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Vibrational excitations of a one-@mensionsI electron-phonon system in strong coupling
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We consider an electron interacting vrith optical phonons through the deformation potential in one
dimension. We calculate the energy spectrum of such a system to one order in 1/n' beyond the strong-

coupling limit. We calculate the self-energy, effective mass and modified phonon spectrum to this order. The
modified phonon spectrum is determined by the solution of a homogeneous linear integral equation. We are
able to solve this integral equation in closed form for the odd-parity phonon modes. The result is a frequency
spectrum 0„=aoot1 —4/n(n+3))'", where n = 1,3,5,... and zoo is the unperturbed optical-phonon

frequency. For n = 1, 0& ——0 and this mode is a translation. For even-parity modes, the phonon frequency
spectrum is determined numerically.

I. INmanuCTIOX

Since its formulation in terms of particle-field
interaction by Frohlich, ' the dynamics of an
electron in a crystal lattice has attracted interest
in two main directions. On the one hand, the im-
portance of the electron-phonon interaction in
solids is now well established and culminates, in
this regard, in the explanation of superconductiv-
ity. On the other hand, the polaron, first studied
quantum mechanically by Pekar, ' serves generally
as a model of particl. e-field interaction. Since
particle-field interaction is of interest not only in
solid-state physics, but also in such areas as
quantum liquids and elementary-particle physics,
it is important to study simple model systems
for the purpose of extracting the content of spe-
cific features of more involved models. 'This ap-
proach is particularly useful in strongly interact-
ing systems for which the usual methods of weak-
coupling perturbation theory are invalid.

The Pekar theory is a variational treatment that
is valid in the strong-coupling limit. This result
suggests that a perturbation-theory analysis in
inverse powers of the coupling constant should be
useful in obtaining systematic corrections to the
Pekar theory. However, an apparent difficulty in
such a perturbation analysis arises in the attempt
to incorporate fully the effects of the inherent
translational invariance of the electron-phonon
system. Bogoliubov and Tyablikov developed a
theory which maintains this translational invar-
iance by introducing coordinates for the center of
the polarization packet as additional dynamical
variables together with subsidiary conditions.
They showed that the Pekar theory was rigorous
in the limit of infinite coupling. Although in prin-
ciple the theory can yield corrections beyond the
Pekar result, in practice it is difficult to extract
these corrections in a systematic rpanner. A

more recent theory has been developed by Gross4
in which the translational invariance is made mani-
fest by the introduction of the coordinates of the
polarizatioa-packet as dynamical variables through
'a change of variables. 'The novel manner in which
this is done leads to a theory which allows the en-
ergy spectrum to be computed as a power series
in reciprocal powers of the coupling constant. Al. —

though the Gross theory is quite general in that it
can be used to describe various types of polarons,
it too is a rather involved theory.

In the present work we solve the more modest
problem of a straightforward diagonalization of
the Hamiltonian through the next order beyond the
Pekar result. The model that we investigate is
that of an electron interacting with optical phonons
through the deformation potentiaL in one dimen-
sion. For such a model both the phonon frequen-
cies and the interaction form factor are indepen-
dent of wave vector. As a consequence, the mod-
el is soluble in the sense that certain key features,
upon which subsequent analysis depends, cgn be
determined analytically. To the order of approxi-
mation in this work, we find that the spectrum is
that of a set of lattice vibrations with frequencies that
have been lowered from their optical-phonon va1ue by
the electron-phonon interaction. These localized vi-
brational modes were first discussed by Me1nikov and
Hashba'and later by Gross. 4 We have been ab1e to
determine the frequencies and mode description ana-
Eytica/ly for the odd-parity modes. The lowest such
frequency turns out to be identically zero and the
resulting mode is a translation rather than a vi-
bration. This translational degree of freedom is
characterized by a quadratic polaron energy-mo-
mentum relation with an effective mass that is
identical to that found by Gross. ~ We stress that
the translational mode appears naturally in the
analysis and does not need to be introduced sepa-
rately. The vibrational spectrum found here is
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analogous to that recently obtained numerically by
Miyaki' for the three-dimensional polaron with
polarization interaction and optical phonons. In
that work the zero-frequency mode is justified on
general theoretical grounds. In addition to the
free-polaron kinetic energy and the modified-
phonon spectrum, we also obtain the Pekar self-
energy and the lowest-order localization and fluc-
tuation energy.

We also indicate to some degree how to go be-
yond the order of approximation considered here.
In particular, we show how to construct an effec-
tive Hamiltonian that operates only in the space of
the phonon variables and which gives the exact
spectrum of the electron-phonon system. A simi-
lar effective Hamiltonian method was also used by
Gross. ' In the present theory, the exact effective
Hamiltonian takes a particularly simple form and
is determined by an equation of the Dyson type.
In a separate publication we will discuss a more
general analysis of this effective Hamiltonian.

In Sec. II of the paper we develop the general
approach to the problem and in Sec. III we deter-
mine the phonon spectrum by the solution of a
linear integral equation. 1he details of the solu-
tion are discussed in the Appendix. In Sec. IV we
return to the question of translational invariance,
and determine the polaron-effective mass together
with the localization and fluctuation energies.

II. GENERAL FORMALISM

We start with the Frohlich Hamiltonian in di-
mensionless form,

82 4nn
H = —,+Q a',a, + Q (a'»+a»)e'4*.

lengths by a factor (2so.') ', i.e,
27&% x, 2&0'l l

and

H/(2wa)' -H . (4)

In terms of the new variables we have

82H, +, ,Q(p»p»+Q»C» —1)

+
1

+all/2 g 9»~fkx

q» = (1/VT)(a»+ a «) ~

&» = (1/&~2«-» -a»»

with

~ 4& f »'] «844'

(6)

Since the basic feature of strong coupling is
that the electron creates a static lattice defor-
mation and then becomes self-trapped in the po-
tential well that is established by this deforma-
tion, we redefine the lattice-displacement field
coordinates and conjugate momenta through the
canonical displaced-oscillator transformation

&k &k+dk ~

Pk Pk~
(8)

where the displacements dk are taken as real and
even functions of A. ,

where the dimensionless lattice displacement co-
ordinates qk and their conjugate momenta p, ean
be written in terms of phonon creation and an-
nihilation operators

[a„a'»,] = a»», . (2)

Since we are interested in the strong-coupling
theory where we expand in a series in 1/a, it is
convenient to introduce an additional change of
units, scaling energies with a factor (2va)' and

We have used (5/2m~~, )'~' for a unit of length and

Sv, for the unit of energy. The electron band mass
is m, co, is the unperturbed phonon frequency, and
l is the length of the crystal lattice. Equation (1)
is appropriate for an electron interacting with
optical modes via a deformation potential inter-
action. However, it is often introduced as the
simplest form of a polaron Hamiltonian [i.e., both
the phonon frequency co, and the interaction form
factor (4vo!/1)'~' are independent of wave vector].
We have omitted the zero point energy in Eq. (1).
'The electron position is x and the phonon creation
and destruction operators satisfy the usual commu-
tation relations

1 ~, 1
8&2OI2 ~ k 4&2OI2 ~

1 ]k„ 1 ]k+ y(2 ~C4k8 + j /2 ~gk8&ai ~ «i (10)

We emphasize here that the property of transla-
tional invariance holds regardless of whether we
express the Hamiltonian in terms of the original
field variables or the new field variables. In
terms of the original variables, the Hamiltonian
of Eq. (5) commutes with the momentum operator

dk ~k &

Under the change of variables of Eq. (8), the q»
and pk now refer to fluctuations on the displaced
field, and in terms of these new variables the
Hamiltonian is given by

1
~ +» (&» &-»+q»q» 1)-

8X 8m2a
k
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P=-i —+ a~a
8

which generates translations of both the electron
coordinate and the lattice distortion. In terms of
the new variables, the Hamiltonian of Eq. (10}
commutes with the momentum operator

5W/6u*(x) = 0

then gives

d
,u(x) +,q, Qd, e'~u(x) = «u(x),

where

(18)

(19)

P = i +Q-—a~a@ —i+ kd~p~,
8

eg
(12) 1 2«=X —,, gd„.

Sm a (20)

~
q, „(x)&=u(x}

~
0&,

where ~0& is the vacuum for phonons which are
excitations relative to the displaced field. The
expectation value of H in the trial state is given
by

(13)

82
W(u; {d,})= — dxu*(x) s~ u(x)

„,Qd,f dxu*QW(s)e"

which is obtained from Eq. (11}by the change of
variables given in Eq. (8}. In obtaining Eq. (12}
we have also used the fact that d~ is an even func-
tion of k.

To this point, the displacements d~ have not
been determined. We now choose the d~ by making
a variational estimate of the ground-state energy
of 8 with a trial eigenfunction of the form

Substitution of Eq. (16) into Eq. (19) then gives a
nonlinear Schrodinger-like equation (which is
often referred to in the literature as the nonlinear
Schrodinger equation)'

d'
——,u(x) —4u'(x) = «u(x), (21)

where we have taken u(x} as real. This equation
has been discussed previously in a related con-
text"' and possesses only one bound state, for
which

u(x) = (1/~2 sechx,
(22)

For future purposes we also note that the potential
well set up by the electron in the state given by
Eq. (22) has a set of continuum eigenfunctions
which obey the Schrodinger equation

+, , Q d,' dxu*(x) u(x), (14)
d——,u, (x) —2 sech'xup(x) = «~p(x),dx

with solutions

(23)

where we have anticipated the limit l- by ex-
tending the electronic coordinate integration over
all space. We choose the "best" displacements
and electronic wave function by minimizing 8' with
respect to the set {dJ. and with respect to the
functional form of u(x). Since we wish to maintain
the normalization of u(x) to unity in this proce-
dure, we introduce a Lagrange multiplier X, and
then minimize

u~(x) = l '~'e''*(p+ i tanhx)/(i+ p),
(24)

We emphasize that these states are not excited
states of the nonlinear equation, Eq. (21), but
they do constitute a convenient basis. In the limit
of large but finite l these continuum states satisfy
the orthonormality relations

W= W-& dxu~(x)u(x).

The condition

r/2
dx u,*(x)u,.(x) = 6~,

g/2

We next calculate p„ from Eq. (17) with the re-
sult

(26)

then gives

d„= (4va/I"') p, -
where

(16)

p~ = &km csch&km

and then determine from Eq. (16) that

1
Sg2~2 ~ k

(26)

(27)

p, = dxu*(x}u(x)e'"*=p „
aOO

(17) The variational estimate of the ground state energy
of H is then

with u(x) = u(-x ), while the condition 2W'
i =-1+3=-3.min (28)
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With the displacements d~ determined above we
now go back and write the Hamiltonian in the form
H =H, +FI, +H„where

82
2 2

Ho 2 2 sech x+0 gx2

and

H»l@&+QH»» I @» &+(f"+ '+-H. )l»&=El»&

(35)

1
Hi =

v~fxf » Q C»(e —P») )

1
8r'a'

(29}
where

H„= dxug(z)H, u(x}
~(O

(36)

with p» now given by Eq. (26). These various
terms making up the Hamiltonian are of order 1,
I/a, and I/a', respectively. The factor I ' ' in

H, makes the factors e'~" and p~ of the same scale
as g~.

As a next step in determining the energy eigen-
value spectrum, we expand any energy eigenfunc-
tion of the system as

g/2
H,~ = dxu»*(x}H,u, .(x}.

-g/2
(37}

We note that all operators in Eqs. (34) and (35)
are operators in the phonon space; the electronic
coordinate has been removed from the problem.
Equation (35) may now be solved for

I
(II)g in terms

of I(f». This may be done formally by writing

I
g(x)& =s(x)

I 0&+P N»(x)
I »&,

where

(30)
D»(E) H,» I

0&+D,(E)

where

D»(E)= (E p' —» -H-») '.

(36)

&e I e&+g&»l»& =1. (32)

By substitution of Eq. (30} into Eq. (31) we form
the partial inner products with respect to the
electronic wave functions N(x) and u»(x) and obtain
reduced coupled Schrodinger equations for the
phonon parts of the energy eigenfunction

H
I 4(x)& =E I(}(x)&. (31)

Because of the completeness of the u(x) and u»(x),
Eq. (30) is entirely generaL The states IP& and

I
(f)g are the phonon parts of the state vector and

are determined below. The normalization of I)) (x)&

and the orthonormalization of the electronic wave
functions u(x) and u»(x) then imply that

n»(E) =D,(E)+D,(E)QH„» r»» (E). (41)

Upon substitution of Eq. (40) back into Eq. (34) we
obtain

(42)

where H» is an effective phonon Hamiltonian given
by

H~ »+H»+QH—- ,»b»-(E)H, ». (43)

By iteration we then find

(40)

where &»(E) satisfies a. type of Dyson equation

dxux Hux Q + dxux Hu,
~do p

%too

and

dxu,*(x)Hs(x)
I P&

~oo

~Qf d*;(xl((u~(x)(A, .)=&((g. ()))
pg woo

By explicit calculation using Eq. {29)we then find
that

Ilm &»(E) = (-» -P' —»)
' = -(1+P') ', (44)

This effective Hamiltonian operates only in the
phonon space but, in principle, gives the spec-
trum of the full Hamiltonian H. From Eq. (43) it
is evident that H» is generally energy dependent
in that it depends on E through d»(E) In the pre.s
ent paper we will not attempt a general analysis
of Eqs. (42} and (43), and we restrict the compu-
tation of H~ to second order in I/a. To this end
we note that because H» is of order 1/a we need.
n»(E} only in the infinite a limit. From Eqs. (41}
and (39}we then obtain

where we have used the fact that E- -3 in the in-
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finite a limit. Hence through order 1/a' we obtain

(45)
with

Pa

8m~a'
@NO

(53)

From Eqs. (36), (22), (24), and (28) we calculate
the operator

H»= Pq~ . sech-(p —k),
1 m'

vTai, 'P -i
in terms of which H~ may be cast into a final
form,

(46)

1 1
K „=——+, , Q(P P ~ q q —1-QV .q, q .),

where

(2v)', ~ sech-,'v(k- p) sech jv(k'- p)». =
I~ kk'~

(f,2+ 1)2

(47)

)n gfnA fl t ~n gfnkf h &

(48)

Equations (47), (48), and (42) form the basis for
most of the remaining work in this paper. From
these equations the energy spectrum of the Hamil-
tonian 8 can be calculated, and from the form of
Eq. (47) it is clear that the energy eigenvalue
problem is reduced to finding new normal modes
of the lattice vibrations. To this end we construct
a set of linear combinations of the coordinates
and conjugate momenta

In dimensionless units the unperturbed phonon
frequencies are all unity. The effect of the elec-
tron-phonon interaction has been to shift these
frequencies to the value (1 —A.„)'~'. In fact, the
eigenvalues A.„all lie between zero and unity, and
hence the modified frequencies are all real and
louver than the unperturbed frequency. 'This lower-
ing of the phonon frequencies can be understood
by noting that the lattice vibrations under con-
sideration are localized vibrations imposed on
top of the static deformation created by the self-
trapped electron. The static deformation con-
stitutes the new equilibrium for the lattice, so that
if the lattice were to vibrate around this position
with the electron-charge density held fixed, it
would vibrate with the original frequency ~, = 1.
It is then easy to see that if the electron-charge
density is permitted to follow the lattice vibrations
adiabatically, the restoring force, and hence the
the frequency, will be reduced. Finally, before
undertaking the calculation of the modified-phonon
spectrum, we comment here that these frequencies
are determined from the eigenvalues of the matrix
V», . From Eq. (48) it is clear that since V». is
indePendent of the coupling constant a, then the
phonon spectrum is —in the strong-coupling
limit —independent of e.

where the coefficients f„, comprise a unitary
square matrix of dimension v (equal to the num
ber of optical degrees of freedom in the finite
lattice) so that

(5o)

If we choose the f„~ to obey the eigenvalue equation

(51)

III. INTEGRAL EQUATION FOR THE PHONON SPECTRUM

In order to facilitate the computation of the pho-
non spectrum, we take the limit of Eq. (51) as
l -~. In that limit the phonon wave number k and
the unperturbed electron energy eigenvalue p' be-
come continuous, and Eq. (51) then becomes an
integral equation for the function f„(k). This equa-
tion will have nontrivial solutions only for certain
eigenvalues X„. 'The integral equation obtained in
the above l.imit is

then the unitarity of f„, is ensured by the Hermitian
nature of the V».. It is evident from Eq. (48) that

V», = V ~ ~, , and it is therefore possible to choose
the coefficients f„, to have the property

(52)

~„/„(k) = dk'K(k, k') f„(k'),

with

f„(k)= (I/2&) "/'„„
where the kernel K(k, k') is given by

(55)

(56)

This ensures that the new coordinates g„and con-
jugate momenta $„are Hermitian. With the use
of Eqs. (50) and (51), the phonon Hamiltonian H,b

may be written in terms of the new phonon co-
ordinates g„and conjugate momenta $„as

sech-,'n (k- p) sech~v(k' p)

(57)

We note that this kernel is both real and sym-
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f ~a dk' g'(k)K(k, k')P(k') ~0

metric, and is positive in the sense that

(56)

TABLE I. The polynomials p„(u) which are orthonormal
in the sense of Eq. (68). Only those polynomials for odd
n are related to the eigenfunctions of E'{k,k').

for any g(k) for which the integral exists. From
the theory of integral equations, ' the eigenvalues
A.„are positive and the eigenfunctions are ortho-
gonal to one another and can be normalized so that

dk f„*(k)f (k)= 6„

In addition to the above properties of the kernel,
we also note that it is an even function of its argu-
ments in the sense that

K(-k, -k') =K(k, k') . (60)

From this property it then follows that the eigen-
functions of the kernel are either even or odd. The
index n can be chosen to reflect the parity of the
eigenfunctions with

P„(u)

v15 g

7

11 — —35 — + 14—

143 — —770 — + 707 — —60

/„(-k) = (-l)"/„(k)

and

(6l)

&„f„(k)= dk 'K, (k, k') f„(k'), n = 0, 2, 4, . . . ,
0

&„f„(k)= dk'K (k, k')/„(k'), n = l, 3, 5, . . . ,
0

where

K, (k, k') =K(k, k')+K(k, -k'). (63)

K,(k, k') =Q X„f„*(k)f„(k'), (64)

Furthermore, the property expressed in Eq. (52)
can be attained by making f„(k) real for n even
and pure imaginary for g odd. From the theory
of integral equations, "the fact that the kernels
K, (k, k') are positive and continuous enables us to
write

„), v "'(2kv)p„(-.'kv)
2 sinh(2k&)

where p„(u) is a polynomial of degree n. Accord
ing to Eq. (59) these polynomials are thus ortho-
normal in the sense that

OO Q
du . „, P„(u)P (u)=6„ (66)

Thus the polynomials can be generated by ortho-
gonalization. " A few of the polynomials are given
in Table I. For even n, we were not able to obtain
a closed form solution.

Furthermore, as we show in the Appendix, the
eigenvalues A.„can be determined for the case of
odd n by the simple formula

where the prime on the summation means that
the sum is over either even or odd integers. In
this way we may obtain two sum rules,

X„=4/n(n+ 3), n odd

for which it follows that

0„=[l —4/n(n+ 3)]"', n odd.

(69)

(70)

dkK, (k, k) . (65)

From Eqs. (63) and (57) we then find

l 2g' X„=4 (n even),
n

Q'X„=4' (n odd). (66)

It is interesting to note that for the odd-parity
case, the integral equation can be solved exactly.
The details of this fact are described in the Ap-
pendix, in which we show that for g odd

Again no such simple formula was found for the
even-parity eigenvalues. We also point out that
for n=l, Eq. (VO) gives Q, =O, which means that
this particular mode is not a vibration at all but
is, in fact, a translation. The presence of this
zero-frequency mode is then a manifestation of
the fact that the strong-coupling perturbation
theory developed here is inherently translationally
invariant. We discuss this more thoroughly in
Sec. IV.

While the even-parity eigenfunctions and eigen-
valuqs are not found in closed form, we can deter-
mine them numerically. 'The eigenvalues A,„were
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TABLE II. Modified phonon frequencies fig~0.

Even-parity modes
n Numerical

Odd-parity modes
Exact Numerical

0
2

6
8

10
12
14
16
18

0.647 50
0.912 21
0.958 12
0.975 28
0.983 60
0.988 28
0.991 13
0.992 93
0.994 07
0.994 75

1
3
5
7
9

11
13
15
17
19

0.
0.881 92
0.948 68
0.971 00
0.981 31
0.986 93
0.990 34
0.992 57
0.994 10
0.995 20

0.000 00
0.881 g2
0.948 68
0.971 01
0.981 30
0.986 91
0.9g0 27
0.992 38
0.993 72
0.994 54

actually determined by first transforming the
integral equation into one in which the kernel is
given in closed form. To this end we note that
the kernel K(k, k') is of the form

ff(k, k') = dpG(k, p)G(k'p },
«00

where

given in Table II for both even and odd values of
n together with the exact eigenvalues for odd

values of n.

IV. TRANSLATIONAL INVARIANCE

[P, H] =0,

where H is given by Eq. (10) and P is given by
Eq. (12). These operators can be decomposed as
H Hp +H j +Hz and P I p +I y where the sub-
scripts indicate the order, in 1/a, of the rele-
vant terms. In particular H„H„and H, are
given in Eq. (29), while

8
P, =-i —+Z akakk,p ex (78)

II =P, = -iQkds ps.
k

'The translational invariance of the Hamiltonian
H is expressed through the relation

A.„g„(p)=

where

dp'~(p, p'}g.(p'},

k sech-', v(k p)
IP ps I

Thus, upon multiplication of Eq. (55) by G(k, p)
and integration over k, we obtain

(72)

(73)

[II,H, ]=0,
[P„H,]+[II,H, ] = 0,

[P„H,]+ [II,H, ] = 0,

[P„H,]= 0.

(80a}

(80b)

(80c)

(80d)

Equation (77) may be separated into groups of
terms of the same order in 1/a, and each group
will then vanish separately with the result

and

&(P,P') = dkG(k, P) G(k, P')
~00

g„(p) = dkG(k, p)y„(k).
~00

(74)

(75)

The new kernel is also symmetric and its eigen-
functions g„(p) have parity (-1)""[which is op-
posite that of the f„(k)]. The eigenvalues X„are,
of course, the same as before. 'The advantage of
the new integral equation is that the internal inte-
gration of Eq. (74) can be done by contour integra-
tion to give the kernel in closed form,

[rt, H»] = dx u,*(x)P,u(x)(p'+ 1), (81)

from which it also follows that

%e now use these equations to see how translation-
al invariance is manifest in H,„. Equations (80a)
and (80d) can be easily verified by inspection and
will not be needed. From Eqs. (80b) and (80c) we
calculate the commutator of H,„with the operator
II and show that it vanishes. To see this we multi-
ply Eq. (80b) from the left by ug(x) and from the
right by u(x), and then integrate over x to obtain

P2+P/2+Ppl + I p pt
3 (p'+ l)(p" +1) sinh-,'x(p -p') [II,H,~~] = — dx u(x)P,u, (x)(p'+ 1) .

a 00

(82)

The integral equation Eq. (73) can then be ap
proximated by a matrix eigenvalue equation in a
large but finite-dimensional space using Gaussian
quadrature methods. The results of the eigenvalue
determination using this numerical method are

In Eqs. (81) and (82) H» is the phonon operator
defined in Eq. (36), and we have used the fact that
0 is independent of electron variables. From
Eqs. (81) and (82) we may now compute the com-
mutator

[11 H ] [g H] ~[II~ »]H» ~H»[II»»]
pz+ y ~ pq+y

= [II,H, ]+ dx dy u(x}P,u~(x)u~ (y)H, u(y) -Q dx dy u(y)Hu~(y)ug(x)P, u(x) . (83)
~ IO m 40

p
me0 ~00
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In Eq. (83) the electronic part of P, is a function
of x and H, is a function of y. Since Hy has zero
expectation value in the state u(y), we may in-
clude the bound state in the sum over intermediate
states in Eq. (83) and then invoke closure to ob-
tain

[11,H,„]= [11,H, ]+ dxu(x) [P,H, ]u(x)
«00

where II is defined in Eq. (79). It follows then
from the canonical commutation rule

that

(91)

(92)

(93)

dxu(x)([II, H, ]+[P„H,))u(x), (84)
«%

where in the last integral we use the fact that
neither II nor II2 involves the electronic variables.
Since the integrand in the last line of Eq. (84)
vanishes by Eq. (80c), we conclude that the trans-
lational invariance of the system is expressed in
terms of the effective-phonon Hamiltonian by

(85)

By using Eq. (47) for H», we may write Eq. (85)
as

Hence y, is a coordinate which is conjugate to the
operator II which in turn generates translations to
the order of approximation considered in this
paper, and we may think of these variables as Po-
laron position and momentum operators to that
order. When higher-order terms are taken into
account in H, the expressions for the polaron
variables will change accordingly, and will be
discussed in a separate publication. To justify
this interpretation of X and II as polaron variables
we express the phonon Hamiltonian in terms of II,
the generator of translations, rather than $,. The
effective Hamiitonian of Eq. (53) then becomes

gq, xd, —Qx, .k'd„) = 0

from which it follows that

kd~=+V„.k'd~. .

(86) 1 II' 1
+yh + g +

4 2 2 n+nn3 m 4m a
nial

, Q(A„ —1), (94)

f, ='xx, /(I x'x,')'&'. (88)

Thus the relation between the new coordinate g,
and the old coordinates q, is given by Eq. (4S}

X/2
Qf„x& , (I x* lxxx= (89)

where

This result is simply the statement that kd~ is an
eigenfunction of V». with eigenvalue equal to 1.
From Eq. (54) this leads to a zero-frequency mode
which is a translation of the system. From Eqs.
(16}and (26}we also note that d~- —,'kx/sinh-, 'kx
and hence the eigenfunction of V». associated with
the translation is proportional to —,'(kv)'/sinh~kx,
which is of the form given in Eq. (67) with n = l.
By normalizing this eigenfunction and giving it the
phase needed to make the new coordinate and
conjugate momentum Hermitian we obtain

m* = 8v'a'gk'd
~ =,', (4wa)' (96}

and is identical with the polaron effective mass
obtained by Gross~ when 4wa of our work is re-
placed by g'/v 2 of his work. " We also note that
in the units of our paper II'/m* is the appropriate
kinetic energy rather than 112/2m*. To order 1/a'
the Hamiltonian of Eq. (94}describes a free po-
laron of self-energy —3 and effective mass m*,
and free phonons of frequency A„(n& 1}.

Finally, the last term in Eq. (S4) remains to be
calculated. We write this term as

, ,Q(&x„-x&=, , (- —~ xQ«x„—x&) .
tt 0 nt'j.

where

&„=[I/(2A„)'~'](A„q„+i&„), nx&:1 (95)

is the localized phonon annihilation operator, and
m* is given (in units of the electron mass} by

x-.-x'=-&Qxx, x,/(Qx'xl).

In addition, the new conjugate momentum $, is
given by

(90) (97)

The overall factor of (4v'a') ' is just the scale of
energy. The term --,' is usually referred to as the
localization energy, and is a lowering of the sys-
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tern energy due to the fact that the translational
degree of freedom should have no zero point en-
ergy associated with it. The term IZ„»(A„—1)
is usually referred to as the fluctuation energy,
and is a lowering of the system energy due to the
fact that the electron responds to the zero-point
motion of the lattice. This response shows up as
a lowering of the phonon frequencies as discussed
at the end of Sec. II. Each term in the sum
Z„»(1-0„)is positive, less than one, and rapidly
approaches zero as n increases since 0„-1as
n-~. To make the convergence more rapid we
use the identity

(98)

where X„=1-0'„is the eigenvalue of V~, . We now

sum Eq. (98) over all n to obtain

-1" ~
1"

(1 —0„)= -Q(1 —Q„)'+ —QX„~
n=o n=o n=o

The first sum on the right-hand side of Eq. (99)
now converges more rapidly than does the left-
hand side and the second sum on the right-hand
side can be evaluated in the infinite-lattice limit
by use of the sum rules of Eq. (66),

where

and

sech —,'v(k-p) sech-', v(k' —p)
t P {P2.1)2

(57)

a„(k)=k"'/sinh( —,'vk). (A2)

We will show below thati f p is an odd integer,
then b„(k) is of the form

(A3)

@~1 a=1

(A4)

where n is an odd integer. %'e then choose the
coefficients C„'"' to satisfy the eigenvector equa-
tion

b„(k)=P y,„a,(k),
a=1

where the prime on the summation indicates that
the sum is over odd integers only. We note that
the integral transform contains only terms with
o» p. Invoking Eq. (A3) as an ansatz, we next
construct the linear combination

1" 4

n=o

By numerical evaluation we find

1—Q(1 —A„)2=0.5764.
n=0

(100)

(101)

'
Z (n)C(n) y C(n)

au f na

where X„ is an eigenvalue of the matrix

p(n) &ay y

ag
0, p&o~n.

(A6)

1 ~ 0.9549
8"a ~{"-"=-4"o .

n. 0
(102)

Thus the combined locaIization energy and fluctua-
tion energy is given by

The index n on the matrix F,'"„' has been intro-
duced simply to make explicit the dimensionality
of the vector space. Equation(A5) then implies
that

A numerical evaluation of the analogous term for
the three-dimensional polaron with polarization
interaction and optical phonons has been made by
Miyaki. '

Ml a=1

'C„'"'y,.a, u =~„'C,'"'e, u

and from Eq. (A4) it then follows that

(A7)
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APPENDIX

is an eigenfunction of the kernel K(k, k') for which
the eigenvalue X„ is an eigenvalue of the matrix
I","„'. More explicitly, we note that because I","„'

is a triangular matrix, as stated in Eq. (A6), the
secular equation for Eq. (AS) reduces to

In this appendix we study integral transforms
of the form Q'(y„„-.„)=0. {A9)

(A1) For n=1 we obtain X, =gag For n 3 both X3=ygg
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and A.,=y„are solutions of Eq. (A9). However,
the solution &,=y» is extraneous since it would
be degenerate with X, =y», and this degeneracy
is not present in the kernel. By increasing n in
steps of two and ruling out degeneracy, we find
that the eigenvalues of the kernel K(k, k') are
given by

A.„=y„„, n odd. (Alo)

k I@+2

sinh-,' vk' cosh-,' v(k' -p) '

which can be written as

Although the eigenfunctions f„(k) can be found
from Eq. (AS), it is much simpler to determine
them by the Schmidt orthogonalization procedure
or by a recursion relation as mentioned in Ref. 11.

We now go back and prove the validity of Eq.
(A3) and obtain an expression for y„„. The inte-
gral transform in Eq. (Al) involves an integration
over the phonon wave vector k' and, in the defini-
tion Eq. (57) of the kernel, an integration over the
electron momentum p. The k' integration involves
the integral

k'"'2
I„(ai) = dk'

sinh-,'wk'cosh-, 'v(k'+i)
kf0+2

sinh' —'mk' (A15)

&.(p)=(P'+»'R. (P} (A16)

where R„(p) is a residual polynomial in p of even
parity. To determine the degree of R„(p), we

apply the Cauchy integral formula to Eq. (A14}
and obtain

(p+ 2)( coshpt —cos t
vi t""sin tC2

(A17)

where the contour C, encircles the origin in the
complex t plane with

~

t
~

& v. The leading power
of p is then determined by expanding (aint} '
=t '+t/6+ ~ .. and obtaining

(p, + 2)l coshpt
vi

dt
C2

Since p is an odd integer, me conclude that I„(xi)
= 0. However, from Eqs. (A13} and (A14} we note
that N~(p) is a polynomial in p', and that because
cosh(wi/2)=0 and I„(si)=0, it follows that N„(p)
must be of the form

g II+2 ~tk'

Bt"" sinh-', wk'cosh-' (k'-p)), , '
1

2
Pt +3+ o ~ ~

p, + 3
(A16)

(A12)

where the contour C, in the complex k' plane con-
sists of the real axis with an infinitesimal semi-
circular displacement into the upper-half plane
around the origin. The integral in Eq. (A12) can
be evaluated from the residue theorem by con-
sidering the integral over the contour C, together
with a similar integral over a contour displaced
upward from C, in the complex k' plane by an
amount 4i. By this means we obtain

(p'+ I)'cosh-,'v(p —k)
(A19)

which reduces through Eqs. (A13) and (A16) to

Thus R„(P) is a polynomial of degree p —1 and
even parity.

We next do the integration over the electron
momentum p which is implicit in the transform
kernel. From Eqs. (Al), (57), and (All) we have

I„(p)=N„(p)/cosh-, 'vP, (A13)
~

cosh&'vp cosh-,' v(p —k)
' (A20)

wher'e

8"" cosh pt —cos t
8t"" sin t t=0

(A14)

By analytic continuation from real values of P,
we note from Eq. {All) that

It is important to note that the factors of p'+ 1
have cancelled in Eq. (A20). If g mere an even
integer, Eq. (A16) would not be true and there
would remains a factor of P'+ 1 in the denomina-
tor of Eq. (A20) which mould invalidate the follow-
ing analysis.

We next retain only the leading power of p in
R„and calculate the integral

2k pu-1 k pe 1 ~tp
b„(k)= dP + ~ ~ ~

p+ 3 „cosh-,'vp cosh-,'v(p —k) p+ 3 8t" ' „cosh-,'wpcosh2v(p —k)

(A21)
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which, by a contour integration similar to that
used in evaluating Eq. (A12), gives

et%

p+ 3 sin-'vk st" ~ sint

4k ( p —1)! dt

p+ 3 sinh-awk c 2wi t""
4 ytt+1

!j.(p, + 3) sinh-,'vk (A23)

where the expression in parentheses is a poly-
nornial in k. Another application of the Cauchy
integral formula then shows that b„(k) is of the
form Eq. (A3) with the leading term given by

Since the lower even powers of P in R„(P) will
produce only lower even powers of k in b„(k)
through Eq. (A20), we have proven the ansatz
equation (A3) and have determined that

(A24)
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