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A critical review is presented of various simplified impurity lattice models which have been used in the
literature to extract effective host-impurity force-constant ratios from Mossbauer fraction and thermal-shift
measurements in highly dilute alloys. It is shown that the use of some popular models, sometimes in

combination with inappropriately matched dynamical parameters of the host, has led to a systematic
underestimate of the range of force-constant changes for "Fe, "Sn, and ' 'Au impurity systems. Mannheim's

analytical impurity model provides at present the most practical and physically meaningful theoretical
framework for hn internally consistent method of analysis of Mossbauer lattice-dynamics experiments in

cubic metals. A new and useful set of analytical relationships has been derived from the Mannheim model,

expressing experimentally obtainable impurity to host moment ratios in terms of mass and force-constant
ratios. Moments and their ratios have been calculated for some theoretical lattice models and 18 cubic
metals and rare-gas solids for which neutron dispersion data are available. A uniform general force Born —von

Karman model was used in combination with elastic constants to assure internal consistency among the

resulting data. Moment analyses of heat-capacity data for most metals used as hosts for impurity studies
were performed in parallel, Generally, we found good agreement between these two independent sets of
results. Remarkable uniformity and trends were found within the groups of fcc and bcc metals for the values

of certain moment ratios. A summary of most reliable Mossbauer f data for "Fe, "Sn, and ' Au is

presented, including some new experimental results for "Fe in Ir, Nb, and Rh. Using these impurity data in

combination with the host data presented leads to a set of internally consistent effective host-impurity force-
constant ratios which span a range 0.65 & A/A' & 2.6 for a range of mass ratios 0.3 & MYM & 3.5.
Several of the new values differ considerably from those in the literature. This study shows that no single

host parameter is well correlated with the observed changes in force-constant ratio for a given impurity,
despite earlier suggestions to the contrary. The observed trends must, therefore, depend upon a combination
of several host parameters as yet not understood.

I. INTRODUCTION

A. Inconsistencies in the literature

Qne of the parameters which has been studied
in various dilute alloy experiments is the ratio
of the effective host-host to impurity-host inter-
action (the effective host-impurity force constant
ratio) resulting from tlie substitution of isolated
impurity atoms for host atoms in various metals.
In particular, a great number of studies of the
Mossbauer effect of impurity atoms in metal hosts,
measuring recoil-free fractions and thermal
shifts, have been analyzed with the help of vari-
ous impurity lattice models to estimate such ef-
fective interatomic force constant changes and to
search for trends. Some earlier systematic stud-
ies' ' concluded that impurity-host force constants
for Fe and Sn impurities do not, in general, differ
significantly from host-host force constants.
These results were derived from methods of data
analysis which tend to reduce the apparent force-
constant changes by a combination of several fac-
tors: (i) impurity data with rather large experi-
mental errors, (ii) inappropriately chosen param-
eters to represent the host lattice properties, and
(iii) the use of oversimplified theoretical models.

While only the first of these three factors is in-
cluded in stated error bars, the other two factors
introduced equally large or larger systematic
errors and ambiguities into the interpretation of
such results. Some recent studies, using more
reliable experimental data for both the solid solu-
tion and the pure host metals, and a more sophis-
ticated theoretical analysis, "yielded effective
host- impurity force constant ratios in a variety
of cubic hosts which deviate quite significantly
from the predictions of an isotopic impurity model
(mass change without changes in force constants).

Qur aim in this paper is to critically review the
major methods of data analysis hitherto used in
such studies, to point out some of the unnecessary
oversimplif ications which have caused relatively
large systematic errors to be propagated through
the literature in this field, and to suggest an in-
ternally consistent and physically less ambiguous
methodology for the lattice-dynamical analysis of
Mossbauer experiments involving substitutional
impurities.

B. Organization of this paper

In Sec. II we review definitions of Pure lattice
(host) moments, impurity site moments, and use-
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ful effective force constants. We follow this with
a review of the most commonly cited impurity
models and those explicit and implicit approxi-
mations which are responsible for systematic
errors. We then propose an alternative method
of analysis, applicable to quasiharmonie cubic
systems, based on Mannheim's impurity model'
and using experimentally determined impurity
and host frequency moments.

In Sec. III we present some new analytical re-
sults derived from Mannheim's theory, expressing
impurity site to host moment ratios as simple
functions of mass and force-constant ratios, re-
spectively. These relations are exact within the
assumptions of the model for the even moments
(see Appendix). Corresponding approximate re-
lations for some useful odd moments were ob-
tained from a numerical analysis, applying the
same impurity theory' to a limited range of mass
and force-constant changes.

In Sec. I7 we discuss certain regularities in
moment ratios among face-centered-cubic (fcc)
and body-centered-cubic (bcc) pure metals and
noble-gas solids. These data were derived from
a uniform Born —von Earman analysis of neutron
dispersion experiments, combined with elastic
constants. We also compare these frequency mo-
ments with those we have obtained independently
from heat-capacity data. The observed regular-
ities and trends in host moment ratios could, in
turn, be used to estimate moment ratios in sim-
ilar pure metals for which no complete set of
moments is available.

In Sec. V we summarize the best available Moss-
bauer f values, including some new data. , for Fe,
Sn, and Au impurities in cubic metals, from which
we obtained a set of internally consistent effective
nearest-neighbor host-impurity force constant
ratios. They were calculated by combining the
impurity f data with the analytical results of the
impurity theory (Sec. III) and the host metal pro-
perties (Sec. IV).

In Sec. VI we discuss the limitations of the poss-
ible use of Mossbauer thermal-shift measure-
ments as an independent means for obtaining ef-
fective impurity-host force constant ratios with a
precision comparable to that obtainable by f mea-
surements. In particular, we will show that an
earlier reported empirical linear relation between
f and shift data is to be expected from our theo-
retical analysis. On the other hand, a reportedly
unexpected empirical correlation between a ratio
of impurity-site moments at high and low, temper-
atu'res and the host Debye temperatures, modified
by the host to impurity masp ratio, is found to be
substantially weakened by inclusion of all, of the
most reliable available data. Another proposed

correlation between the effective impurity-host
force-constant ratio and a nearest-neighbor bond-
stretching force constant of the host materi31 is
simil. arly weakened by the complete set of avail-
able data.

However, for "Fe impurities only, there seems
to exist a qualitative correlation. between an in-
creased effective impurity-to-host force constant
(compared to the host-host interaction) and an in-
crease in lattice 'parameter upon alloying Fe with
thy host metal.

We conclude, based on all presently available
reliable data, that no one single host parameter
is simply correlated with the variations in effect-
ive host-impurity force-constant ratios from ma-
terial to material.

II. HOST MOMENTS, IMPURITY MOMENTS,

AND EFFECTIVE FORCE CONSTANTS

IN CUBIC SOLID SOLUTIONS

A. Relation of impurity-site moments to Mossbauer fraction
and thermal-shift measurements

It is well known that the. measurable absolute
value of the Mossbauer fraction f(T) =exp( tP()),")r-)
(v is the y-ray wave number and (x')r is the
mean-squared displacement of the radiating atom)
and the thermal or second-order Doppler-shift
(SOD) bE/E = (v')r/(2c') for an isolated impurity
atom in a pure and quasiharmonic lattice at high
and at low temperatures are directly related to
certain moments of the impurity dynamic-response
function. We refer to the thorough analysis by
Housley and Hess' for discussion and references.
This work is an extension of theirs, applying it
to Mannheim's impurity theory. '

At high temperatures (T 2 —2ev),

(la)

and at T-0 (in practice, near liquid-He temper-
ature'),

(1c)

(jd)

In the above equations k is Boltzmann's constant
and M' is the mass of the impurity atom. The
quantities p (n) are impurity-site moments which
have been defined in the Appendix.
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B. Definitions of lattice-dynamical parameters

The dynamical properties of a monatomic lat-
tice in the harmonic approximation can generally
be calculated if the distribution of the quantized
normal modes of vibration is known. These are
usually given in terms of a normalized phonon
density-of- states function G(~) . The dynamical
quantities themselves can then be expressed as
statistically weighted integrals over all frequencies.
In the limiting cases of high or low temperatures,
the statistical factor of the integrand can be ex-
panded into a suitable power series so that the re-
sulting integrals are weighted averages of par-
ticular powers of the frequency'. : the moments of
the phonon density of states function

p, (n) = uFG((d) d(d, p(0}=1.
0

(2a)

Similarly, when we consider an isolated sub-
stitutional impuzity, its response to the phonons
of the host lattice is given by the dynamic response
function" G'(v) (see Sec. IIIA), and the motion of
the impurity at high and low temperatures is gov-
erned by a similar expansion involving the cor-
responding impurity site moments' [see Appendix
equations (All}, (A12), and (A13)]

~'() f. "G='( )d, u'(0)=(.
0

(2b)

Alternatively, these moments, Eqs. (2a) and

(2b), can be used instead of the distribution func-
tions for describing the dynamical properties of
the host or the impurity. In particular, it has been
shown' that for any harmonic monatomic cubic
crystal with central or noncentral all-neighbor in-
teractions

t(, (+2) =A„„(0,0)/M,

with

(3a)

A.„„(0,0) =- QA„„(0,l), (3b)
F0

where A„„(o,l) are secondderivatives of a two-body
potential, ' between atoms at the origin and at the
lattice site I, and M is the massofanatomof the
host. A„„(0,0) represents the restoring force in the
x direction per unit displacement in the x direction
of an atom at the origin' (all other atoms being held
fixed at their equilibrium positions l). For a sub-
stitutional impurity atom at the origin, we can de-
fine A„'„(0,0) in an analogous way as the restoring
force in the x direction per unit displacement in the
x direction of the impurity atom at the origin
(holding all other atoms fixed at their equilibrium
positions). The (+2)-impurity-site moment is
directly related to the impurity restoring force

and. the impurity mass M' '

A„„(o,o) = —g A.„'„(o,l)
F0

(3c)

and

p, '(+ 2) =A„'„(0,0)/M'. (3d)

P. = [V(+2)]""/V(n) (4)

Because of their unambiguous and model-indepen-
dent physical meaning, we will consider in this
paper the host or impurity restoring force con
stants A„,(0, 0) =—A and A.,'„(0,0) =—A. ' as the effec-
tive force constants [see Eq. (12) in Ref. 7].

For a pure material p(+ 2) (and thus A) can be
determined directly from an appropriate phonon-
distribution function G((d), based, e.g. , on neutron-
dispersion data. We have calculated G(u&) for all
the cubic materials listed in Table I, using a gen-
eral force Born-von Karman model fit to preci-
sion neutron-dispersion data (see Sec. IVA}.
Therefore, the restoring forces A for all host
materials discussed in this study contain contri-

. butions up to sixth or seventh nearest neighbors
[see Eqs. (3a) and (3b)]. In fcc metals the first-
nearest-neighbor central-force term is generally
(within a few percent) equal to the overall restor-
ing force A. This is due to alternating signs pro-
ducing cancellations in the total sums. Alterna-
tively, A can also be obtained from p(+ 2) derived
from heat capacities (see Sec. IVB).

On the other hand, in order to obtain analytical
relations of host-to-impurity moment ratios as
functions of force constant and mass ratios (see
Appendix), we had to restrict ourselves to the
central force nea-rest neighbo-rs approximation (nn)
of Mannheim's model'. A = —Z «, A„„(0,l) and
A' =-Z «, A„'„(0,l). The force constant ratio A/A'
appearing in those analytical relations, when used
in conjunctiori with an experimentally determined
(and unrestricted) value of A, can thus be inter-
preted as a ratio of effective nearest neighbor-
host to-imPurity resto-ring forces. For brevity's
sake, we will call this ratio the effective host
irnPurity force-constant ratio A/A'.

It should be noted that in general, A, A', and A/
A' must be considered as temperature dependent'
due to anharmonic effects. Consequently, G(e),
G!((d), and their moments are, in general, also
functions of temperature. For example, in copper
A and t(,(-2) change by about 2% per 100 K.'

Because of the model-independent relation of
p(+2) to the host-restoring force A [Eq. (3a)],
it is convenient to relate the other moments of the
host-phonon distribution function G(w) to t(, (+2) by
defining the dimensionless ratios
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TABLE I. Moment ratios and elastic constants for a number of cubic lattice models and cubic metals. (Details of the
models are discussed in Sec. IV.)

Models Cutoff frequencies
T (10 rad /sec )

Lattice (K) Ref. A/M = p(+ 2) & su~
Moment ratios

P-) P.&

Elastic - constants
(10i2 dyn/cm2)

Ci2 C44 Ref.

Einstein
Debye
Vis scher
Leighton ~ ~ ~

a
b

1.0 1.0 1.0
0.556 0.861 l.033
0.660 0.897 1.026
0.596 0.865 1.037

1.0
0.840
0.857
0.800

~ ~ ~
/

fcc'
Al
Ni
CU

Kr
Pd
Ag
Xe
Pt
Au

. Pb

80 i

, RT
RT
10
RT
RT
10
90
RT

- 100

16.91
15.29
10.10
0.44
8.30
4.85
0.33
5.85
3.45
0.92

18.73
15.54
10.79
0.45
9.46
5.22
0.33
6.75
4.32
1.01

0.556
0.603
0.559
0.555
0.509
0.524
0.558
0.506
0.443
0.491

0.842
0.865
0.848
0.851
0.830
0.833
0.852
0.823
0 ~ 788
0.801

l.046
1.038
l.042
1.041
1.046
1.047
1.041
1.050
1.063
1.061

0.759
0.797
0.779
0,782
0.765
0.763
0.784
0.747
0.695
0.702

1.137
2.508
1.684
0.0514
2.271
1.240
0.0527

. 3.536
1,923

0.619
1.500
1.214
0.0284
1.761
6.937
0.0282.
2.510
1.631
0.451

0.313
1.235
0.754
0.0268
0.717
0.461
0.0295
0.769
0.420
0.182

u
f

u
h

bcc:
Na
Cr
Fe
Rb
Nb

Mo
Ta

90
RT'

120
RT
RT
RT
RT

2.84
21.90
18.02
0.40
8.28

14.43
5.24
9.83

2.88
18.21
16.99

0.43
8.51

13.01
5.22
9.10

0.454
0.691
0.599
0.382
0.534
0.674
0.617
0.658

0.791
0.910
0.870
0.753
0.851
0'.904
0.880
0.894

1.057
1.022
1.034
1.068
1.037
1.024
1.030
1.028

0.747
0.879
0.818
0.712
0.816
0.865
0.845
0.842

0.0793
3.500
2.431
0.0314
2.400
4.60
2.609
5.233

0.0641
0.678
1.381
0.0264
1.260
1.76
1.574
2.045

0.0596
1.008
1.219
0.0189
0.281
1.10
0.818
1.607

w
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C. Review of some theoretical models commonly used to analyze

impurity-host force-constant ratios

1. Einstein model

Many of the analyses of changes in the effective
impurity-host force constant in the literature were
'implicitly based on the Einstein aPpy oximation.
Here, the latti. ce is treated as a system of inde-
pendent oscillators, all of frequency ~~=(A/M)' '.
For this model we have

p, z(n) = es, P„=1 for all n, .

An impurity in the Einstein model is thus repre-
sented by an altered mass M' with pn altered force
constant A', which will vibrate at an altered fre-
quency co~, Then

(6)

Eq. (6), y'/y represents an Einstein-Debye force-
constant ratio. In applying Eq. (7d) to impurity
measurements, it is essential for internal con-
sistency that the pure host parameter 6d(n) must
represent the same nth Debye moment [Eq. (7b)]
which characterizes the measured impurity data,
rather than a tabulated average Debye temperature
8d. The Einstein-Debye force-constant ratio y'/y
.obtained in this way from Eq. (7d) will only be
comparable to our ratio A'/A for those cases
where the Einstein relation, ' Eq. (6), can be shown
to be approximately valid for a real crystal. Ne
shall show in Sec. III that this is indeed the ca,se
for n =+ 1 (low-temperature SOD shift measure-
ments), while for n = —1 or -2 (high- and low-
temperature mean-squared displacement mea-
surements), the use of Eq. (7d) to obtain impur-
ity-host force- constant changes may introduce
rather large errors,

where k is Boltzmann's constant. Here

P„=-,'(n 3+)(-',)" '. (Vc)

It is well known that different dynamical quan--
tities are characterized by different 6D(n) temp-
eratures. Also, different moments pD(n) dominate
the low and the high temperature values of these
quantities.

For the impurity, traditionally, an "effective
Debye temperature" 8d(n) has been defined from
a fit of experimental Mossbauer data to the ap-
propriate Debye function for the particular mea-
sured quantity (e.g. , g')r '). Then, using a Debye
temperature 6~(n) for the host, the relationship

8' (8) = 6 (n) (M/M')' ~
( y '/y)' ~ (Vd)

defines an effective force-constant ratio y'/y.
Since Eq. (7d) is based on the Einstein model,

2. Einstein-Debye model

In using an expression such as Zq. (6) to deter-
mine the quantity A'/A for a given mass change,
one must have data for the moments of both the
impurity and the host. For the host, thermody-
namic properties, such as heat capacities, have
generally been parametrized using the Debye mod-
el, which assumes a single constant value for the
velocity-of the phonons, but allows for a range of
frequencies up to some maximum value ~D. For
this model and an appropriate normalization con-
dltlon

G&(ld) =3(d /(d» 0~ (d~ (dD.

Moments and "Debye temperatures" 8D(n) are then
defined as

3 „3 k"
P~(n) = (uD =

3
— 8d(n)", n&-3, (7b)

3. Visseher model at low temperature

Some theoretical justification for using Eq. (Vd)

for real crystals was given by Visscher, ' based
on a simple cubic (sc) lattice model with a. single.
impurity atom, in which the shear and compres-
sional forces were taken to be. equal in magnitude.
These assumptions lead to dispersion relations
in which longitudinal and transverse vibrations
have identical frequencies, parametrized by a
single variable force constant. Visscher calcul-
ated dynamic-response functions based on this
model, and analyzed the mean-squared displace-
ment and velocity in the low-temPexatuxe limit
which are determined by p, '(-I) and p, '(+I), re-
spectively [see Eqs. (1c).and (1d)]. The results of
his computer analysis were given in graphical
rather than analytical. form. For small changes
in mass and force constants only, his graphs de-
viate from the Einstein ritodel, Eq. (Vd), for n = 1—
and +1, by only a few percent. This is probably
the reason why Eq. (7d) is often ascribed to Vis-
scher. However, Visscher's graphs represented
only the T =0 limit, and it is quite clear that the
sc model is rather unphysical. Equation (Vd) has
nevertheless been used widely to determine Ein-
stein-Debye force constant ratios y'/y from im-
purity mean- squared-displacement measurements
at or above room temperature, w'hich are deter-
mined by p, '(-2) rather than by p, '(-1) [see Eq.
(la)]. We will show in the following sections that
the use of the Einstein Debye relation -Eq. (Vd) in
this and other cases may lead to substantial er-
rors.

4. Maradudin-Flinn model at high temperature

Maradudiri and Flinn" have considered the high-
tempe~atuxe behavior of the impurity mean- squared
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displacement, whish depends upon p'( —2) [see Eq.
'

(1a)]. Using as their model an impurity in a face-
centered cubic lattice with nearest-neighbor cen-
tral-force interactions (often referred to as the
I.eighton modeL), and eniploying "Ludwig's approx-
imation, " they obtain a relation [their Eq. (4.8)]
which may be rewritten in the form

(8)

This relation Will approximate the Einstein result,
Eq. (6), only if the term p, (+2)p(-2) =1/P, is ap-
proximately equal to one; for the I eighton model,
however, P, =0.596 (see Table I). Thus we see
that the use of the unphysical Einstein model may
introduce serious errors, even when the appro-
priately weighted Ov(-2} is used for the host.

While the results of Maradudin and Flinn, "Eq.
(8), could be used to determine A'/A, the series
given in Eq. (8) does not converge except for small
'changes in force constants, smaller, in fact, than
are found for several impurity-host systems (see
Sec. V). We will present an alternative to Eq. (8)
in Sec. IIIA which does not suffer from this limita-
tion.

5. Visscher model at high temperature

Recently, Ohashi and Kobayashi" have extended
the Visscher model' (Sec, IIC 3) to include the
high-temperature limit for the impurity mean-
squared displacement. The result [their Eq. (4.2a)]
can be written in terms of the appropriate moments

[1—0.675(1 —A/A')]. (9)p(-2) M

Unlike Eq. (8), this expression is valid for all
values of A/A'. It is, however, closely related
to Eq. (8), as we shall show in Sec. IIC 6. Ohashi
and Kobayashi" show that for small changes in
force constant, Eqs. (8) and (9) agree (see Fig.
5 of their paper); they compare these relations
also to Visscher's graphs for T =0. This, however,
is meaningless since at low temperature 8D(n)
for the impurity mean-squared displacement in-
volves L),v(-1) rather than p.D(-2) [see Eqs. (la)
and (1c)], which explains the difference in slopes
in their Fig. 5. Unfortunately, their evaluations
of force constant changes. from published impurity
and host data using Eq. (9) (summarized in their
Table I) show gross discrepancies with the values
summarized in this work (see Table II); this is in
part due to the use of unspecified Debye temper-

atures e~ instead of the appropriately evaluated
Ov(-2) values for the host metals.

6. Mannheim's model for cubic crystals

Mannheim's theory' provides analytical expres-
sions for experimentally important lattice dynami-
cal parameters such as (x')r or (v')r for an unde
stxicted range of temperature, mass, and effective
host-impurity force- constant ratios. To achieve
this the following simplifying assumptions had
to be made: (i) harmonic impurity-lattice inter-
action; (ii} only nearest-neighbor central forces
are considered (see Sec. IIB). Mannheim's theo-
ry yields expressions for the dynamical param-
eters in the form of modified integrals over the
presumed to be known phonon density-of-states
function G(ur) for the pure host. The only free
parameters are the mass ratio M/M' and the ef-
fective force-constant ratio A/A'. Contributions
due to the appearance of localized modes are in-
corporated in the theory. Several aspects of the
applications of this theory to the analysis of ex-
perimental Mossbauer data will be discussed in
greater detail in Secs. IID and IIIA.

D. Determining effective host-impurity force-constant ratios
from Mannheim's impurity model

For cubic impurity systems, Mannheim's theory'
is the most useful and convenient model available
today for the numerical analysis of impurity mean-
squared displacements (x')r (and/or mean-squared
velocities (v')r) from Mossbauer zero-phonon
fraction f(T) (or SOD) measurements. The model
predicts the dynamic yesPonse fun-ction of the im-
purity atom G'(ur} for any mass or force-constant
change, provided a realistic phonon density-of-
states function G(~) for the pure host is known.
All experimentally accessible dynamical param-
eters for impurities such as (x'}r and (v'}r can
be expressed as weighted integrals over the ap-
propriate dynamic response function. ' We have
recently presented arguments' that in view of the
anharmonic effects in real materials, which cannot
be incorporated unambiguously into an analytical
impurity theory, we consider the following hier-
archy of approximations as optimal in terms of
obtaining physically significant effective host
imPuyity force-constant yatios (see Sec. IIB) from
experimental data.

1. Extrapolated zero-degree effective host-impurity
force-constant ratios

If phonon density-of-states functioris for the
pure material are known at high and at low temp-
eratures, measurements of the impurity mean-
squared displacement (x')r at those same temp-
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eratures can be used best to evaluate force con-
stant ratios at these temperatures from Mann-
heim's integral, ' followed by an extrapolation to
a zero-degree effective host-impurity force con-
stant" ratio. However, due to a scarcity of host
data, this method is limited to a handful of im-
purity systems. It was carried out for Fe in Cu
and Pd (see Table II).

I

2. Lo~-temperature effective host-impurity force-constant ratios

)

In those cases in which the phonon density of
states function is not known at all or is known

only at room temperature, reliable lose-tempera-
ture effective host-impurity force-constant ratios
can alternatively be obtained from a moment an-
alysis. Impurity moments can be determined from
experimentally measured f values at temperatures
near that of liquid He, as well as near room tem-
perature and above, by means of the moment ex-
pansions, Eqs. (1a) and (1c). In this way a low-
temperature value for p, '(-1) and several values
for p, '(-2)r, at and above room temperature, can
be obtained. For many of the studied dilute alloy
systems of Fe we have found p. '(—2) to be temp-
erature dependent, varying as much as 4/p per
100 K near 296 K.

As will be discussed in Sec. IVB, host moments
such as p(-1) and p(-2) can be obtained quite ac-
curately from a moment analysis of heat capacity
data." Such an analysis yields lou -temPezatuze
moments, characteristic of about 100-150 K. In
order to obtain consistent effective host-impurity
force-constant ratios with the help of the impurity-
to-host moment ratios derived in this work from
Mannheim theory [Eqs. (12) and (15), Sec. III], it
is necessary fop most materials to extrapolate the
experimentally obtained impurity moments p, '(-2) r
down from temperatures at and above room temp-
erature to about 100 K. [Direct calculations of
p'(-2)r from f data in that temperature range is
restricted by the convergence criterion for the ex-
pansion, Eq. (1a).] From p. '(-1) and p'(-2) two
independent values for the low-terriperature effec-
tive host-impurity force-constant ratio can be ob-
tained, representative of about 100 K. For most
metals included in this study, anharmonic effects
are-probably rather small at these temperatures.

If for a material (e.g. , Cu) G(&u) r, is known from
neutron studies at low temperatures (-100 K), the
same information can, of course, be obtained in-
dependently from a fit of low-temperature to
room-temperature f values to the Mannheim inte-
gral, ' similar to the method described in Sec.
IID 3.

We have calculated a set of low-temperature ef-

fective host-impurity force-constant ratios from
suitable Mossbauer f values and a moment analysis
of heat-capacity data for the relevant host metals
(see Table 'II and Sec. V).

3. Pseudoharmonic effective host-impurity force-constant ratios

Most neutron-dispersion data for pure materials
are available only at one temperature T, (usually
room temperature). From these a density-of-
states function G(~)r, for that temperature can
be derived, using a Born-von Karman analysis.
A precision measurement of the Mossbauer f(T,)
value at the same temperature T„analyzed with
the help of the Mannheim integral, ' yields a pseudo-
harmonic effective nearest-neighbor host-impurity
force-constant ratio" (A/A')r, . f(T) values for
temperatures in a small range above and below
T, should be included in the fit to the Mannheim in-
tegral only if a correction for anharmonicity of the
form (x')r = (x')ra[1+(.(T —T,)] is applied. "" The
traditional analysis of f values measured over a
large temperature range and using a correction
term (1+a T) does not properly account for the
temperature dependence of G((d) for the host, '
and the interpretation of the resulting values of
(x')r is more ambiguous than those obtained by
the above procedure. We have, therefore, re-
analyzed previously published impurity data in
order to obtain a more reliable set of force con-
stant ratios (see Table II).

III. IMPURITY-HOST MOMENT RELATIONS
FROM THE MANNHEIM MODEL

A. Even moments

where

(10a)

p((d) =(Ply/M') —1+ (o'[1 —(A/A')]/ j(+2), (10b)

(10c)

The Mannheim model for an isolated impurity is
based on a cubic lattice with central forces only,
where the changes in the impurity-lattice interac-
tions are limited to nearest neighbors. The rela-
tionship between the pure-lattice phonon density-
of-states function and the impurity dynamic-re-
sponse function i.s given by"'

G'((u) = G((u)(M/M')([I + p((u)S((u)]'

+[2w+G(&u) p(&u)]']

+ &(u) —(d~)(M/M')

+ (p ((d)T(~) +(~/~') —[1+p(~)]'l
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T(&u) = &u' (v" —v') 'G(&u') d(d', (10d) 50 I 2 I I ( I I I

2(—2) (I ) - '( A') (12)

It should be noted that Eqs. (11) and (12) include
contributions from localized modes, if present,
and that they- are. valid at all temPexatmes.

We see that Eq. (11) agrees with Eq. (6) for the
Einstein modetP' but that Eq. (12) would agree only
if P, =—1. In Table I, we have calculated the val-

and 6((22 —(2(~) is the Dirac 5 function at the local-'
ized mode frequency ~L, provided a localized mode
u&1, & (d,„exists [for which I + p(~1)S(&ul) =0].

It should be noted that our equation (10b) differs
from the definition of p(~) as given by Mannheim, '
where the approximation (valid only. in the strict
nearest-neighbor model) (u(+2) =&„„(0,0)/M —= &sr'.,
was used to define ~. When, for a real material,
p(+2) is determined from a complete Born-von
Karman analysis of neutron-dispersion measure-
ments, Mp(+2) contains contributions from nearest
up to sixth or seventh neighbors. We have there-
fore defined A =A„„(0,0) =My(+2), [Eqs. (3a) and

(3b), Sec. II B], as the effective host-host force
constant. From columns 3 and 4 of Table I it
can be seen that —,'(dmax may be as much as 25/o
larger than A/M in fcc metals or 13/o smaller than
A/M in bcc metals. When comparing our values
of A/A', as summarized in Table II with force-
constant ratios A/&' obtained in other studies from
Mannheim's original expression' for p((2(), the
following conversion relation should be applied:

A/A' =1 —[2 p(+2)/(d'„] [1 —(II/A. ')]. (10e)

From Eq. (10a) impurity-site moments p'(n) canbe
calculated [for a given impurity mass and any given
host-phonon distribution function G((22)] as a func-
tion of the force-constant ratio A/A' which appears
in p(~). Such numerical calculations were per-
formed for a number of host-distribution functions
and a limited range of values of M/M' and A/A'
(see Figs. 1 and 2 and Sec. IIIB).

Iri the Appendix we derive exact functional rela-
tionships for the ratios of nth impurity site mo-
ments to host moments, for even n, using the ap-
proximations of the Mannheim impurity ~odel. '
We find [Eq. (A17)],

g'(+2)
( 22) (A')

Note that this relation is consistent with our defini-
tions of p(+2) and p. '(+2), Eqs. (3a) and (3d). We
also derive an analytical expression for p, '(+4)/
p(+4) in the Appendix [Eq. (A19)]. Of greater use-
fulness is the ratio [Eq. (A20)]

2.0-

I.O—

0.5-

0.2 2 I I 2 ~ I ~

0.2 0.3 0.5 I.O 2.0 3.0 5.0
4/4'

FIG. 1. 0 Mannheim-model predictions of p', (-1)/
I.(—1) (see Sec. IIIB) for 0.2&4/A'&5 and M'/M —4, 1
and 4 using the density of states function G(co)2&6 of Cu

representative of fcc metals. The dashed lines represent
the Einstein model [Eq. (6)], while the solid lines repre-
sent the proposed functional relationship Eq. (15).

I ' I I I I I I I I

ues of l3, for a number of models of ideal lattices
and for real-host materials (see Sec. IVA). Clear-
ly, the experimental values of p, are far from
unity, being instead much more nearly the p,
= 0.596 value obtained for the I.eighton model.

There is, however, a striking similarity be-
tween our relation Eq. (12) and that given by Mara-
dudin and Flinn, "Eq. (8). Rewriting our expres-

p(+ I) /(u (+I)
5.0

2.0-

1.0—

0.5-

0;3-

0.2 2 I ' I
' I ' I

2.0 3.0 5.00.2 0.3 0.5 I.O
A/A

FIG. 2. e Mannheim-model predictions of p'{+1)/
p(+1) (see Sec. IIIB) for 0.2&2/A'&5 andM/M' =4, 1,
and 4, using the density of states function G{~)2&6 of Cu,
representative of fcc metals. The dasked lines repre-
sent the Einstein model fEq. (6)]', while the solid lines
represent the proposed functional relationship Eq. (16).
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sion Eq. (12) in terms of the inverse ratio A'/A
and expanding for small values of the quantity [1
—(A'/A)], we obtain

A'/A = (y'/y)„, ((1/P .) —[(1/P .) —1]

x (y'/y). ,]-', (14)

(13)

The main difference between Eqs. (13) and (8) is
the absence of the factor ~4 in the third term of the
expansion. The discrepancy may have been intro-
duced by the use of "Ludwig's approximation" in
Maradudin and Flinn's derivation. '

Equation (9), which Ohashi and Kobayashi" have
derived for Visscher's simple cubic model' in the
high-temperature limit, functionally agrees with
our Eq. (12). From direct calculation (Table I) we
find, however, for the coefficient P",=0.660 in-
stead of the value 0.675 given in Ref. 11.

Many of the values of host-impurity force-con-
stant ratios for dilute alloys which have appeared
in the literature have been obtained"'" by applying
the Einstein-Debye relation [Eq. (7d)] to impurity
mean-squared displacement measurements at or
above room temperature (see Sec. IIA). By com-
paring the Einstein-Debye force-constant ratio at
high temperatures (y'/y)» from Eq. (7d) with the
earlier defined and more meaningful effective im-
purity-host force-constant ratio A'/A from Eq.
(12), the magnitude of possible errors due to the
use of this crude model becomes apparent. As-
suming that the appropriate Debye temperature
OD(-2) for the host has been used (this is the ex-
ception rather than the rule), we have

TABLE III. Relation between Einstein-Debye force-
constant ratios [Eq. (7d)] and effective impurity-host
force-constant ratios as obtained from Mossbauer f
measurements (Secs. IIIA and III B).

where we have used p, (-2)/p'(-2) = [OD(-2)/
OD( —2)]' [see Eq. (Vb)].

In Columns 1 and 2 of Table III we give the values
of A'/A from Eq. (14) for several values of (y'/y)
using an average value for P, for cubic metals of
0.57. It is obvious that the use of Eq. (Vd) instead
of Eq. (12) can lead to substantial errors when ap-
plied to high-temperature impurity measurements,
quite apart from the complications of anharmonic-
ity.

B. Odd moments

Attempts to derive from the Mannheim model'
functional relationships in a closed form, similar
to Eqs. (11) and (12) for the experimentally and

theoretically important impurity-site moments
p, '(-1) and p, '(+1), were not successful. Bather
than describing the impurity motion near the clas-
sical limits, as.do the even moments [see Eqs.
(la) and (1b)], these odd moments characterize the
zero-point motions of the impurity [see Eqs. (1c)
and (ld)]. As an alternative we have computed
g'(-I)/p(-. 1) and ]]'(+I)/p(+I) numerically from
the Mannheim dynamic response function G'(~)
[using Eqs. (2a), (2b), and (10a)] for a range of
values 0.25 & M'/M & 4 and 0.2 &A/A' & 5, and using
the density of states functions for various host
materials listed i.n Table I. The latter were de-

I

rived from neutron-dispersion measurements (see
references to Table I). In Figs. 1 and 2 the circles
represent these calculations using G(~) r, for Cu
at room temperature. " The dashed lines show the
predictions of the Einstein model, Eq. (6), while
the, solid lines represent the following functional
rela. tions (Fig. 1):

High temperature
. y'/y A'/A

Low temperature
q'/q ' A'/A ' (15)

2.0
1.5
1.3
1.0
0.70
0.50
0.30

8.2
2.4
1.7
1.0
0.57
0.36
0.20

2.0
1.5
1.3
1.0

' 0.70
0.50
0.30

1.9 3.5
1.4 2.2
1.2—1.7
1.06-0.92
0.59-0.71
0.41-0.46
0.24—0.25

~From application of Eq. (7d) to high-temperature
Mossbauer fraction measurements.

From Eq; (14), using (P p)~v=0. 57.
'From application of Eq. (7d) to low-temperature .

Mossbauer fraction measurements.
From Eq. (17), using (P ~)«-—0.85 and (P,4)~~=0.8. The

two limits are for M'/M =4 and M'/M =4, respectively.

(+ 1) IM ~&I2)+b AI I/2ll b(M IN)]-
p, (+ 1) M' (16)

with b = 2 (p, —1) = 0.021 from Table I.
The following observations can be made regard-

ing Eqs. (15) and (16) and Figs. 1 and 2.
(i) For the chosen range of mass and force-con-

stant changes the functions Eqs. (15) and (16) rep-
resent the direct calculations from integration of
the Mannheim dynamic response function [Eqs. (2)
and(10)] very well indeed. The deviations reach at

with a =-, (I/v' p, —1) = 0.043. The values of p,
and P, =O.V79 are those for Cu from Table I. Also
(Fig. 2)
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most 5% near the extremes of the ranges calcu-
lated. (Improved fits could be obtained by includ-
ing higher-order terms in [1 —(A/A')' '] and [1
—(M'/M)" ].(

(ii) The functional forms of Eqs. (15) and (16)
were in part guessed at by comparing them with
the exact functions for p'(2)/p(2) [Eq. (11)] and
p, '(-2)/p. (-2) [Eq. (12)]. Approximate functional
dependencies of the (-1) and (+1) moments on
mass and force-constant changes have previously
been discussed by Housley and Hess, ' whose re-
sults are consistent with Eqs. (11), (12), (15), and
(16). The appearance of P, in Eq. (15) can only be
justified by its numerical value (Table I) since no
analytical expression could be derived directly
from the theoretical model. However, when we
use computer fitting of the functional forms Eq.
(15) and (16) to determine best Values for the pa-
rameters a, b, and P, for a variety of hosts, a
positive correlation appears to exist between these
best values and those based on the actual host pa-
rameters P „P„and P, as listed in Table I.
Additional support for our choice of relating the
small corrections a and b in the exponents of the
.mass terms in Eqs. (15) and (16) to the host mo-
ment ratios P, and P„, respectively, comes
from an early perturbation analysis by Lipkin. '
He showed that for an isotoPic imPurity (A/A' = 1)
at T =0, the slope of In[p'(-1)/p(-1)] vs ln(M'/M)
for small mass changes deviates a few percent
from the value & which would be. expected from the
Einstein model, Eq. (6). He also showed that this
deviation is related to a weighted average frequen-
cy of the host. Alternatively, our results for the
(-1) moment ratio may also be compared to the
low-temperature results of a calculation by Daw-
ber and Elliott" for anisotopicimpuxity (A/A'
—= 1). We find from Mannheim's theory' and the
density-of-states function for Cu, using Eq. (15),
log»[ p, '(-1)/p (-1)]/log, o(M'/M) = 2 (P,) 't' = 0.543.
Dawber and Elliott, "using a abye distribution,
found for the same coefficient the value 0.4'l8,
which differs from our value 2 (P,) 't'= 0.539 from
Table I.

(iii) As does the relation for the Einstein model
[Eq. (6)], our Eq. (16) based on Mannheim's model,
shows a linear relation between log»[p'(+ I)/
tt (+ 1)] and log»(A/A ') [and with log„(M'/M) as
well] except for a small change in slope (see Fig.
2). This shows that the Einstein-Debye relation
Eq. (7d) adequately describes the (+1) moment ra-
tio. Unfortunately, these moments are more dif-
ficult to obtain experimentally with sufficient reli-
ability to determine accurate force constant ratios
(see Sec. VI).

(iv) The ratio P'(-I)/p (-1) deviates considerably
from that predicted by the Einstein model [see Eq.

(15) and Fig. 1]. Consequently, if Eq. (7d) is used
to obtain an Einstein-Debye force-constant ratio
(y'/y) L~ from low-temperature Mossbauer fraction
measurements (see Sec. IIC2), it, can differ apprec-
iably from the more meaningful effective impurity-
host force-constant ratio A'/A defined above (Sec.
II B). From Eqs. (7d) and (15), using p(-1)/p'(-I)
=Go(-I)/Oo(-I) [see Eq. (7b)], we have

A'/A = (y'/y) ((I/P. )(M'/M)'+ (y'/y)"

x [1 —(I/P )(M'/M)" ]] '. (17)

In columns 3 and 4 of Table IIIwe illustrate the
systematic errors which can be introduced by an
inappropriate use of the Einstein-Debye relation
Eq. (7d) to interpret low-temperature f measure-
ments. In particular, Table III shows that for both
low- and high-temperature impurity f data, the
simplified model erroneously co~P~esse& the ap-
parent range of effective force-constant ratios (see
Sec. IA and Sec. VI B). This effect is probably
partly responsible for the earlier conclusions
about the appro;imate validity of the isotopic im-
purity theory. ' ' In Sec. V, Table II, we ha, ve re-
evaluated earlier precision f data" which had been
analyzed using Eq. (7d).

IV. MOMENTS AND MOMENT RATIOS IN MODEL
LATTICES AND IN CUBIC METALS AND RARE-GAS SOLIDS

A. Moments from neutron-dispersion data

As we have seen in Sec. III, the moment ratios
P„appear in the expressions for determining force-
constant changes due to impurities. In an effort
to investigate the characteristics of these P„, we
have determined the moments for a number of lat-
tice models and cubic-host materials. Several of

b

these lI„are listed in Table I. The moments were
numerically calculated from weighted sums over
phonon distributions obtained from Born-von
Kirman model fits to dispersion relations. We have

C. Summary

In Table IV we summarize the most useful mo-
ment relationships from the Mannheim model, ' ex-
pressing effective host-impurity force-constant
ratios as functions of impurity-site moment to
host moment and mass ratios by solving
Eqs. (11), (12), (15), and (16) for A/A'. In partic-
ular, since p, '(-1) and p. '(-2) are easily obtainable
from precision Mossbauer fraction measurements
(see Secs. IIA and IID2), thefirst tworelations, in
combination with values of p. (-1) and g(-2) for the
host material, determine two independent values
for the effective host-impurity force-constant ra-
tio A/A' (see Sec. V).
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TABLE IV. Effective host-impurity force constant ratios A/A' from impurity site to host moment ratios (Mannheim
theory) (Sec. III).

Moment ratio
Force-constant ratio A/&'

I

1+ (P )) —,—1I '(—2) m
p. (—2) m'

p, '(+ 1)

Use

High-temperature
f measurements '

Low temperature
f measurements

Low temperature
thermal shift

g,emarks

Exact'

& =-,'~(p )-«~

Approximate ~

1
& = p-[pg-1)
Approximate '

+ 2
p, (+ 2)

p. '(+ 2)
Correction to high
temperature shift

Exact

The host parameters P„are defined in Eq. (4).
See Appendix.

'See Sec. IIIB.

used the inelastic neutron scattering data published
by the authors referenced in Table I. In order to
obtain compatible moment ratios, all materials
were analyzed uniformly with Born-von Karman
models employing general forces and including
sixth nearest neighbors for fcc and seventh near-
est neighbors for bcc lattices. The elastic con-
stants, preferably for the same temperature B.s
that of the neutron measurements, were included
as parameters to the fit to obtain a more reliable
representation of the low frequencies, to which the

P„ for negative n are rather sensitive. The cri-
terion of best fit to the dispersion data was identi-
cal in all cases. The phonon density-of-states
function G(~) was calculated by direct summation
over a fine grid in k space.

'B. Moments from heat-capacity analysis

In order to compare the consistency of our mo-
ment calculations from neutron-dispersion data
with those obtainable from an analysis of heat-
capacity data, we have analyzed such data for all
nonferromagnetic metal hosts listed in our sum-
mary Table II. The methods of heat-capacity
analysis have been treated extensively in the lit-
erature. ""The overall accuracy of the moment
analy'sis has been estimated to be that of the heat-
capacity data (2%-5%)." The corrections for elec-
tronic contributions to the heat capacity and the
conversion from the measured C~ to C~ have been
made with appropriate care, Bnd uniform conver-
gence criteria were applied to the numerical in-
tegr'ations of the series expansions, " Since the
principal contributions to the heat-capacity in-
tegral for most metals investigated here comes
from the data between 50 and 150 K, the negative

as well as the positive moments calculated in this
analysis can be considered to be representative
of a low-temperature phonon-distribution function
G(e) with T about 100—150 K.

C. Comparison between neutron and heat-capacity
data

In Table V we compare moments which were
obtained by us from neutron as well as from heat-
capacity data for Cu, Al, and Pt for which
comparable data are available in the litera-
ture. For the neutron data the excellent agreement
illustrates the fact that the frequency moments are
not sensitive to the particular Born-von Karman
force model used in our calculations. The varia-
tion in the listed values of a few tenth of a percent
for most moments [except ~a(-3) which is de-
termined by the initial curvature of G(&u)] is an
indication of the accuracy of these data. The
somewhat larger deviations in the values of vD(-3)
probably represent the relatively greater weight
we accorded to the elastic constants in our neu-
tron-datg fitting procedure.

For the evaluation of moments from heat-ca-
pacity analysis we made us'e of some recent cri-
tical compilations of such data. "" The stated
errors are those derived from the fitting routine.
They do not include systematic uncertainties. If
the latter are estimated to be a few percent, "
then all values listed are consistent with each
other. In particular, the use of recent, smoothed
average heat-capacity data" for platinum leads to
a reduction of the earlier noted discrepancy be-
tween the heat-capacity data on the one hand, and
neutron dispersion, elastic constant, and Moss-
bauer measurements on Pt on the other hand, "
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TABLE V Comparison between frequency moments from dispersion relations and heat-
Capacity data (Sec. IV C).

Metal
(temp. )

m(n) = p(n) ~" (x].0 3 rad/sec)
From neutron-scattering data From heat-capacity data

This work
and Ref. a Ref. b Ref. c

Cu,
(296 K)

CU

(8O K)

+4
+ 2

+1
—1
-2

(u~(-3)

+4
+ 2

+ 1
—1
—2

co~(-3)

3.38
3.18
3.05
2.69
2.37
4.30

This work
and Ref. e

3.45
3.29
3.11
2.75
2.42
4.47

3 37
3.18
3.04
2.69
2 ~ 37
4.36

Ref. c
3.41
3.21
3.10
2.76
2.43
4.52

3.39
3.20
3.07
2.72
2.39
4.34

Ref. g

3.41 + 0.02
3.24+ 0.01

2.72 + 0.02
2.43+ 0.02

2.76 + 0.01
2.43 + 0.01

4.49 4.52 + 0.01

This work
and Ref. f Ref. d

3.38 + 0.04
3.21 + 0.03

Al
(80 K)

Pt
(90 K)

+4
+2
+1
—1
-2

Q3 g(—3)

+4
+2
+1
—1
-2

co~(-3)

4.41
4.11
3.93
3.47
3.07
5.77

This work
and Ref. i

2.60
2i42
2.30
1.99
1.72
3.05

4.43
4.13

3.47
3.06

. 5.66

This work
and Rqf. h (80 K)

Ref. h

(3OO K}
4.34
4.03

3.35
2.94
5.37

Ref. f
4.27 + 0.04
4.06 + 0.02

3.39 + 0.03
3.09 + 0.03

Ref. j
2.80 + 0.02
2.52 + 0.01

1.99 + 0;02
1.72 + 0.02

Ref. d

5.61

Ref. d

3.07

Ref. h

4.36 + 0.13
4.08 + 0.01

~ ~ ~

3.45 + 0.01
3.05 + 0.01
5.63 + 0.01

Ref. k

2.93 + 0.11
2.60 + 0.05
2.41 + 0.04
2.01+ 0.03
1.73 + 0.02
3.12 + 0.03

V
(296 K)

+4
+2
+1
-1
-2

co~(—3)

From x-ray diffuse scattering
This work

and Ref. l

3.68
3.54
3.44
3.15
2.81
5.13

Ref. g

4.35+ 0.03
4.13 + 0.03
3.98 + 0.03
3.49+ 0.03
2.98 + 0.02
5.22 + 0.04

~Reference 17.
"E.C. Svensson, B; N. Brockhouse, and J. M. Rowe, Phys. Rev. 155, 619 (1967).
R. M. Nicklow, G. Gilat, H. G. Smith, L. J. Raubenheimer, and M. K. Wilkinson, Phys. Rev.

164, 922 (1967).
dReference 22.

G. Nilsson and S. Rolandson, Phys. Rev. B 7, 2393 (1973).
From the heat capacity measurements of W. F. Giaugue, and P. F. Meads, J. Am. Chem.

Soc. 63, 1897 (1941),.
Referenc'e 25.

"G. Gilat and R. M. Nicklow, Phys. Rev. 143, 487 (1966).
'D. H. Dutton, B. N. Brockhouse, and A. P.Miiller, Can. J. Phys. 50, 2915 (1972).
' Reference 23.
"Reference 20.

Reference 26.
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TABLE VI. Summary of selected Mossbauer f values for 5 Fe impurities in cubic metals
(Secs. V 8 1-VB3).

Host r/r, ' f(T)b Ref.
Best value c

f(T)

Ag

CU

RT

RT

RT

RT

)2
1e3

1.9
?

1.4
?

1.3
1.0
1.5
?
?

1.0
1.0
1.0

(0.64 ~
(0.52 ~
(0.58 +
(0.54 ~
(0.52 ~
0.50 +

(0.598 +
(0.62 *
0.583 +
0.76
0.792 +
0.710 +
0.727 +
0.725 +
0.710 +
0.709+
0.703 +
0.710 +

0.04) d

0.03) d

0.03) '
0.02) d

0.05)"
0.05
0.014)
0.05)
0.010
0.02
0.009
0.014
0.016
0.034
0.010
0.006
0.007
0.006

g
e
h
i
d

g

g
l
lTl

3

e

0
p

qqr

0.50 + 0.05

0.583 + 0.010

0.790 + 0.009

0.709 + 0.005

RT

4K
RT

1.5
(1.0)
(1.0)
3.8
?

1e3

(1.3)

0.917~ 0.019
0.910+ 0.007
0.911+ 0.006

(0.807 + 0.025)
0.79 + 0.03
0.812 + 0.005

0.914 + 0.005
0.78 + 0.05
0.76 + 0.03
0.77 + 0.01
0.753+ 0.008
0.773 + 0.011

3

d

g
d

r

g
s
t
u

0.911+ 0.005

0.812+ 0.005.

0.914 + 0.005

0.763+ 0.011

Nb

Pd

RT

4K

RT

1.6
?

1.4

(1.4)
?

1.1

1.7
1.1
?

0.907 +
(0.885 +
0.63
0.659 +
0.660 ~
0.644 +

(0.881 +
(0.846 +
0.80
0.81
0.652+
0.652+
0.661 +
0.657+

0.010
0.011)
0.03
0.008
0.010
0.004

0.006)
0.010)
0.01
0.05
0.036
0.015
0.006
0.024

t
u

g

u

r
u

e

3

q

0.907 + 0.010

0.648 + 0.014

0.881 + 0.010

0.80 + 0.01

0.659 + 0.004

pt

4K
13 K
20 K
RT

1.7
1.1

(0.813+
(0.875+
0.891 +
0.729 +
0.723 +
0.729+
0.723 +

0.013)
0.015)
0.006
0.025
0.036
0.016
0.008

q
Lh.

q
e
v

0.891 + 0.010

0.725 + 0.007

4K
12 K
20 K

(0.85 + 0.05)
(0.897 + 0.010)
0.905 + 0.008

qb,

0.905+ 0.008
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TABL E VI. (Continued)

Host I/ro' Ref.
Best value'

f(T)

&2.1

1.2

0.785+ 0.017
0.783+ 0.025
0.78 + 0.01
0.781 + 0.005

g
s

0.718 + 0.005

4K 1.9
(1.2)

0.875 + 0.018
0.910+ 0.006

(0.77 + 0.04)
(0.76 ~ 0.03)
0.704 + 0.008

0.906+ 0.006

0.704 + 0.008

V
0.887 + 0.012

(0.5.5 + 0.03)
(0.76 + 0.03)
(0.547 + 0.024)
(0.76 + 0.01)
(0.70 + 0.01)

0.887 + 0.012

4K
RT

(0.913 + 0.010)
(0.86 + 0.03)
(0.86 + 0.05)
0.797 + 0.009 '0.797+ 0.009

4K 0.916 + 0.013 0.916 + 0.013

Experimental linewidth at half maximum (see Sec. V B2).
"Errors include statistical plus estimated systematic errors (e.g. , "black absorber" cor-

rections) where known (see Sec. VB2).
'See Secs. VB2 and VB 3 for criteria used.
"May not represent substitutional sites only or other uncertainties.
J. Bara and A. Z. Hrynkiewicz, Phys. Status Solidi 15, 205 (1966).
J. W. Burton and R. P. Goodwin, Phys. Rev. 158, 218 (1967).
Reference 2. ( May not represent substitutional sites only. )

"C. Janot and H. Gibert, Philos. Mag. 27, 545 (1973). ( may not represent substitutional
sites only. )

References 4 and 31.
Reference 15. ( r/r, suggests admixture of nonsubstitional sites; Z values uncertain

due to magnetic splitting. )
"Reference 30. ( may have small admixture of nonsubstitutional sites. )
B. F. Brace, D. G. Howard, and R. H. Nussbaum, Phys. Lett. 43A, 336 (1973).
R. M. Housley, J. G. Dash, and R. H. Nussbaum, ~Phys. Rev. 136, A464 (1964).
D. G. Howard and J. G. Dash, J. Appl. Phys. 38, 991 (1967).

'D. L. Sprague, see Ref. 16.
~D. P. Johnson and J. G. Dash, Phys. Rev. 172, 983 (1968).
~Reference 16. Q, values uncertain due to magnetic splitting. )

This work.
'D. A. O' Connor, M. W. Reeks, and G. Skyrme, J. Phys. F 2, 1179 (1972). (These are

absorber f values. )
Reference 37.

"Reference 27 and private communication with authors. ("values uncertain due to x-ray
background. )

'R. M. Housely, N. E. Erickson, and J. G. Dash, Nucl. Instrum. Methods 27, 29 (1964).
Reference 4.

"J.A. Moyzis, Jr. , G. de Pasquali, and H. G. Drickamer, Phys. Rev. 172, 665 (1968).
"A. Simopoulos and I. Pelah, J. Chem. Phys. 51, 5691 (1969).
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suggesting possible systematic errors in the C~
data. The case of Pt represents the worst discrep-
ancy between moments derived from heat capaci-
ties' and those from neutron-dispersion data for
all host metals listed in Table II. For compari-
son we have also included in Table V the "best"
values chosen by Phillips" for v~(-3) from a cri-
tical review of C& data.

Since the neutron cross section of vanadium is
nearly totally incoherent, conventional neutron
diffraction cannot be applied to study the disper-
sion relations of V. Moments for V as listed in
Table V are those obtained from heat capacities"
and those derived from x-ray dispersion curves"
using a Born —von Karman model fit described in
Sec. IVA. As can be seen, the two negative mo-
ments are within 10% of each other. However, the
positive moments are in substantial disagreement.
The reason for this discrepancy remains unre-
solved at this time. It is therefore not possible
to confidently use an effective host-host force con-
stant for the interpretation of Mossbauer impurity
studies in V."'"
D. Moment ratios and characteristic trends in face-centered-cubic

metals and rare-gas solids

In Table I we have listed moment ratios P„[Eq.
(4)] resulting from our analysis of coherent inelas-
tic neutron scattering measurements (see Sec.
IV A). We also include the values of A/M= g(+2)
and —,&o' for comparison (see Sec. IIIA), as well
as the elastic constants which were used in the fit-
ting of the dispersion data. Some interesting re-
gularities can be observed.

Under the assumption of pure nearest-neighbor
central forces, the only stable lattice is face-cen-
tered cubic; this is the so-called L eighton model.
Qualitatively, it predicts the general features of
the dispersion relations and the phonon density of
states quite well. The model constraints on the
elastic constants are such that C44= Cyg 2C y For
a metal lattice to display such a relationship be-
tween elastic constants does not, however, guar-
antee that the interaction need be purely central
or nearest neighbor, though a departure from this
relationship clearly indicates departure from the
nearest-neighbor central interaction. This is be-
cause the elastic constants are sensitive only to
the low-frequency phonons.

The parameter P, is a combination of p, (-2),
which is sensitive to low frequencies, and p(+2),
which is sensitive to high frequencies, and there-
fore gives additional information about the interac-
tion. In general, P, is smaller than that predicted
by the Leighton model, indicating that for most
metals the higher-frequency modes tend to be
shifted upward with relation to the lower-frequency

modes over what the Leighton model would pre-
dict. This tendency generally increases with in-
creasing atomic mass.

By both criteria, , nickel appears to be the ma-
terial closest to the ideal nearest-neighbor central
interaction. The noble gases have elastic con-
stants near the ideal ratio, but have considerably,
smaller P, . On the other hand, the values of P,
and P, derived for Rh and Ir from heat capacity
data (no neutron studies available) are virtually
the same and both are anomalously high relative
to other fcc metals and the Leighton model. Yet,
the elastic constants for Ir are close to the ideal"
r elationship. Neutron-disper sion mea, surements
would be very helpful for an analysis of this anom-
aly-

With the exception of Rh and Ir, as discussed
above, the fcc lattices, as listed in Table I, show
a surprisingly small spread of values for each
P„ in spite of changes in the characteristic fre-
quency (A/M)'~' by almost an order of magnitude.

E. Moment ratios and characteristic trends

in body-centered-cubic metals

For a body-centered-cubic lattice, assuming
nearest-neighbor central forces only, the predic-
tion for the elastic constants is C4q C 2 CIy As
a consequence, one of the transverse branches
along [110]should have a predicted zero frequency
for all wave vectors, the resulting phonon dis-
tribution should have a peak at zero frequency,
and the negative-frequency moments should be-
come infinite, causing P„-0 for n&0. This un-
physical behavior of the nearest-neighbor model
can be removed by including either a small amount
of noncentral component to the nearest-neighbor
force (in which case C«= C„w C») or a small con-
tribution from second nearest neighbors (in which
case C« ——C»0C, ,). In either case, the transverse
phonon branch along [110], though no longer at zero
frequency, remains at very low frequencies,
causing the P„ for n =0 to be quite small. The al-
kali metals, represented in Table I,by Na and Rb,
appear to be examples of such a slight departure
from the nearest-neighbor central-force model.

For most of the bcc metals investigated, the
noncentral and/or distant-neighbor contributions
are not small. Fe is an example of a, lattice with
nearly central forces and with a large second-
neighbor contribution. The elastic constants (see
Table, I) show C„&C„-C«, and the resulting P„
are considerabl'y larger (with the exception of P.,)
than those for Na and Bb, in fact very close to
those of the Leighton model. W has proportionately
a still larger contribution from the second neigh-
bor, and the increase in the P„ is even greater.
The other bce metals investigated generally show
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rather strong departure from the condition of ceri-
tral forces as well as contributions from more
distant neighbors.

V. SUMMARY OF EFFECTIVE HOST-IMPURITY

FORCE-CONSTANT RATIOS FROM MOSSBAUER

MEASUREMENTS

A. Applicability of Mannheim's impurity model

to real impurity systems

Our investigation as summarized in Table I
seems to indicate that the rare-gas lattices, the
alkali metals, and the fcc metals of the first-tran-
sition group (Ni, Cu) are predominantly of the near-
est-neighbor central-force type. Other interac-
tions become increasingly more important in the
heavier fcc metals and are clearly quite important
in most bcc metals. It could therefore be con-
cluded that Mannheim's impurity model has little
value for the analysis of impurity dynamics in
these latter hosts. We will present some argu-
ments here why our method of analysis of force
constant changes, though based on the Mannheim
model, is nevertheless a physically meaningful
approach.

(i) If Mossbauer experiments would allow an ac-
curate determination of p'(+2), the value of A/A'
derived from Eq. (11) would be model indePendent
(see Sec. IIB) as shown by Housley and Hess. '
Unfortunately, p'(+2) appears only in the higher-
order terms of Eqs. (la) and (1b).

(ii) The accurately measurable impurity moments
p'(—1) and p, '(-2) can onlybe interpreted in terms of
the effective restoring force ratio A/A' (see Sec. II B)
throughthe use of Eqs. (11)and (15), bothderivedun-
der the restrictions of the Mannheim model. Howev-
er, we notice that for the host metals, both fcc arid
bcc (excluding Na and Rb), the standard deviations
among the values of P, and P, are 9% and &'fo,

respectively, with the values for the Leighton
model falling between the averages for fcc and
bcc metals. Thus, we may conclude that in the
pure metals the moment ratios p, and p, are only
weakly model dependent. It seems therefore rea-
sonable to assume that for the relatively small
force-constant changes which we find in dilute cu-
bic alloys, the ratios P', and P', for the impurity-
site moments are only weakly model dependent
al so.

(iii) Finally, the values of A/A obta. ined inde-
pendently from measurements of g'( —2) and p'( —1)
(see Table II) generally agree with each other with-
in experimental errors. This then constitutes a
test of internal consistency of the used functional
relations. The deviations of the unknown "real"
relations from those derived a.nalytical''y from
Mannheim's model must therefore be no larger
than the achievable experimental acc",.racy.

We conclude, therefore, that within presently
achievable experimental errors, Mannheim's mo-
del represents well the impurity problem in met-
als, in spite of its inherent drastic simplifica, -
tion s.

B. Summary of Mossbauer fvalues for Fe, 9 Sn, and ~ 97Au

l. 57Feimpurity systems

In T.able VI we summarize a selection of reliable
Mossbauer f values for "Fe from the literature.
We have also included several new data from this
investigation. The selection of entries was made
on the basis of a combination of considerations.

(a) The data represent absolute f values with
reasonable error ba,rs.

(b) Sufficient information about methods of source
or absorber preparation has been presented by
the authors to support the assumption that the f
values represents substitutional impurity sites.

(c) The experimental linewidth provides further
clues in this regard. For several investigations
we found a lack of information to satisfy this cri-
terion. Data, about which we found evidence for
reasonable doubt, have been entered in parenthe-
ses. They a,re discussed in Sec. VB3.

(d) We have listed f values at room temperature
and at low temperatures only (where available) be-
cause of their special role in this method of analy-
sis (see Sec. IID).

For values of f(T) at other temperatures we re-
fer the reader to the listed references. For a few
hosts for which data a.re ava, ilable at other than
room temperature, we used in our analysis f
values at nearby temperatures. The temperatures
representative for the data used in the force con-
stant analysis are listed in Table II.

A more complete listing of all published f(T)
values through 1968 has been prepa, red by Bara."
More recent data can be found in the Mossbauer-
Effective Data Index. "

2. Discussion of column listings of Table VI

In addition to listing the host metal and the tem-
perature in the first two columns, we list in the
third column the line broadening of source or ab-
sorber, whichever the f value refers to. The ratio
I'/I, was deduced, where possible, from the in-
formation given by the authors, assuming I",
=0.100 mm/sec and subtracting from the combined
experimental linewidth of source and absorber the
width of the absorber used in source studies or of
the source in absorber studies. 'Thus the param-
eter I'/I', contains both source (absorber) broaden-
ing and instrumental broadening effects. It should
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be clear that in all cases where such information
is not available (indicated. by a question mark) or
where Mossbauer spectra appear to be, excessive-
ly broadened, the listed f values may not repre-
sent impurity atoms in uniform substitutional
sites. In all those cases an evaluation in terms
of effective force-constant changes must be con-
sidered as tentative. Where the values of I"/I',
appear in parentheses, the line shapes were mea-
sured only at room temperature and it was as-
sumed that the linewidth did not change with 7.'.
Consistency between high and low temperature f
values supported this assumption.

In column 4 we list the f values selected on the
basis of the above considerations. The stated
errors include both statistical and systematic
uncertainties, where given by the authors (e.g. ,
blackness correction for black-wide absorbers).
The references in column 5 to the original papers
include for source cases special footnotes related
to the reliability of individual measurements.

In column 6 we list a set of "most reliable" f
values which we have used to calculate effective
host-impurity force-constant ratios (Table II).
These values are weighted averages of the data of
column 4, excluding those in parentheses for the
reasons given in the footnotes to the table and in
Sec. VB3. The quoted errors are compromises
between the errors of the most precise data and
the standard deviations for the group. Where the
discrepancies between published data could not be
reconciled, we do not list a value in column 6.

3. 57Fe-impurity systems with special problems

In metals for which there exists a large discrep-
ancy between the size of the impurity atom and
the atomic volume of the host lattice, substitu-
tional sites have been found to be thermodynamic-
ally unstable. In particular, in Al and Au two
types of stable sites have been identified for Co/
Fe impurities. "" Recent preliminary experi-
ments in Our laboratory on sources of Co" in Ag,
which has lattice spacings comparable to those in
Al and Au, indicate similar problems. No line-
widths have been reported for any of the f studies
listed for this host.

Another group of. metals which presents metal-
lurgical problems in the preparation of single-line
Mossbauer sources is the group of bcc metals Mo,
Nb, Ta, V, and W. Except for Nb, authors report-
ing f measurements have not published their line-
widths. The various room-temperature f values
for V, in particular, are mutually inconsistent.
The recently published low-temperature f mea-
surements" would be consistent with one of the
"oom temperature f values of 0.'TO; however, this

4. ~ 9Sn impurity systems

Data for '"Sn in various host metals are general-
ly less accurate as a group. Also, all these stud-

TABLE VII. Summary of Mossbauer f values for SSn

and Au impurities in cubic metal absorbers (see Secs.
V, B4 and VB5).

Impur ity at. k Host Ref.

i iSS 1 Ag

&2 Au

Ib
Pd

Pd

&3

&3

RT
4K
RT
4K
4K
4K—
750 K
4 K-
RT
RT
RT

0.27 + 0.01
0.80 + 0.02
0.30 + 0.03
0.85 + 0.02
0.80 + 0.06

p '(n) analysis

relative f 's

f4K/fH&
——2.1 6 0.1

0.53 + 0.03
0.46 + 0.03

a, b

b, c
c
d

'"Au Ag 4.K
CU 4K

80 K

0.195+ 0.008
0.239+ 0.003
0.071 + 0.003

O. P. Balkashin and V. V. Chekin, Fiz. Tverd. Tela.
12, 3597 (1971) [Sov. Phys. Solid State 12, 2919 (1971)].

V. A. Bryukhanov, N. N. Delyagin, and V. S. Shpinel',
Zh. Eksp. Teor. Fiz. 47, 80 (1964) [Sov'. Phys. JETP 20,
55 (1965)].

'V. V. Chekin, A. I. Velikodnyi, S. N. Glushko, and
Ye. D. Semenova, Fiz. Met. Metalloved. 33, 781 (1972)
[Phys. Met. Metallogr. 33, 102 (1972)].

"S.N. Glushko, V. V. Chekin, A. I. Velikodnyi, and
L. F. Rybal'chenk6, Zh. Eksp. Teor. Fiz. 62, 661 (1972)
[Sov. Phys. JETP 35, 349 (1972)].

'R. K. Puri, Phys. Status Solidi B 70, 785 (1975).
G. van Landuyt, C. W. Kimball, and F. Y. Fradin,

Phys. Rev. B 15, 5119 (1977).
~Reference 5.

f value seems to be inconsistent with the same
author's thermal shift measurements. " In fact, V
is extremely reactive with small quantities of im-
purity gases at elevated temperatures, including
hydrogen. The latter gas, which is often used to
reduce the "CoCl, radioactive deposit on the
sample, is known to substantially change the Moss-
bauer fraction. " In view of these unresolved prob-
lemsfor the "Fe-V system, aswellas theproblems
for pure V (Sec. IVC), we do not include V in our
force-constant analysis. Also, the recently pub-
lished f values for W and Ta, at room and at low
temperatures" are quite different from formerly
published f values at room temperature. Unfor-
tunately, these recent and more precise data for
"Pe in Ta and W are not supported by published
linewidths.
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ies were done on absorbers with Sn concentrations
of 1-3 at. %%uo . At suchhighconcentrations, impurity
clusteririg is a possibility which would invalidate
the use of a model based on isolated impurities.
In Table VII we list the relevant f values which
were used in our force-constant ratio calculations
(see Table II). For "'Sn in Pd f values andthermal-
shift measurements have been analyzed by the au-
thors in terms of impurity moments. These were
used by us to recalculate the listed effective host-
impurity force-constant ratios in Table II using
neutron data for the Pd host moments, instead of
Debye spectra as used by the authors. For Sn in
Pb the low and the high temperature data are in-
consistent (see Table II).

5. ~9~Au impurity systems

We have included in Table VII the only known

absolute f values of '~Au in Cu and Ag. '

C. Effective host-impurity force-constant ratios

In Table II we have collected all effective host-
impurity force-constant ratios which could be det-
ermined from the f values in columns 6 and 5 of
Table VI and VII, respectively, using the method
of analysis summarized in Secs. II D1-IID3.

In column 4 of Table IIwe list the quasiharmonic
force-constant ratios as obtained from impurity f
measurements at temperature T' (column 5) and a
host neutron density-of-states function G(~) at T,
(column 6), using Mannheim's integral~' [Eqs.
(10a)-(10d), Sec. IID3]. The values in italic print
for Cu and Pd represent 0 K extrapolated values
(Sec. HD1). In column lwe listtheforce-constant
ratios as obtained from low-temperature f mea-
surements (T'- 4 K) and host moments p, (-1)from
neutron data at T, (column 6), using Eq. (15). The
values inp3rentheses are those for which the more
appropriate low- temperature host moments from
neutron studies were not available. Finally, col-
umns 8 and 9 list the low-temperature force-con-
stant ratios as derived from high and low-temper-
ature f measurements, respectively, and host mo
ments analyzed from heat capacities (see Sec. II D 2).

The following conclusions may be drawn from
Table II.

(i) With the exception of "Fe in Cu or Ni and
' 'Au in Ag or Cu, all impurity-host interactions
are weaker than the host-host interactions (A/A'
& 1). The 4-K. f values for "~Sn in Au and Pb are
in doubt.

(ii) The best available data led to the conclusion
that in most materials effective host-impurity
force-constant ratios deviate from the isotopic
impurity value A/A' =— 1 considerably more than the
error range in these ratios.

(iii) Quasiharmonic force-constant ratios from
room temperature f data and neutron-host data
and low-temperature force-constant ratios from
extrapolated p. '(-2) values and heat-capacity data
(Secs. II D2 and II D3), listed in columns 4 and 8,
are in excellent agreement with each other within
their stated precision. In general these values
have a higher precision than the corresponding
force-constant ratios obtained from low-tempera-
ture f values. The reason is that for "Fe the low-
temperature f values are close to unity, thus
small errors in f cause large errors in Inf and
u'(-1).

(iv) Generally, force-constant ratios calculated
from low-temperature f measurements and p(-I)
values for the hosts agree well between neutron (col-
umn7) andheat-capacity data(co1umn 9). They are
also consistent with, though less precise than, the
force- constant ratios obtained from near room- tem-
perature f ineasurements. However, itmaybe sig-
nificant that for sever31 of the Sd, 4d, and 5d transi-
tion elements, the low-temperature f values yield
systematically higher values of A/A'.

(v) The force-constant ratios of Table II are in

a few cases substantially different from those pub-
lished earlier. "'""This is the result of various
changes in impurity and host-data analysis re-
quired by the revised internally consistent meth-
odology as presented in this paper. We consider
the values listed in Table II the most reliable and

physically significant ones obtainable at this time
from all published data.

VI. DISCUSSION

A. Force-constant ratios from thermal-shift measurements

As discussed in Sec. HA, thermal shift (SOD)
measurements can, inprinciple, also be utilized to
determine impurity moments, and thus force-con-
stant ratios. This method has two major draw-
backs, one theoretical, the other one experimental.

In order to evaluate shift data in terms of the
mean-squared velocity (v'), the chemical [or iso-
mer (IS)] shift must be subtracted. In most such
studies, a temperate'e-independent chemical shift
has been assumed. Serious doubt about the validity
of this assumption has already been cast by the
work of Housley and Hess. " Even'though the tem-
perature dependence of the IS for "Fe in the metals
included in the Housley et al. work appears to be
small, their data establish only a loue~ limit. Al-
so, it is clear that large differences may occur
from one host to another

The second and more serious problem in the
analysis of thermal-shift measurements for the
purpose of obtaining reliable effective host-impuri-
ty force-constant ratios, j.n particular for "Fe im-
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purities, is the relative insensitivity of (, v') to
variation in A/A'. We showed in a sample calcula-
tion (Ref. .4, See. VC) for "Fe in Pd that a 7/o

change in A/A. ' results in a line shift at the most
sensitive temperature (0 K) of 0.002 mm/sec, typ-
ically an order of magnitude smaller than the er-
rors in published shift data. ""

We suggest, therefore, that accurate shift data
could best be used, alternatively, to extend the
original work by Housley and Hess" with greater
reliability in order to determine the temperature
dependence of the s-electron density ( ~4,(0) ~

') r
by calculating the contribution due to SOD from
the impurity theory, ' using the most reliable ef-
fective force-constant ratios as determined from
precision f mea, surements.

It has been proposed by Kagan that f(0 K) could
be determined indePendently from an integral over
the thermal-shift measurements. " While in prin-
ciple this is true, in practice it would require a
large number of very accurate shift measurements
between 0 and 100 K, where most of the contribu-
tion to the integral occurs. Instead, what has been
done is to use a functional form to fit the few data
points available in order to obtain sufficient pre-
cision for the integr ation. Whether Debye or Mann-

heim theory is used to generate this curve, the
effective force-constant change is implicitly con-
tained in the fitted function. Therefore, no new in-
formation is obtained beyond that of fitting the
shift data directly. The technique is useful only as
a check of internal consistency. "'7

B. Internal correlation between impurity parameters:

McMillan ratio

((g) imp ' (o2)i~p

( &-i) (& 2)imp

1 8
x [1-g'(2) p'(-2)]—

120 AT

x p, 2 —p, 4 p, «2 + ~ ~ ~

6

The leading term I/p, '( —2) shows that this ratio is
determined principally by the f data [see Eq. (1a)].
Using typical values for the moments, we find that
in most materials the higher-order terms in 1/T
contribute a correction of no more than a few per-
cent above 150 K. This has also been shown to be
true for Fe in Fe."" The correlation plots of
-lnf versus shift"" emphasize this high-temper-
ature region. Due to the effects of zero-point mo-
tion, the variation with temperature of both ther-
mal shift and —lnf below 150 K is rather small,
thus determining only a small portion of the "cor-
relation" (see, e.g. , Fig. 3, Ref. 37).

Since in the high- temperature (HT) limit the Mc-
Millan ratio of the impurity approaches I/ g'(-2), we

can use the moment expansion from Mannheim theory,
Eq. (11), together with Eqs. (3a) and (4) to obtain

co ' „T p.
' —2 M'

(19)

In the low-temperature (LT) limit, using the ap-
proximate expressions Eqs. (15) and (I&) and neglec-
ting the small corrections a and b,

A series of papers has appeared in the Moss-
bauer literature"' ' dealing with observed cor-
relations between Mossbauer f values and ther-
mal-shift measurements, and also between impuri-
ty and host parameters. In these papers, a key
lattice-dynamical quantity investigated is the so-
called "McMillan ratio" for the impurity: the
ratio of the thermal averages of [(m)/(u ')]™
with

G'(iii)[n(T) +-,']&a'd&u,

where n(T) is the occupation number (statistical
factor).

The fact that the McMillan ratio approaches a
constant value at high temperature can be seen by
using Eqs. (la) and (1b) and expanding n(T) for

. high temperatures

(20}

Clearly, these two limits are different. For an

isotopic impurity (A =A ), the high- to low-tem-
perature ratio of the limits, Eqs. (19) and (20),
js i3„p,/p, . It has been pointed out'"" that the

Debye model predicts this ratio of limits
to be 3. From the Born-von Karman calculations
for the metals listed in 'Fable I, this ratio differs
from the Debye prediction by as much as +15%.
Allowing, in addition, force constants to vary as
much as a factor of two, this range of values in-
creases to +35%. With such a, large variance from
material to material, the approximation of a con-
stant value of —', for the ratio of high- to low-tem-
perature limits of (u&)/(&u ') for the purpose of
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obtaining low-temperature lattice parameters
from high-temperature measurements is not war-
ranted. "" Conversely, if the low-temperature li-
mit of the Mc&illan. ratio is a desired quantity,
it can be obtained most directly from a moment
analysis of heat-capacity data, or for an impurity
system, from f measurements and Eq. (20).

l.5-

I.o-

Ir

Wpr
O'R h

~Mo

C. Correlations of impurity to host parameters

1. McMillan ratio with OD

In an extension of the several papers on the Mc-
Millan ratio from Mossbauer data, an "unexpected"
correlation was reported between the McMillan
ratio of the impurity system and properties of the
host lattice. ""'"Although the relevant shift
data have not been published explicitly, we showed
in Sec. VIB that in the high-temperature limit, the
McMillan ratio depends, within the accuracy of the
experimental data, primarily upon the f values.
'This follows from the fact that in the classical or
near-classical region, the shift depends only upon
temperature and not upon properties of the im-
purity-host system.

Previous papers"" have attempted to correlate
the McMillan ratio of the impurity to an effective
Debye temperature of the host, suitably modified
for mass change: (M/M')'~'6D. The 6n used in
those studies was that obtained from /ow-tempera-
ture heat-capacity measurements 8~(—3). In Fig.
3 we show such a plot, using open circles. The
McMillan ratio is given as 1/p'(-2), where the
values have been calculated from the best values of

the Mossbauer fraction f (Tables II and VI) at room
temperature. The best fit in Refs. 38 and 40 is
shown as the broken line.

Examination of Eq. (19) shows the presence of
the factor A/M'. Since A/M = p(+2) = (A,'/@)'[6D(+2)],
it would seem physically more meaningful to use
the Debye temperature corresponding to the (+2)
moment for the host par'ameter, since it is di-
rectly related to the effective restoring force con-
stant A. 8D(+2) is obtainable from heat-capacity
measurements taken in the range 50-150 K by
standard techniques (see Sec. IV 8).

'The solid circles in Fig. 3 indicate the shifts
in the points if 8~(+2) is used instead of 6o(—3)
for the host. With that choice, (M/M')'~'6D(+2)
= (A/M')'~2; we have evaluated the remaining fac-
tor in Eq. (19) using the Leighton model value
0.596 for P, and A =A'. This is the solid curve
in Fig. 3.

a. Discussion. As we have discussed in the
previous Sec. VI C 1, a plot of [(~)/(&u ')]~™~'

against (M/M')'~'8D(-3) amounts to a search for
a single correlation between the impurity moment
p'(-2) and a fractional power (b)'~' of the initial
curvature of the host density of states function
G (~)„,= »'+ . Considering the large
deviation for at least three mell-established data
points Cu, Ni, and Cr, we believe that the sug-
gested correlation (dashed line, open circles in

Fig. 3) is not well established. If, alternative-
ly, 6n(+2) is chosen for the host parameter, we
have from Eq. (19) and Sec. VIC that the resulting
scatter of the solid circles relative to the solid
curve for A/A' =1 in Fig. 3 is representative of
the variations in value of the factor in square
brackets of Eq. '(19). It contains the force-con-
stant changes A/A' and the variation of the mo-
ment ratio P,. The main conclusion to be drawn
from such a plot is a graphical form of that stated
in Sec. V C: with the exception of "Fe in Cu and

Ni, most "Fe-host interactions are reduced; 0.8
&A/A' & 2.6.

0.5-
2. Effective impurity-host force-constant ratio with host

force constant

0 0 200
I

400 600
VM/M' OHD

I

800

FIG. 3. High-temperature McMillan ratio [Eq. (19)]
vs the mass-modified host Debye temperatures: 0,
OD(- 3); ~, ez(+2). The broken line represents the
correlation proposed in Ref. 38. The solid line repre-
sents the expected relationship for an isotopic impurity,
A =A' (see Sec. VIC1).

It has also been suggested" that a correlation
might exist between A. '/A. as definedby the strict near-
est-neighbor Mannheim model [see Sec. III A and

Eq. (10e)] and C, '~', a nearest-neighbor bond

sA etching force constant. " Figure 4 shows such
a plot of the more meaningful effective impurity-
host force-constant ratio A'/A vs C, '~' as defined
by Chen and Brockhouse. " The scatter is similar
to that in Fig. 3 with Cu and Ni falling completel. y
outside the suggestive clustering. 'The absence of
a convincing simple correlation also contradicts
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FIG. 4. Effective impurity-host force-constant ratio
vs C where C& is the nearest-neighbor bond-stretch-
ing force constant of the host (see Sec. VIC 2).

the postulated hypothesis that the effective force
constant associated with the impurity should be
proportional to the geometric mean of the effective
force constants for the impurity in bulk and for the
host in bulk. "'"

In light of the fact that no single-host param-
eter has been found that correlates unambiguously
with the observed trends in effective force-con-
stant ratios, we conclude that these changes must
depend upon a yet unknown combination of several
parameters.

VII. SUMMARY AND CONCLUSION

We have critically reviewed the various sim-
plified models which have been used to extract
effective host-impurity force-constant ratios from
Mossbauer fraction and thermal-shift measure-
ments. We have shown that unnecessary systema-
tic errors are introduced by oversimplified im-

3. A qualitative correlation between impurity lattice dilation
and effective impurity-host force-constant ratio for

57Fe impurities

When Fp is alloyed with various other metals
the only two cases known to us where the lattice
parameter increases is for the dilute Fe in Cu
and Ni alloys. In all other cases the lattice pa-
rameter decreases, correlated with A'/A &1."This
correlation is not quantitative; a greater lattice
contraction is not necessarily correlated with a
smaller value of A'/A. On the other hand, for
'"Sn or "'Au impurities, the above-mentioned
qualitative correlation between effective force-
constant ratio and lattice dilation does not seem
to hold.

4. Conclusion

purity models or by the use of inappropriately
matched data for the pure host materials. These
systematic errors tend to deceptively compress
the range of resulting force-constant changes.
This has led in the past to the conclusion that met-
al impurities in pure-metal hosts behave like iso-
topic impurities. Although it is true that the
range of mass changes in the systems studied so
far is larger (0.3&M'/M &3.5) than that of the
effective force-constant changes (0.65 &.A/A'
&2.6), the deviations from the isotopic impurity
value A/A'=-1 are in most cases significantly larg-
er than the uncertainties in these ratios.

We found remarkable uniformity within the
groups of fcc and~bcc metals in the values of cer-
tain moment ratios. Also, there is generally good
agreement between moments derived from neutron-
dispersion measurements and those from an analy-
sis of heat-capacity data.

Using the restrictive assumptions of Mannheim's
analytical impurity theory for cubic metals, we
have derived analytical relations between even
impurity to host-moment ratios, mass ratio, and
force-constant ratio. From a numerical analysis
we were also able to find approximate relations
for some experimentally important odd-moment
ratios. These expressions for the moment ratios,
which can be obtained from Mossbauer impurity
and neutron or heat-capacity host data, , can be
conveniently applied to obtain reliable effective
host-impurity force-constant ratios by an internal-
ly consistent method of analysis.

We conclude that, in contrast with earlier
suggestions, these force- constant ratios cannot
be simply correlated with any one parameter
which characterizes the particular impurity-host
system. Until the time that band theory may be
able to handle predictions of force constants in
metals, this set of best presently available effec-
tive host-impurity force-constant ratios will have
to stand by itself. Improvements in the reliability
of such data could come from additional lo~-tem-
perature neutron-dispersion studies in several
host metals in which anharmonic effects presently
contribute to uncertainties in the physical inter-
pretation of such force-constant ratios, as well
as from additional precision Mossbauer studies
to remove certain inconsistencies in the impurity
data.
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D„B(l, l') =A~(l, l')/[M(1) M(l')] '~ . (A2)

Then, assuming a. harmonic vibration of frequency
cu, Eq. (A1) is reduced to

M/ ~ D
B,r'

—(u'6„86(l, l')] [M(l')]' 'ug(l') =0, (A3)

or, in matrix form,

L (m')U =0,
where L(v') is the lattice matrix

1.(~2) =M"(D ~'f)M".

(A4)

(A5)

Note that in Eq. (A5) the sign is different from
that used customarily, but the same as that in-
troduced by Mannheim and Cohen. ~

The inverse of the lattice matrix is the Green's
function

I

where T'„(I) is an element of a unitary matrix
which diagonalizes the dynamical matrix

(A6)

(A7)

The unitary matrix has the following properties

gT (&)T".(I)=6„„

and

Q T g'(l)T'~(l') = 6„~6(l, I') . (A8)

We note that 9„(0,0; uP) is a generating func-
tt.on of moments of the density of states at the
lattice coordinate origin. Since

9 (0, 0;uP) = T+'(0)T'„(0)
M 0 (d —40

(A9)

preciated.
APPENDIX: MOMENTS OF THE DYNAMIC RESPONSE

FUNCTION AT THE IMPURITY SITE

the equations of motion of an atom in the direc-
tion n( = x, y, z) at site l (one atom per unit cell) in
a harmonic crystal is given by

M(l)u (l, i)++A 8(l, I') u8(l', t) =0, (Al)
S,t'

where M(l) is the atomic ma. ss at l and u (I, i) is
its displacement. A„8(l, l') stands for the nP com-
ponent of the force constant between atoms at l
and l'. . When the mass differs from site to site it
is more convenient to introduce the dynamical
matrix

by expanding this expression in the power series
of uy

' for large &u' [uP )max(uP}], we have

9..(0, 0i~')=-
(0 .QQ I;(0)I'(~./~)'"

MO u&'

(A 10)

If we define the nth site moment of the density of
states by

p, „(l;n) =Q ~T'„(I)]'(u,",
S

then Eq. (A10) leads to

9„(0,0; ~') =—,Q —,„—p, „(0;2n) .1

M Oa „-0 co"

On the other hand, if we can assume that the lat-
tice is of a finite size, so that we can choose the
value of uP in Eq. (A9) smaller than any u&'„we
have

9„(0,0;(u' =0) = [1/M(0)] p. „(0; —2). (A 13)

where the impurity atom is at l=0. Primed quan-
tities refer to the impure lattice or the impurity
atom and A. = 1 —A„,(0, 0)/A„'„(0, 0) and A =A„„(0,0)
[see Eqs. (3b) and (3c)]. The function p(&) is given
by Eq. (10b). It is interesting to note that Eq.
(A14) can be easily shown to hold also for a linear
chain.

Expanding the right-hand side of Eq. (14) for
large values of +' and using Eq. (A12), the im-
purity Green's function can be expressed in terms

For a perfect crystal, the normal mode s can be
represented by the branch index j and the wave
vector k because of the translational and reflec-
tion symmetry. Then, the transformation matrix
T' (1) can be replaced by o' (k) exp[i% ~ R(l)]/vN,
where o' (k) is the eigenvector of the dynamical
matrix belonging to the normal mode (jk) and N
is the number of atoms in the lattice. For a per-
fect cubic lattice, ~T' (I)~' = (o' (k) ~'/N= 1/3N, so that
the above definition of inoments, Eq. (All), re-
duces to the,usual expression, Eq. (2a), Sec.
II 8, i.e. , p (1;n)~b;, = (I/3N)Q, ~,".

%he change of the lattice Green's function due
to a substitutional impurity at the origin has been
calculated. for a fcc and a bcc lattice, assuming
nearest-neighbor central forces, by Mannheim, '
and for a simple cubic lattice (Visscher') by
Ohashi and Kobaya, shi." After a slight modifica, —

tion, those results can be expressed in the same
following form:

9 „'„(0,0; (o')

(y/A)+[1 —y(M/A)~']9 „(0,0; ~')
M ' 1 + p(v) [1+M e 9„„(0,0; uP ) ]
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of the even moments

(p p 2)
1

1
M JJ (2)

M'(O' M'~' 1 —A. (M/A)~(2)

M j 2(4) . ((M/M') —)(P,'(2)+ ( 4iMA) (22) (42)

)M'(d'(1 —X(M/A)p(2) Il —X(M/A)i(, (2) j' (A15)

nt2

P. = — =(I (n)j 'Ii (2)t"' (A 16)

for the pure lattice and noting that P, =1, we find

p. '(0;2) M A'

p(2) M' A
(A 17)

identical with the result of the Einstein model,

Here, the moments appearing on the right-hand
side are for the pure lattice. They do not depend
on the site nor on the direction, so that the sym.-
bols ~ and l are suppressed. The left-hand side
of Eq. (A15) can be expanded in terms of p. '„(0; 2n)
by using Eq. (A12) for the impure lattice. Again,
the subscript o. can be suppressed. Comparing
the coefficients of the power series in & '" on
both sides, we can easily find the change in even
moments at the impurity site. Defining as in

Eq. (4),

Eq. (6) for n=2. However, for n=4 we find

1 —P~ 1—,(A18)
i(, (4) M' A J ' M'.

and putting &u' =0 in Eq. (A14), using the defini-
tion Eq. (A13),

(A 19)

P4 and P, are empirically found to have values of
about 0.8 and 0.6, respectively (see Table I).

It should be noted that the above relations in-
clude the contributions of localized modes where
present (see Sec. III A).

We attempted to derive similar functional re-
lationships for odd impurity site moments which
are important for the analysis of Mossbauer data
at low temperatures. These attempts were not
successful (see, however, Sec. III B).
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