interaction Hamiltonian involv-
ing Fourier components proportional to q&. The
energy-momentum relations for these systems
were investigated. From energy-level crossing
arguments we were led to expect that the E-P re-
lations for these systems should be quadratic for
small &, but linear for large values of p'. For
the weak-coupling limit, in the context of the in-
-termediate-coupling theory, we found for the range
-1&y &- ~ qualitatively the type of P-P relation
suggested from the energy-level crossing argu-
ments. This relation is quadratic for small p and
asymptotes to a straight line with slope equal to
the speed of sound for large P. For y&- ~ there
was no indication of linear structure in the E-I'
relations and, in fact, the E-p relations cutoff
for a critical value of p beyond which there are no
solutions. From a strong-coupling theory appro-
priate for moving polarons we found that the linear
structure was expected in each case for y &-1.

However, in this theory the g-& relations are
given in terms of the expected value of P and,
thus, it is not clear that they can be fully trusted.
In both weak and strong coupling the g-g relations
are not meaningful when y ~-i; this resulted be-
cause of the very long-range nature of the inter-
actions for these values of y.

There need be no inconsistency concerning the
fact that the linear structure at weak coupling ap-
pears for only a limited range of y &-1, while at
strong coupling the linear structure is present for
all y&-1. Although the weak-coupling results do
not agree with the energy-level crossing argu-
ments, in these arguments one considers only the
degeneracy in the electron-phonon +stem, not the
range of the interaction. In the weak-coupling lim-
it, if the range of the interaction is not sufficiently
long, then, apparently, as v j. there are not
enough (long-wavelength) phonons collecting in the
"phonon cloud" around the electron in order to
trap the electron at the speed of sound. However,
at strong coupling this situation does not arise
since in this limit the electron is always much
more deeply bound.
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