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Universality of the specific heat of He- He mixtures at the X transition*
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%'e present an analysis of specific-heat data of 'He-'He mixtures at the X transition in which a trial function

with a correction term to the leading singularity is used. For mixtures up to 0.39 mole fraction of 'He in 'He
we find a universal leading exponent o. = cf,

' = —0.022 and a universal leading amplitude ratio of A/A' = 1.088.
These results are in agreement with theoretical expectations and other experimental results along the X line as

a function of pressure. The data at pure 'He and saturated vapor pressure appear to show a small deviation

from universal behavior.

I. INTRODUCTION

The behavior of a system at a critical point can
be characterized by the asymptotic power-law de-
pendence in some of its thermodynamic functions.
The exponents which appear in these functions
seem to obey homogeneity or scaling relations. '
In addition to these one expects that physical sys-
tems which differ in nonessential ways should have
universal values for these exponents, ' as well as
for some dimensionless parameters, or ampli-
tude ratios. ' The nonessential variables in the
case of static properties seem to be the ones which
do not affect the dimensionality of the system or
the degrees of freedom of the order parameter.
In the case of the X transition in liquid helium,
one has an opportunity to test some of the aspects
of the universality hypothesis, since the transi-
tion occurs across a two-dimensional surface in
P-T-x space, i.e. , pressure, temperature, and
'He mole fraction. It is expected, according to
this hypothesis, that critical behavior, along a
suitable path across this surface, would yield the
same critical parameters. Almost all critical
measurements to date have been made in the plane
x=0, i.e. , at the X line as function of pressure,
or on the surface of saturated vapor pressure,
P= 0.05 bar, at the X line as function of mole frac-
tion.

Tests of universality along the X line in the pres-
sure plane have been done with various thermody-
namic data. The data on specific heat in particu-
lar, show some disagreement with universality at
pressure P~ 15 bar. ' The most recent and most
direct test of universality for specific-heat-like
behavior have been made on P~, the isobaric ther-
mal expansion, at pressures between 5 and 30
bar. ' P~ is a thermodynamic quantity which has
the same singularity at the transition as the speci-
fic heat at constant pressure C~, hence can be an-
alyzed with the same functional form, i.e. ,

C~= (A/o'. )f (1+Dt') + B

for T& T„, where t =
~
1 —T/T„~, and as usual a set

of prime parameters are used for T& T~. The
presence in Eg. (1) of the D term, i.e. , the cor-
rection to scaling term, is necessary to retain
the scaling requirement n = n'. Without this term
the data on helium would not agree with scaling.

In the case of the X line at saturated vapor pres-
sure in the mole-fraction plane, an analysis of
the specific heat C~„has recently been presented
by Gasparini and Moldover' (GM). In their paper,
a thermodynamic analysis is first performed to
calculate C&~ where (II)

=—p, , —p4 is the difference in
the chemical potentials. This spec ific heat, unlike
C~„which is subject to a path renormalization, is
expected to have a universal behavior along the
X line. In the analysis of GM, a simpler function
than Eq. (1) was used in which D= 0, and no con-
straints on the remaining parameters were im-
posed. Their results showed that C~~ is very much
like C~ for pure 'He and saturated vapor pressure.
In particular, the data have the same asymmetry
with the branch for T& T~ tending to be more sin-
gular (a & n') than the branch for T & T„This as-.
ymmetry persists as function of concentration, al-
though at the higher concentrations the results be-
come particularly sensitive to the choice of ther-
modynamic derivatives which enter in the calcu-
lation of C~~. In this paper we report the results
of an analysis in which the data are fitted to Eq.
(1) and more conclusive answers are obtained to
the question of universality.

II. ANALYSIS AND RESULTS

The primary data of GM are very nearly C~„. In
their paper they discuss how the conjugate speci-
fic heat C» is calculated, and how the distance in
temperature from T„ is converted from a t, mea-
sured along a path of constant x, to a 8, the dis-
tance along a path of constant fIJ). In both these cal-
culations one uses thermodynamic information in
the form of derivatives along paths parallel to the
X line. The precision with which these derivatives
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are known affects the results. In order to fully in-
vestigate this effect we have used in the present
work a procedure in which both C» and 8 are re-
calculated starting with different values of the
thermodynamic derivatives. This gives one an
important check on the extent to which the results
are sensitive to the analysis. GM had investigated
the effect of the derivatives on C~~, which is in-
deed the most important one, but not on the cal-
culation of 8.

When using Eq. (1) to fit C» one is allowed a
total of ten variational parameters. This does
not include T„which is determined with sufficient-
ly high precision from the primary data C~„. It is
in practice impossible to obtain meaningful results
if all ten parameters are least-squares adjusted
to achieve an optimum fit. We have followed thus
a procedure adopted by Mueller et al.' in the anal-
ysis of the thermal expansion data, and have im-
posed some constraints on the parameters in Eq.
(1):

(2)

B=B',
= y'= 0.5.

The first constraint is, of course, the scaling
requirement. One demands that scaling be obeyed
and asks if the resulting n's are independent of

Equation (2) reflects the fact that the n's re-
sulting from this analysis are negative, hence
this constraint is the condition that the specific
heat be continuous, In this way a, even though
negative, still represents the leading singularity. '
The value for the exponent y is that which results
in the analysis of second sound data, "and is the
value used in the analysis of P~. Theoretical cal-
culations of this exponent give values in the range
of 0.3 to j..o." We have in some instances allowed

y to vary in our analysis. In the case of the pure
'He data, a value of 0.46 was obtained with a very
marginal improvement in the goodness of the fit.
One should emphasize that imposing the constraints
of Eqs. (2)-(4) is always subject to a postenori
verification that the data allow such constraints,
i.e. , that it can be fitted to Eq. (1) with random
scatter after the remaining parameters are least
square adjusted. The important result from our
analysis is to check the universality predictions
that the ratio A/A', and the exponent c.= n' be in-
dependent of P. The ratio D/D', for the correc-
tion to scaling is also of interest, although it is
not clea, r that this should be a, universal quantity. '

Our fitting routine follows the Marquardt algo-
rithm" with each datum point being weighted in the
manner prescribed by GM. The fitting routine, as
well as the error calculation, are different from

those used by GM. In particular, no approxima-
tions are used in the calculation of the standard
derivations, such as the expansion of the trial
function in powers of lnt as was done by GM. We
have checked that this new routine gives the same
results as GM, when used for the same data and
trial function. We have also fitted the specific-
heat data of Ahlers" at saturated vapor pressure
to various functions, and have obtained his re-
sults. The only differences seem to be that our
calculation of the standard deviation for the varia-
tional parameters gives results about 10% higher
than those of Ahlers. We do not feel that this
amounts to a significant difference.

After imposing the constraints, Eqs. (2)-(4), a
total of six parameters are varied in Eq. (1) to fit
C». These are a, A/A', D/D', A', D' and B. The
range of data used extends to t =0.003 at x = 0, and
a somewhat wider range at the highest mole frac-
tions. In terms of the distance 8 this represents
very nearly a constant 8 of ~0.003. This range of
data is narrow enough so that no higher order
terms are needed in Eq. (1), and also the assump-
tions in the thermodynamic analysis to calculate
C~~ and 8 remain valid.

The results of our computer fits at the various
mole fractions are shown as deviation plots in
Fig. 1. These results are typically not as good as
in the case where 6= 0 and one allows 0. and 0." to
take independent values. Some small systematic
deviations can be seen in Fig. 1 which would not
be present in the latter case. These small devia-
tions occur when the constraint 0. = 0.' is imposed,
thereby the two branches of the specific heat can-
not choose their own best exponent. On the other
hand, the deviations are small, and they do not
warrant abandoning the constraint a = o'.

In Fig. 2 we plot the results for the parameters
which are expected to be universal, c. and A/A'.
The error bars represent plus or minus one stan-
dard deviation. It can be seen from this figure
that a and A/A' are independent of P, or as plotted
in this figure, the temperature at which lines of
constant f cross the X line. One can reasonably
take the average values of n = -0.022 and A/A'
= 1.088." These are weighted averages for all the
results shown in this figure. They should be com-
pared with the corresponding quantities obtained
from the thermal expansion analysis along the X

line in the pressure plane: &= -0.026+0.004 and
A/A'= 1.112+0.022.' The agreement is rather
good. The numerical results of our analysis are
listed in Table I. We note from this table that the
data do not determine the ratio D/D' very well.
Thus, we cannot draw any conclusions on the uni-
versality of this ratio, but point out that within the
rather large error bars, the results are consis-
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tent with the value of D/D'= 1~ 29+0.25, as ob-
tained in Ref. 6. We note that this value for D/D'
is obtained by doing a four-parameters fit after
fixing u and A/A' to the average values. We have
not followed this procedure.

The small vertical bars next to some of the
points in Fig. 2 represent the range of results ob-
tained for those parameters when other choices of
thermodynamic derivatives were made in the data
analysis. Specifically, values in a range of 2% for
s./»I, ~d se/»I„, ~d»/mol«' f»»/»I„
were used. The combination of values within these
bounds was chosen so as to have the maximum ef-
fect on the magnitude of C~~. For instance at x
= 0.3, C~~ changes in this process by as much as
50%%uo, the amplitudes A, A' change by more than a,

factor of two, yet their ratio remains constant to
within 1.5%. u itself varies in this process by 16%%uo.

This rather small sensitivity of the desired univer-
sal parameters in Eq. (1}to the thermodynamic de-
rivatives is in marked contrast to the effect on &

and o' when the constraint e= a' is relaxed, e.g. ,
see GM. We would also remark that while the re-
sults we report here use the X line derivatives tab-
ulated by GM,"we have also used the values for
these derivatives given by Ahlers. ' These are
identical to ours at low mole fraction, where they
are matched to the values of GM, but differ some-
what at higher mole fractions. Aga, in the results
are insignificantly different from those of Fig. 2.

We can compare our experimental results for o.
and A/A' with the theoretical results of the e-ex-
pansion calculation. " For a three dimensional
system with two degrees of freedom in the order
parameter, one obtains &= -0.02 and A/A'= 1~ 03."
The agreement for 0,'seems excellent. This could
however be somewhat fortuitous, and one must
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FIG. 2. Leading singularity exponent and amplitude
rati. o for C&& as function of Tz+, p).

keep in mind that this small exponent results from
a subtraction of two large numbers in a noncon-
vergent series calculated to order e'. The agree-
ment with the amplitude ratio is reasonable, es-
pecially if one keeps in mind that the difference
between experiment and theory is certainly sub-
stantially less than the difference in A/A' for dif-
ferent universality classes.

Figure 2 represents a very nice support for uni-
versality. We also note that if the value of the
parameters at x= 0 are omitted, and the remain-
ing results averaged, one obtains & = -0.025 and
A/A'= 1.096 which are in even better agreement
with the values from P~ which also do not include
data at x=0, P=0.05 bar. Looking at the results
in this way the point atx=0, P=0.05 bar seems
somewhat off from these average values. This is
also true for the specific-heat data of Ahlers at
this point. " We have fitted this data to Eq. (1},
and obtained ~= o'= 0.0163+0.0017 and A/A'
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TABLE I. Parameters obtained in fitting C& to Eq. (1) subject to the constraints of Eqs.
(2)-(4). All errors are one standard deviation.

D/D'

0.0000
Q.oooo'
0.0110
O. 0997
0.200
0.301
0.390

-Q.Q19 76+0.0037
-0.016 26+ Q.oof 7
-0.022 42+ 0.0095
-0.025 31 +0.0075
-0.025 36 +0.011
—0.02674 +0.012
-0.0250 +O.of 5

1.081 +0.016
1.068 +0.0073
1.092 + 0.041
1.098+0.031
1.102 +0.048
1.100+0.049
1.087 +0.055

6.8 +7.1
2.6 x 108 y 2.f x f 07

4.2+7.3
1.9+0.5

-1.9 +2.1
-3.5 + if
+1.9 +5

Di

0.0000
O. QOOO'

0.0110
Q.O977
0.200
0.30f
0.39O

-6.376+0.190
-6.1 f5+0.092

6.757 +0.51
-9.557 +0.61
-9.527 +0.89
-9.124 +0.94
-6.323+0.84

6.161 +0.16
5.922 +0.076
6.480 +0.43
9.206 +0.56
9.077 +0.76
8.763 +0.87
6.006 +0.72

-0.0121 +0.012
2.1 x 10-fo +2.4 x 10
0.0189+0.032

-0.115+0.047
-0.0743 +0.077
+0.0300 +0.083
-0.0270 +0.064

Data of G. Ahlers, Phys. Rev. A 3, 696 (f971).

= 1.068 + 0.007 3.
%e have attempted to cheek just how serious

these deviations are by fitting all of the data at
x=0, P=0.05 to Eq. (1), but with the additional
constraints of &= n'= 0.026, Al-A'=1. 11, and
DlD' = 1.11. These seem to be representative val-
ues for these parameters along both X lines away
from this point. The only parameters varied in

this case were A', D', and B." In the lower part
of Fig. 3 we show the deviation plot when these
are least-square adjusted for a best fit. In this
figure, we also show for comparison the results
when the data is treated as discussed earlier for
the mixtures. It is clear that the fit with the above
constraints is not satisfactory, and most impor-
tantly that both independent sets of data give the
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same systematic deviations. We have attempted
to retain the average values of the universal pa-
rameters by adding another term to Eq. (1}, a
term linear in T. This helps to improve the fit far
away from T„, but not in a very satisfactory way.
This additional term also retains the deviations in
the region close to T„. Of the various other at-
tempts at fitting this data, relaxing the constraint
D/D' = 1.11 and allowing it to be a free parameter
while retaining & and A/A' at their average, and
presumably universal values, is the most effec-
tive way of obtaining a reasonable fit.

This procedure of testing a particular set of data
against the average parameters would normally
not really be a significant step. It is hardly nec-
essary to point out that none of the data which en-
ters in the average need give the average values
themselves. All data should show deviations —al-
though random —when tested against a function
whose parameters are constrained to be the aver-
age ones. The situation here is somewhat differ-
ent however, since data from two independent in-
vestigators is used, and all the data seem to de-

viate in the same systematic way. It seems un-
likely that this would be a coincidence, on the
other hand we do not know what significance to at-
tach to it. This point on the phase diagram does
not have, as far as phase transitions are con-
cerned, any particular significance in comparison
to any of the other points on the X lines.

III. SYNOPSIS

The data on the specific heat of helium along the
X line in the mole fraction plane is found consis-
tent with scaling when a functional form with a
higher order singularity is used. The resulting
values of u and A/A' are found to be universal
along the ) line and in reasonable agreement with
the results of the e-expansion calculation. In par-
tioular, however, values of u and A/A' at x = 0,
I'=—0.05 seem to deviate slightly from the best
values found by averaging the dat@ away from this
point. Both the data of Gasparini and Moldover,
and of Ahlers show the same systematic devia-
tions.
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