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Consistent treatment of the effect of the impurity-impurity interaction on the Kondo resistivity
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%e discuss the effect of the impurity-impurity interaction on the Kondo resistivity p~ without the explicit use

of the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction between magnetic impurities. Both the RKKY
and p„originate from the s-d exchange interaction between the conduction electrons and the magnetic
impurities. To be consistent we use only the s-d interaction to discuss the effect of the impurity-impurity
interaction on the Kondo resistivity. For a system with a low Kondo temperature and for high temperatures,
it is found that the lnT dependence of p~ is replaced by a ln(T'+ c'b') dependence (c is the impurity

concentration and 5 is independent of c and T). This is in accordance with results obtained when the RKKY
interaction is explicitly included in the Hamiltonian.

I. INTRODUCTION

The Kondo resistivity p~ of dilute magnetic alloys
was first discussed for the single-impurity case.
The results can be applied to dilute alloys provided
the expected average Ruderman-Kittel-Kasuya-
Yoshida (RKKY) interaction between neighboring
magnetic impurities J;,; p is weaker than the Kondo
temperature T~,

J'. . .=Ac J'„S(S+1)«Ke T»,

where J,„is the coefficient of the s-d exchange
interaction between the conduction electrons and
the localized moments of the magnetic impurities
with spin S, c is the concentration of impurities,
c~ is the Fermi energy of the conduction electrons,
E~ is the Boltzmann factor, and A is a numerical
coefficient. Experimental results for dilute Cu-Fe
with c& 560 ppm seem to represent this ease well.
For these alloys' p»/c is independent of c, i.e.,
p~/ vcs T can be presented by a universal curve
for all c& 560 ppm. As T decreases below T~ the
increase in p~ diminishes, and p~ levels off.

The high-concentration alloys in the present dis-
cussion are dilute alloys for which the inequality
in Eg. (1) is inverted. Thus here high and low
values of c are defined with respect to T~. In all
cases we consider dilute alloys, i.e., c«1.

For a high concentration p~ exhibits a maximum'
at a temperature T» T~, where T is of the order
of 8,;,/Zs. p»/c depends now on c and decreases at
low temperatures. This temperature dependence
of p~ is thus quite different from the one for low
concentrations.

Let us consider p~ for large c. The decrease in
p~ at low' temperature is attributed to the BKKY
interaction, while the RKKY interaction is assumed
to exist independently of the Kondo effect."' This
is inconsistent with the fact that the RKKY inter-

action and the Kondo resistivity both originate
from the s-d interaction and are therefore mutual-
ly dependent. For large c, however, this assump-
tion seems to be valid. At first it was thought that
the RKKY interaction resulted in the formation of
internal magnetic fields which suppressed p~ for
T-O.' However, it was later shown that the max-
imum in p~ could also be due to correlations be-
tween impurities even if no internal field existed. '
Ford and Mydosh' have recently shown experimen-
tally that T~ indeed appears above the spin glass
transition temperature. The decrease in p~ for
low T is due to the quenching of inelastic scatter-
ing of conduction electrons by the system of inter-
acting impurities. '

As c is lowered T„decreases at first but then
disappears when the expected value of T is less
than T~." The absence of a decrease in p~ as
T -0 indicates that the BKKY interaction is
quenched at low temperatures T & T~, for systems
with low c. This is proba. bly due to the compensa-
tion of the impurity magnetic moment by the cloud
of conduction electrons surrounding it.

We may conclude that at low temperature either
the BKKY interaction exists and the Kondo resisti-
vity is suppressed (large c), or the opposite hap-
pens —that pz exists and the RKKY interaction is
suppressed (low c).

To cover this wide spectrum of behavior of p»/c
in a consistent manner one has to calculate it from
the s-d interaction only. The effect of the RKKY
interaction (contained implicitly in the calculation)
will show up at large c. Kozarzewski" considered
this problem using the coherent-potential approxi-
mation. His results, however, do not reveal a
maximum in pz for large t.", nor do they give a uni-
versal curve for p~ jc vs T for low concentrations
as observed in Cu-Fe dilute alloys. '

It is the purpose of this paper to present a cal-
culation of p~ which incorporates the many-impur-
ity effect on the Kondo resistivity using the s-d
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interaction only. We make no explicit use of the
HKKY interaction as done before."' The discus-
sion here is restricted for simplicity to systems
with low Tz (i.e., relatively large c) and to high
temperatures (T& T» Tz). We find that the many-
impurity effect changes the lnT behavior of p~ to
a ln(T'+ c'h~) behavior (here E is independent of
c and T}. This is consistent with other theoretical
work, ' where the BKKY interaction is explicitly
used.

where J stands for J,~, a is the conduction-elec-
tron spin operator, and

y' (p& p) —e&(P' 9&-&n'.

i —A(t) = [A(t), lf(t)], (4a)

B„and 5„are the position and the spin of the nth
impurity atom When we use the Heisenberg equa-
tion of motion (II = I)

H =Ho+H q. (2a}

H, describes the conduction electrons in the pres-
ence of the electric field":

II. RESISTIVITY

Let us consider a system of noninteracting con-
duction electrons in an external small static elec-
tric field. N,. magnetic impurities are embedded
in the N, atomic sites (N, «N, ), and are randomly
distributed in the system. The Hamiltonian of the
system is

as well as the relations

[at. .(t), a-„„(t)],=5~5„,„, [S„,S']=f5„~.,„S~,

(4b)

then the rate of change of the electric current den-
sity, 8(t), due to scattering of the electrons by the
impurities is

I(t)= et g(t)

H.(t)i=+~,a'- (t)a'- „(t)-eZ &(p'- p)a'-, (t)a- (t),
QsV Qe9

. J=Z-
No

(2b)

where a; „ is the creation operator of a conduction
electron with momentum p and spin direction v, e
is the electronic charge, and U(k) is the Fourier
transform of the electric potential. H,~ is the s-d
exchange interaction between the electrons and
the magnetic impurities,

x F„p—q o„~g„,„n, n p, q t
Peg 0
1ly I
Vs V (5)

Z(t) =g—(a';,(t)a;,.(t)& -=P —g„.(p, p l t)

where m, is the electron mass, and the electron
current density is,

/I. (t)=(-— I F (p —~alii„,„. ii(t)a!, ((ia& (t),
0 9 sP

nsVseV

(2c)
Let us define an M-electron, N-impurity, density-
matrix element

'nz&~l% q2' 'qsu-! qur lt)

=(S„!(t).. . S„gt)a', (t)a (t). . .at (t)aZ „(t)). ('I)
2&-~'"m-j.

The impurities in the system are randomly dis-
tributed. One must therefore average in (5) over
all possible configurations of the .impurities in the
system. " To find the average in (5) we expand it
in a power series in the electron-impurity inter-
action J by using the factorization technique. '
We first separate (5) into two groups: group A,

for which p=q, and group 8, for which pwq. The
terms with p=q vanish. For the terms in group 8
we write a higher-order equation of motion for the
one-electron, one-impurity density matrix (with
pe q}. In general the equation of motion of the one-
electron, N-impurity density matrix is (after tak-
ing a temporal Fourier transform and some re-
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arrangements)

g~s("» o»» "N» ~n Ip

=y(p', p, ~) —eg[~(p —q)g'&„(~„o„'. '"~ o~ lp' ql ~)- ~(q- p'}gz (n, o . . . ;&„o'„Iq,p I ~)]

Q [&~ (p —g}&g~ „(pl&, lx»,'. . . ,'n~, o&»', m, p
I p, qI (d)

Oqp~ sc

—o„~F (q —p')g„,(n„o„.. . ;n~n„; m, pIq, pI ~)]

+i Q F„(q' —q}H~p, ~„5 „g„,„~,(n„a,;.. . ;n„, n„Iq', q;p', pI(u)
~0

(8)

where nz and P refer to the (X+ 1)th impurity and

y(p', p, (0)—:[6~—e~+ (d] =P[Ep& —ep+ (d] —1&5(&p,—6~+ et))

At various orders we shall encounter products of
the form F„.. .F„„.The spatial average ((. . . ))
of these products is,"
((F.,(q,). . . F„(qw)»

N1
~~

exp(iq, R„+ ~ ~ + iq„R„„),
]

(10a)

where the sums in (10a}are over all atomic sites.
In (10a) we do not consider disconnected averages
that can be written in the form ((F„.. .F„)).
x ((F„.. . F„„)).For X=1,2 Eq. (10a) becomes

((F„(q))) = 5;, , ((F„(q)F„.(q') )) =—5„S, . (10b)
0

We shall use next the following approximations:
The external electric field is assumed to be small.
Thus the distribution function of the electrons in
equilibrium, f(p), is a zero-order term, and we

ignore second-order terms in the electric field.
Density matrices of an order higher than a two-
electron density matrix are ignored. We consider,
however, many impurity correlations (to all or-
ders}, thus renormalizing the impurity spectral
function. As to the electrons, we have only the
lower-order Kondo terms, and we ignore correla-
tions between electrons that may be important at
very low temperatures. Two-electron, N- impurity
density-matrix elements are approximated as
products of a one-electron, N-impurity density

matrix and a density factor. This approximation
is equivalent to the random phase approximation
(RPA) for the electrons. "

To evaluate Eq. (5) we use Eq. (8) for the special
case of one-electron, one-impurity density matrix
and insert it into Eq. (5). The product of F„F„

1 2
then appears in Eq. (5). We divide all terms into
two groups. For that selection we make a virtual
averaging over the impurities and include in group
A all terms for which ((F„F„)w 0, and in group B
all the others. The importance of this partition is
that we do not ignore the terms in group B which
would otherwise vanish after decoupling the
E„.. . F„ from the density-matrix elements and

kg
averaging over impurity sites. At this stage we
have a one-electron, two-impurity density matrix
and a two-electron, one-impurity density matrix.
The latter is now decoupled to give a one-electron,
one-impurity density matrix and a density factor
f(p). All terms now depend on one-electron den-
sity matrices. For the terms in group B we now
use (8) and repeat the former process (starting
with the equation of motion, etc.) to all orders in
J. At each order we first separate the terms that
can be added to group A from those that remain in
group B. We then decouple the two-electron den-
sity matrix as before, and ignore terms which are
of second order or higher in f(P) This leaves. us
with one-electron, N-impurity density-matrix el-
ements only. After carrying out this procedure to
infinite order, we perform the averaging over the
impurity sites for terms in group A, which is a
trivial procedure, as mentioned before. Some of
these terms vanish. Those left in the Nth order are
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N

«&("&(~)
&&

= (-f) ——
No

Ps Q~ ~ ~ Qg
nl» ~ ngs Oy. ..Og

gj ~ ~ e kpf+ j.

p
(p, %, . . . (I»In, (r ' . . n» '(r»I~)

0

x((g„,,„(n„a„.. . n„n. . . ;n, „a, , ;nn„a, ., . . . ;n„a„(n, t& (u»&)

@
Z ~ ~ EX(p, (Ii, . . . , qg I ni, si, . . . ', PEg, 0» I

j(&)

x((n„. (n„u, ;. . . nx. . . ;n, „a,„n„„a,., ;n„, u, ~'E„n~ &&&), (&&&
fI N+j., fI j.

which depend on one-electron, N-impurity and one-electron, (N 1)-impur-ity density matrices, and where

=(P;,(P- fh)F. %&-4) F. &|]» &-4»)»c„"„, c„"„&V&,q„&) x(p, q„„~) (12)

The term «I"g"&(&o)» gives contributions which
are of the order c'J'~"y' in c, J, and y, where
1 &i &

¹ c is the impurity concentration, c =N, /N, .
The highest order in c for a given N is c". Each
order 2N+1 in J introduces a higher-order term
in c: c"J'""y",which did not appear at a lower-

order term in J. On the other hand, it also gives
lower powers of c, which appeared also at lower
orders in J. We therefore neglect all these contri-
butions except for c"J'""y",which is the leading
contribution to c". Thus the contributions to
&(I(&u)» are

2M+3.

« I"""'(~)&&= -» — [f»S(S+1)N(]"[1—(-1)"] 2 (3I(e,)I*[r(P,q, ~)l]"f(q)Z, ,(p, p I ~) —,
0 y q, a 0

N=1, 2, . . . , (13a)

-2g —N, S(S+1)g Z(~,)g.„(p,p I
(d) —,N = 1,

«&""'(~)&&= (
0, N=2, 3, . . . ,

(13b)

where X(c~) is the density of the electron states
of one-spin direction. ~«c~ because the impor-
tant contribution comes from electrons with energy
&~ near the Fermi surface. In obtaining (13) we
further approximate the one-electron, N-impurity
density matrix as a product of an electron density
matrix and an impurity density matrix. For the
impurity density matrix we use a high-temperature
approximation, since we are interested in temper-
atures above the spin glass transition temperature.
We neglect correlations between different impur-
ities. For each pair

&(S.'S~&& = 6.» (13c)

&(~)=-, „Z(~), (14)

where

and the average over an odd number of spins van-
ishes.

Summing up all orders in (13) gives [together
with E(I. (6)]
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I'b'(e&, e, a )]f(V)
v( } tv, (+O'Ir(q„e, ~)lca)*)'

(15)

n, = »S(8+ 1) J'.
0

(16)

Assuming a constant density of state over a band
of width 2D the static resistivity p~ is'

mo
» n sa r(0)

where from (15)

r(0) N, n s'+ (c&)'

Z5f(0) (2K,T)'+ (cn.)'
D2

0

with K~T, & «D.
(18)

III. CONCLUSION

The resistivity calculated up to the Kondo term
is modified to include the interaction between mag-
netic imyurites which is imylicitly included in the

s-(f Hamiltonian, Eq. (2c). This results in the
change of the 1nT term in p» to a in[(2KsT)'+ c'&']
one [Eq. (18)]. This change will reduce the Kondo
temyerature, as was shown by Tsay and Klein. '
This temperature dependence is consistent with
the deviation from an lnT behavior toward a con-
centration-dependent maximum observed in the
large c alloys. Our calculation is valid at high
temperatures. It is therefore not surprising that

p~ obtains its maximum value only at T = 0. The
maximum value of p» is obtained from Eq. (18),

(p ) /c (( ~ ln
2/X(0) cn

0

which shows that (p») /c is expected to depend
linearly on inc. This seems to be supported by
the experimental results of Laborde and Radhak-
rishna' for Cu-Mn alloys with c = 25-1000 ppm.

We have shown that it is possible to include the
effect of the many-impurity interactions on the
Kondo resistivity without considering the RKKY
interaction as if it were indeyendent of the Kondo
effect. %e have based our calculations only on the
s-d interaction. It is believed that some ayyroxi-
mations used here can be removed to extend the
results to higher values of T~ and to low temyera-
tures: T & T, T~.
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