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Motion of flux lines in nearly pure superconductors
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Sy use of a simple semiphenomenological argument, Sherman and the author showed that in nearly pure
superconductors (mean free path large compared with the core radius) at low temperatures, the transport
current flows directly through the core of a vortex line without backflow. Expressions they derived fear the
flux-flow resistivity and Hall angle are nearly identical with those derived later by Larkin and Ovchinnikov

(resistivity) and by Kopnin and Kravtsov (Hall angle) using Green's-function methods except for a numerical
factor of 4/3. It is shown that this factor comes from a difference in relaxation time between the vortex core
and the normal metal.

Sherman and the author' gave a nonlocal gen-
eralization of an early local model of Bardeen
and Stephen' to show that in the presence of a
transport current J~ the vortex line moves so as
to generate an electric field which drives the cur-
rent directly through the core without backflow.
The total current density, the sum of super
and normal current components, is for T«T„

J= J, +J„=Jr +J,( r —v~ t), (1)

where Jr is the uniform transport current, J,(r)
is the circulating current around a stationary vor-
tex and v~ is the velocity of the vortex line. The
Fermi sea is everywhere displaced by the trans-
port velocity vr ( Jr =nevr). In the vicinity of the
core there is a balance between decrease of the
current caused by scattering from bound states in
the core and an increase from acceleration by an
electric field. Taking v~ in the x direction, as a
result of the Hall effect, v~„=v» or the vortex
moves in the direction of the transport current
with the transport velocity.

At low temperatures, only the bound states with

energies less than the bulk pair potential, ~„,can
be excited and contribute to the scattering. The
effective area of the coreA, , is that of a normal
region with the same number of states in energy as
that of the core. Equivalently, one may define a
function g(r) which represents the fraction of the
density of states at the Fermi surface from the
bound states and varies from unity on the axis r =0
to zero as r-~. Then

=2' g r r~.
We found that the resistive loss from motion of
the vortex line is that of a uniform current J~
flowing through a normal region of area A, . We
also showed that the line moves at a Hall angle
equal to that of the normal metal in an effective
field 4, /A„where I, is the flux quantum.

(1, 0), (2, —1), (3, -2), . . .

(0, 1), (-1,2), (-3~ 4),
(3)

where the second row are the spin reversed states
of the first-row.

According to Kramer and Pesch, ' the energies
of the states corresponding to (p, , -p, +1), or its
reversal, are for small p, such that &„«g„

2p.h„F$0 cosO

k&v& cos 8 2(&

where k, =k~ cosI9. From the behavior of the wave
functions near the core axis as T-O, they felt that

g, should be proportional to T at low T (corre-

Our results have been confirmed by a micro-
scopic Green's-function calculation by I.arkin and
Ovchinnikov' for the resistive loss and to a close
approximation hy Kopnin and Kravtsov' for the
Hall angle, except for a factor of —,'. The former
authors suggested that the effective relaxation time
for electrons in the core z, differs from that of a
normal metal z„bythis factor, that &s 7 =4T„.
We agree and will show that this factor arises
from the way averages are taken over the Fermi
surface.

The expression we used for the density in energy
of bound states in the core was taken from one de-
rived by Kramer and Pesch. ' Their expression for
the core areaA, differed from the one we used by
an equivalent factor of —,'. Both the energy loss
and Hall angle involve the ratio v./2, . If we had
taken y =7.„andused the Kramer and Pesch value
for A„wewould have obtained results practically
identical with those of the Soviet workers.

The bound states in the core, with Bogoliubov
amplitudes u„&(r)and v„&(r), are designated by the
quantum numbers (p, k,), where the magnetic
quantum number p, is that of u„.States of positive
energy may be characterized by the pairs (u„,v„~)
as follows:
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sponding to "shrinkage" of the core as T-0). How-

ever, Qvchinnikov' in a recent calculation has
pointed out that g, does not vanish but approaches
a limiting value as 7-0. This is irrelevant for
the present discussion which depends only an the
angular dependence of the density of states.

The density of states of one spin at the Fermi
surface is

axis of the vortex line, b = 16/3w, x =-4I7„/mA„
and f, and f2 are given by rather complicated aver-
ages over the Fermi surface. To show how close
their theory is to the simple picture outlined above,
we shall compare their calculations of f,(x) and

f,(x) with those that follow from (7) and the require-
ment that with no backflow, v~, =v~.

From (9) it follows that

wm],'kw cos'8d8
IV, (8 d8=

2w 4S' In(wgocos8/], )
' (5)

tana =&fi/fw

and from v~„=v»

(10}

Disregarding the slowly varying logarithmic term,
the main difference in angular dependence from a
normal metal is a factor of cos'8, as illustrated in

Fig. 2 of Ref. 1. The angular dependence would be
the same as that of a normal metal if one jncluded
only excitations of k„,not those in k,. In Ref. 1 we

defined A., such that the radial excitations are the
same as for the normal metal. Since the relaxation
rate is proportional to the density of states, we
should have defined 7, such that

vr =v~ sinn =v~(f, sina +b 'f, cosa},

which gives

f, = sin'a =x'/(x'+b'),

f, =Q sina cosa =xb /(x +b ).
(12)

Limiting forms of the exact expressions derived
by Kopnin and Kravtsov are for g large

f, = 1 —3.015/x', f, = 1.V35jx;
1 2 cos'g 4

(6)
and for x small

f, =-', x' =x'/2. 67, f, =x .

A, =
w wt'0ln($0/$~), (6)

then q should be ~, = —,'~„.Although the way the
angular averages are calculated is different, this
result is very close to that of Kopnin and Krav-
tsov. 4

These authors express their results in the fol-
lowing form:

f,(X) vt, +& 'f,(x)(l„xv~),
where 1~ is a unit vector in the direction of the

(9)

to be consistent with our definition of 3, The
factor of 2 corresponds to the possibility of scat-
tering between both signs of p, as shown in (3}.
Thus in Ref. 1, 7. should be interpreted as g, or
replaced by —,'z„,which would bring the result for
flux-flow resistivity into agreement with Ref. 3.

The same considerations apply to the Hall angle
a which is given in Eq. (33) of Ref. 1 as

tana =v~, /v~„=&@,r =wh7/mA,

If A, is as defined by Eq. (29) of Ref. 1,

Since b = 16/3w = 1.695 and 5' = 2.66, these are
very close to expansions of (12). Values of f, and

f, for intermediate values of x are also very close.
thus at low temperatures in relatively pure

superconductors, the approximation that a vortex
line moves without backflow is a good one. This is
not true at temperatures such that quasiparticles
are excited above the gap in the bulk superconduc-
tor when scattering of quasiparticles by the vortex
lines must be taken into account. The simplifying
assumptions that scattering is proportional to the
density of states at the Fermi surface and that in

steady state there is an electric field to balance
this scattering may be useful in other problems
as well.
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