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Disnersion of ylasmons at the surface of a metal and at the interface between two metals
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The dispersion of plasmons at the surface of a metal and at the interface between two metals is derived by
a proper combination of electrodynamics with the hydrodynamic approximation. With a two-step model we

discuss the effect of a transition region at the surface of a metal and we so explain recent measurements by
Krane and Raether for aluminum.

I. INTRODUCTION

A surface of a metal of an interface between two
metals has an effect on collective excitations which
propagate near that interface. Since the ampli-
tude of the excitation has to satisfy certain boun-
dary conditions the dispersion is modified resulting
in special interfacial excitations. Vive treat here
surface plasmons and interfacial plasmons in
metals. In this context we take up the question of
the appropriate boundary conditions which are
necessary to investigate the reflection and trans-
mission of propagating waves at such interfaces.
The surface plasmons are the eigensolutions of
this optical problem. In this way the boundary
conditions determine the dispersion of the surface
plas mons.

In standard optics the amplitude of the outgoing
transverse wave on either side is calculated from
the continuity of the tangential component of the
electric field and the normal component of the dis-
placement vector. This treatment neglects the ex-
citation of a plasma wave in the metal which also
is a homogeneous solution of Maxwell's equations
and therefore should be included in the general
solution. Sauter' has specified the three boundary
conditions which make it possible to calculate the
three amplitudes at a vacuum-metal interface: (i)
continuity of the tangential component of the elec-
tric field; (ii) continuity of the normal component
of the electric field; and (iii) continuity of the nor-
mal component of the electric current. These con-
ditions follow from MaxweQ's equations assuming
the finiteness of charge and current densities and
of all fields at the surface. In this way the optics
of a metal film' and the dispersion of surface
plasmons' has been studied.

Considering metal-metal interfaces one has to
determine one additional amplitude, namely, the
amplitude of the plasma waves in the other metal.
Therefore, a fourth boundary condition must be
added tp the three conditions of Sauter. This fourth
condition has been recently derived by the authprs4

from the continuity of the normal component of the
energy current density. In this paper we apply
these boundary conditions to explore the eigenso-
lutions of two simple systems involving metal-
metal interfaces.

In Sec. II we discuss the new boundary condition.
The dispersion relation of the interfacial plasmon
at the boundary of two different metals is calculated
in Sec. III. Qur result is different from that of
Stern and I'errell' because they do not include
longitudinal waves. In Sec. IV we simulate the
gradual decrease of the charge density at a metal
surface by a two-step model. Such a model has
already been investigated by various authors' '.
In particular, our treatment is similar to that of
Ref. 7b. However, we use a well-justified boun-
dary condition at the inner interface. In addition,
we consider as a more consistent local density
approximation to vary not only the plasmon fre-
quency but also its dispersion as function of den-
sity. These differences have important conse-
quences when the model is applied to explain re-
cent measurements of the dispersion of surface
plasmons of aluminum. ' Section 7 consists of a
discussion of the model and the results.

H. FOURTH BOUNDARY CONDITION

A macroscopic treatment of plasma waves is
most often done via the so-called hydrodynamic
approximatione-s, xo, u pf the equation of mptipn pf
the electron gas such that

8 ]—= &o2/4 a E —y j —D gradp
8 t

with j and p current and charge densities, co~

=4wne'/m, and y=& ' an inverse lifetime. From
Eq. (1) follows the correct bulk plasmon-disper-
sion relation if D= 5 v~. Combining Maxwell's
equation with Eg. (1) the energy theorem can be
written in the following form'.
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e 4n -. 4my .2=div —(E&&H)+~Djp +, j'. (2}
4m COp (d ~

On the left-hand side stands the change of the en-
ergy density which contains, in addition to the
field energy, the kinetic energy associated with the
drift velocity of the electrons and a potential ener-
gy due to the inhomogeneity of the electron gas in-
troduced by a longitudinal plasma wave. The ener-
gy current density consists of the Poynting vector
and the energy current of the plasma wave. One
can show that for a pure longitudinal wave the lat-
ter term is the product of energy density and phase
velocity. This is the same relation as for the
Poynting vector of a pure transverse wave. The
last term on the right-hand side is the energy dis-
sipation.

The finiteness of all fields as well as current
and charge densities implies the finiteness of the
divergence of the energy current. Then the usual
pill-box argument leads to the continuity of the
normal component of the energy current at any
interface. The first three boundary conditions
make the normal component of the Poynting vec-
tor continuous. Therefore, the normal component
of (D/&o2$ j p must be continuous. At a vacuum-
metal surface the ".ontinuity of the normal com-
ponent of j makes it vanish and therefore the new
condition is automatically satisfied. For a metal-
metal interface we obtain as the fourth boundary
condition: (iv) continuity of (D/&u~)p One mi.ght
think that j ~ n= 0 would again be an alternative con-
dition for a continuous energy current. But the
equation of motion, Eq. (1), shows that also in
this case condition (iv) must not be violated. The
three boundary conditions of Sauter supplemented
by this fourth condition make a macroscopic treat-
ment of metal optics possible.

III. DISPERSION OF PLASMONS AT THE INTERFACE
OF T%0 METALS

(o;= [~(u)~+ (o2»}]'~2. (4)

This is the limit for large k„(wave vector parallel
to the interface) in a treatment according to stand-
ard optics. In this ayproximation the dispersion
relation for the full k„range including the small A„

As a surface plasmon exists at a metal-vacuum
boundary, a corresponding mode is found at the
interface between two metals. " Stern and Ferrell'
give as condition for the eigen mode

g, ((d) + f,(ld) = 0,
which yields

k'„+ k',= (u)'/c') [1—(oJ&u((a+iy)].

The dispersion of the longitudinal wave reads

(d(QJ+ t y) = QPp+ 5 Vr(ki + k~) .

(6)

(7)

The values of the plasma frequency or~, the damp-
ing constant y, and the Fermi velocity v~ charac-
terize the two different metals. The eigen mode at
the interface is obtained as the self-sustaining
solution without incoming waves. Therefore, the
determinant of the system of four linear equations
must vanish. This condition yields the dispersion
of the interfactial plasmon at the interface of two
metals. The coefficient matrix is

with the normal components of the wave vector in
units of k„,

k, = [(~'/ c'k'„) [1 uP»/&o(&o+ iy,)] 1] ",
t, = ([u (&u+ iy~} —uP~]/DP„—1]"2,

the conductivities

a„=iuP~,/4a(cu+iy, ), a;„=ico/4v,

q, = ~((u+iy, )/~2»-1,

where b is 1 or 2 on the resyective side. For an
evaluation we take the parameters for magnesium
on aluminum and obtain the result in Fig. 1. Also
shown is the dispersion according to Eq. (5}. The
dispersion in the small k„region is obviously de-
termined by the transverse waves while at larger
k„ the gradient in the charge density increases the
frequency. The limit at very small k„ is

values where retardation is important follows from

[((o'/c )f —k']'~'e +[(aP/c'}e —k ]'~'E =0 (5)

which is a generalization of an expression given by
Sommerfeld" for the dispersion of the so-called
Zenneck waves.

We derive the dispersion relation of the inter-
facial mode accounting explicitly for the existence
of plasma waves on both sides.

The method is to treat reflection and transrgis-
sion of a transverse or longitudinal wave at the
interface. The four boundary conditions lead to
four linear equations for the four unknown am-
plitudes. The disyersion of the transverse wave
is given by
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FIG. 1. Dispersion of plasmons at the interface of
aluminum and magnesium (full curve) ~ The broken
curve is the dispersion according to Eq. (5).

Recently, Krane and Raether' published mea-
surements of the dispersion of surface plasmons
over a very extended range of wave vectors for the
free surface of aluminum. These measurements,
reproduced in Fig. 4, show as function of k„ three
regimes: (a} flat plateau near &uJv2 for 0.05
& k„~ 0.3 A ', (b) a decrease of the plasmon fre-
quency for small wave vectors, "and (c) a strong
increase at large k„values. The dispersion of
surface plasmons has been studied theoretically
in several papers essentially by two different ap-
proaches: (i) a treatment within standard optics
which neglects charge density waves inside the
metal ""'6 Qne assumes divE =0, except at the
surface where the charge density is infinite; (ii} a
proper treatment of charge densities either by
many body theory or its hydrodynamic approxima-
tion" """but reducing electrodynamics to the
use of divE =4'; that is neglecting retardation.
Electrodynamics gives the correct dispersion at
small k„values, starting with the lightline ~, = ck„,
but at large k„ the limit is &o, = &u~/v 2 without any
dispersion corresyonding to the interface results,
Eqs. 4 and 5. The decrease of the frequency for
long wavelengths reflects the noninstantaneous
coupling of the charges at large distances. The
hydrodynamic approximation, originally used by
Ritchie" in the discovery of the surface plasmon,
leads to the dispersion ur, = &u~/v2+-,

' H vrik„,
where v~ is the Fermi velocity. The origin for

co =(d +c kPg II

with co» the smaller of the two ylasma frequencies.

IV. DISPERSIGN OF THE SURFACE PLASMQN
OF ALUMINUM
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FIG. 2. Surface-plasmon dispersion calculated by
standard electrodynamics (a) and by hydrodynamics
without retardation (b) for parameters of aluminum.
Curve (c) indicates schematically thedecrease of the
plasmon frequency caused by the gradual fall off of the
charge density at the surface.

this dispersion is, as for bulk plasmons, the in-
ternal pressure of the electron gas, the resistance
against compression, which, in the hydrodynamic
approximation, produces a force proportional to
gradp. This dispersion has been confirmed by
microscopic calculations" "sometimes with slight
changes in the coefficient of the linear term. It
does not go to zero at small k„and is too strong
for intermediate wave vectors. A third ingredient
is the observation that the gradual decrease of the
charge density at the metal surface has the effect
of lowering the plasmon frequency with growing
k„; because the fields of the surface plasmon pene-
trate less into the bulk of the metal with increasing
k„ the average charge density involved decreases
and so does the effective &op~2. This has been
shown by several calculations which account for
the charge profile of the metal surface. """
The three concepts lead to the dispersion curves
shown in Fig. 2. The increase due to the electron
gas pressure and the decrease due to a soft charg~
profile are competing. A flat region for inter-
mediate wave vectors is the result.

The concepts of electrodynamics and of the hy-
drodynamic treatment are combined calculating
the fields from 3auter's boundary conditions.
This has been done by Sturm. ' His dispersion
(broken line in Fig. 4, for parameters appropriate
for aluminum) combines the retardation region at
small k„and the electron gas dispersion at large
k . It behaves essentially like the result for the
interface shown in Fig. 1.

In order to include effects of the transition re-
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FIQ. 3. For the two-step model the electric fields
are indicated at the vacuum-metal transition region.
EJ is the transverse wave, 8„ is the 1ongitudinal pla s-
ma wave. The plus and minus signs refer to the direc-
tion of propagation.
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gion we approximate the decreasing charge den-
sity at the surface by a two-step model (Fig. 3)
with a precursor stey of thickness ff and of density
pn, with p &1 and no being the bulk charge den-
sity. Our boundary condition (iv) enables us to
ca,lculate the amplitudes at the inner metal-metal
interface and therefore we can find the eigen mode
of this layer system. From the three boundary
conditions at the vacuum side and four conditions
at the inner boundary we obtain a system of seven
linear equations for the amplitudes of the electric
field. Again, the determinant must vanish for the
eigensolutions. The coefficient matrix is

FIG. 4. Theoretical surface plasmon dispersion is
compared to the experimental data from Hef. 1. The
precursor step was chosen 4 A thick with a density of
0.7 n~. The broken curve is the plasmon dispersion
according to K. Sturm (Ref. 3).

= 0, was evaluated for values of ~~= 15.3 eP, v~
=2.12~ 10' cmsec ', and y= —,', ~~, appropriate
for aluminum. Only the thickness d the fraction p
of the bulk density in the selvedge are disposible
parameters. The result for d=4 A and p=O. V is
shown in Fig. 4 (full curve). It turns out that only
a very narrow range of parameters leads to the
kind of agreements shown. Dispersion curves for
parameters outside the range of p = 0.75, d = 5.5 A
and p = 0.65, d = 3 A cannot be considered good fits
to the experiments (see Fig. 5). An increase of d
as well as a decrease of p shifts the plateau to
lower values of (d, and deepens the minimum.

The parameter values are plausible if one inter-
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with the same notation as in the previous section.
The index 5 here indicates the regions, vacuum,
selvedge, metal, b = v, s, m:

A, =exp(ik, ~ d}, B,=exp(zl, .d}.
The ylasmon dispersion relation, given by detM
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FIQ. 5. Demonstratien of the sensitivity of the dis-
persion curves to changes of the model parameters.
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their lower curve was claimed to be a reasonably
fit to early experiments in a smaller k region. "
Our results for this parameter set are completely
off. Therefore, the difference between the two
treatments is not only accademic. We obtain model
parameters which give a more reasonable picture
of the metal surface.

V. DISCUSSION
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FIG. 6. Comparison of the surface plasmon disper-
sion and the dispersion of higher modes of Ref. 7
(solid line) with our theory (dashed line). The precursor
step in this case is 1.36 A thick with a density of
Oo 1 ?lA] ~

prets the transition region as caused not only by
a Kohn-Lang type of charge density shape but also
by some surface roughness. It should be checked
by experiments if increasing surface roughness
lowers the plateau. The systematically higher
values of +, in the experiments shown by crosses
in the paper by Krane and Raether and in Fig. 4
might be due to a flatter surface. This conjecture
is supported by the fact, that in these experiments
the lifetime of the surface plasmons is larger than
on the other samples. "

Our results should be compared to those of a
similar treatment of the surface-plasmon disper-
sion by Boardman, Paranjape, and Teshima, and
Boardman, Paranjape, and Nakamura. ' Their
theory differs from ours in two respects: (a) They
use the continuity of the fluctuating electron gas
pressure as the fourth boundary condition at the
inner boundary. This would make the normal com-
ponent of the energy current discontinuous accord-
ing to Eq. (2). (1) We also account for the depen-
dence of the electron gas pressure, i.e., the plas-
mon dispersion on the local density. In Ref. 7 only
the plasma frequency is affected by the inhomo-
geneity. Considering both dependences appears
to be more consistent. The quantitative results
do depend on these differences. In order to demon-
strate this we compare curves according to Ref. 7
with our calculations for a set of parameters they
have used (Fig. 6). In Ref. 7 the dispersion of

We use in our calculations the hydrodynamic ap-
proximation. The applicability to the surface
problem has been tested by comparison of its re-
sults with those of calculations based on Boltz-
mann's equation. "~ Our results concern wave-
lengths larger than 12 A which is more than twice
the cutoff wavelength where the collective mode
decays by single-particle excitations.

The other important approximation is the repre-
sentation of the transition region at a metal sur-
face, where the density gradually drops to zero,
by a density step. This offers the advantage to
analyze the essential physics within the trans-
parent formalism of optics. This approximation
is reasonable for solutions which smoothly vary in
the direction normal to the surface. This is the
case for the solution given in Fig. 4. Also, this
dispersion continuously evolves from the disper-
sion of a metal surface without transition region
as a selvedge with very small width and p & 1 is
introduced. Our equations also contain higher
modes corresponding to standing plasma waves in
the selvedge. These are sensitive to the details
of the model of the charge distribution because the
fields vary strongly over the selvedge region while
the lowest mode averages over the charge distribu-
tion. Moreover, the higher modes have such
short wavelengths normal to the surface that they
are not reasonable treated in the hydrodynamic
approximation.

We understand the step of smaller density as an
approximate representation of the combined effect
of surface irregularities and the inherent charge
density gradient of a perfect surface. At any rate,
the parameters are confined to a narrow range,
namely, to 1 A in thickness and to 10% for the
average charge density. It seems worthwhile to
measure the dispersion for surfaces of different
roughness.

Also, in the case of the plasmon at the interface
between two metals, the effect of a transition re-
gion is to create a plateau which in its height and
extension depends on the properties of the contact
region.
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