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Exchange instabilities in an n-type silicon inversion layer~
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We investigate the possibility that in a semiconducting surface inversion layer the ground state

has charge-density waves in each of the two equivalent subbands. The two charge-density ~aves

are identical except that they are completely out of phase with each other. Such a state, referred

to as a valley-density wave {VDW), need not be accompanied by a lattice distortion. A density-

functional formalism is used to study the instability toward formation of a VDW ground state. It

is found that under certain conditions the VDW state has a lower energy than the paramagnetic

state. A similar conclusion is drawn on the basis of Hartree-Fock treatment of VDW state.

INTRODUCTION

Experimental studies of n-type Si inversion layer

suggest that at an interface between Si(100) and Si02
the electrons occupy two of the six conduction bands
along (100) axis of the bulk Brillouin zone. ' The
ground state of such a system is thought to be
paramagnetic with two conduction bands equally and
uniformly populated. We have investigated whether
this paramagnetic uniform occupancy of the two bands
is in fact the ground state of the system. We find that
under certain circumstances there exists another state,
which we call a valley-density-wave (VDW) state,
having a lower energy than the paramagnetic state of
the system. The VDW state consists of two identical
charge-density waves (CDW) that are completely out
of phase with each other. Each of the CDW ori-
ginates in one of the two valleys. Owing to the identi-
cal nature of the conduction valleys, it is possible to
have two identical charge-density waves. The condi-
tion that they be out of phase ensures that there will

be no net charge density and no lattice distortion.
The presence of a VDW state will modify single-
particle energy spectrum and create an energy gap just
as charge- and spin-density waves do. As in the case
of those instabilities the modification of single-particle
energy spectrum should strongly affect the magneto-
resistance of the surface channel, the quantum oscil-
lations in the surface conductance, the cyclotron
effective mass, and the optical absorption of the
inversion-layer electrons.

We use two different approaches to investigate the
energy difference between a VDW state and a

paramagnetic state. The first approach is based on the
density-functional formalism of Hohenberg-Kohn-
Sham, "and the second approach is similar to the one

E[p, hp] = d r f V, (r) p{r) + Vt)(r)hp(r)]+—
2

used by Chan and Heine for finding the condition for
a spin-density wave (SDW) or CDW instability. '

DENSITY-FUNCTIONAL APPROACH

Let us suppose that there are two identical CDW's,
each originating from one of two equivalent bands in a
semiconductor. Then, the density p, , (r) associated
with the CDW in valley v can be written

p, (r) = —,
' [p(r) +(,.ap(r)l (1)

and (2)

Following Hohenberg and Kohn, it can be easily
sho~n that the ground-state energy E of the system is

a unique functional of the densities p ~ ( r ) and p2( r )
in valleys 1 and 2, respectively. Equivalently, we can
regard E as a unique functional of p( r ) and 4p( r )
and demand that E should be minimum with respect
to variations in p(r) and Ap(r). In the presence of
external potentials V&(r) and Vo(r), which couple
with p( r ) and 5p( r },respectively, the ground-state
energy of the system can be expressed as

(3)

where (,, = ~1, depending upon whether v denotes
valley 1 or 2. In Eq. (1), p(r) is the total density in

the system and Ap(r ) is the density of the oscillatory
part of a CDW. The fact that (,, =+1 for valley 1 and
—1 for valley 2 ensures that the two CDW will be
out of phase with each other. Consequently, a VDW
state will not be accompanied by any periodic lattice
distortions. It follows from Eq. (1) that

p(r) = gp, (r)

I7
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where ~ is the static dielectric constant of the semi-
conductor and G [p, hp] is a universal functional. It
is apparent that the classical Coulomb energy in Eq.
(3) is the same as for the paramagnetic state. Thus,
the VDW state will not have any periodic lattice dis-
tortions.

Under the assumption that d p(r ) is small, we ex-
pand G [p, Ap] and retain terms that are quadratic in

b p'.

G[p. &p] =G[p]

+ — d r d r'6 r, r';p hp(r bp{r')

{4)

where

5'G [p, hp]
Shp( r )Shp( r '} &v=o

(s)

Substituting Eq. (4) into Eq. (3) and minimizing with

respect to Ap, we obtain

b, p ( r ) = — d r
' 6 ' [ r, r ';p V~ ( r ') (6)

Equation (6) is an expression for the linear response
of the oscillatory part of a VDW state. For self-
sustaining valley density waves we find that the
difference in energy between the VDW state and
paramagnetic state is given by

&[p, &pl —&[pl

d r jtd r
'
G [ r, r ';p] 5p ( r ) d p ( r ')

2

d r" d r"'6 '[r r". ]

x G„[r '. r;p]G '[r"', r';p]

The quantity of main interest is the functional
6 [r, r ';p]. If the right-hand side of Eq. (7) is nega-
tive, then the ground state of the system is obviously
a VDW state and not the paramagnetic state. As
G[r, r';p] approaches zero the response function,
G '[r, r ';p] becomes singular as one would expect.

The functional G [ r, r '; p] is a sum of two contribu-
tions: (i) kinetic energy term G, [r, r ';p], and (ii) ex-
change and correlation term G„,. [r, r ';p]. Since the
VDW state is similar to a spin-polarized electron
liquid, we follow the approach of Vosko and Perdew'
and obtain the following expression for the response
function 6 ' [ r, r ';p]:

G '[r, r ]=6 '[r r' ]

x +, '(r)+, '(r')@,(r')@;(r), (9)

where ~, are the single-particle energies, $, 's are the
single-particle orbitals, p, is the chemical potential in
the paramagnetic state, and 8(p —a, ) is the Fermi
function at zero temperature.

The many-body effects are lumped in the exchange
and correlation functional 6, In order to evaluate

G„,. [r, r ';p] we assume that the electrons in the con-
duction valleys constitute a homogeneous two-
component electron gas. The response function 6&

'

of the system is given by

hp(r) = — d r'G~ '(r —r';po) VD(r')

where pp is the homogeneous density. Introducing a
function X~(r —r', pp), such that

X~(r —r ', po) = —G~-'(r —r ';po),
and substituting Eqs. (10) and (11) in Eq. (8), we ob-
tain in the q space

6„,(q;pp) = (Xp (q po) X, (q, pp})

where

x, (q, po) = —6, '(q, pp)

(12)

(13)

The function 6„,. ( r —r ';p) is then obtained by taking
the Fourier transform of right-hand side of Eq. (12)
and replacing the homogeneous density pa by p(r). It
shoud be observed that the long-wavelength limit of
Eq. (12) corresponds to local-density approximation
for G„,(r —r', p).

For the purpose of evaluating. XI, (q;pp) we assume
that there are external potentials {$,'"'(r) ], each of
which couples only with the density of particles in val-

ley v. It is easy to infer from Eqs. (2) and (3) that

(14)

The induced density of component v can be written

(p,. (q)) = x,'(q) d,', "'(q)+ XO,, , (q) (p„(q))
1'

(ls)

values of Schrodinger equation for the paramagnetic
state. Thus, the band-structure effects can be incor-
porated in the functional G, '[r, r ';p]. Following
Vosko and Perdew's method' for a spin-polarized sys-
tem, it is straightforward to show that the expression
for 6, ' reads

H(p. —~,) —0(p, —~,)6, '[r, r';p] =2 g
t,f

The kinetic part of G ', i.e., 6, ' [ r, r '„p], can be ob-
tained from a knowledge of eigenfunctions and eigen-

where the effective field W, , , (q ) is defined by

(16)
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In Eq. (16), @(q) is the Fourier transform of
Coulomb potential The quantity 8, , (q) is often re-

ferred to as local-field correction. It is a measure of
short-range exchange-correlation effects. Physically,

g,, , represents a local exchange and correlation hole
surrounding each electron. For example, in the Hub-

bard approximation in two dimensions,

9, , , (q) = &, , (ql(4(q'+qF')j "(

where qF is the Fermi wave vector of the system.
Owing to the identical nature of conduction valleys,

we have

and

x,'(q) =x,'(q) =x, (q)

8 ii(q) = 822(q) = 8,.„,(q) (17)

812{q) 821(q) =

From Eqs. (14)—(17), we obtain

The oscillatory part of a CDW of wave vector q is

given by

Ap(r) =ucos(q. r) (20)

where a denotes the amplitude of the CDW. Substi-
tuting Eq. (20) into Eq. (7) and assuming translational
invariance, we find that in order to have a self-
sustaining VDW state at lower energy than the
paramagnetic state,

Comparing Eq. (18) with Eq. (12), we find
8'

G„,(q;pp) = —@(q)[8,„„„(q,pp) —g;„„„(q,p )]

(19}

Eq. (22) for some wave vector q and concentration pp,
and whenever that happens the ground state of the
system will be a VDW state.

Stern has evaluated the noninteracting response
function of a two-dimensional system. ' Using his ex-
pression for G, '( q; po) and H ubbard approximation
for local-field correction, we find that for q & 2q& the
VDW instability condition in Si(100)/Si02 becomes
4a~' ' ~ (q'+ qF) ' ', where a~ ' is the effective Bohr
radius of the system. This condition can be satisfied
for a wide range of densities and wave vectors.

Overhauser has suggested that the optimum q at
which an exchange instability manifests itself is close
to 2qF. ' In other ~ords, the total response function of
the system should exhibit at least a peak around

q =2qI-. Since both G, '(q;po) and the Hubbard ap-

proximation for local-field correction show no struc-
ture around 2q&, one woUld not expect a peak in the
response function around q =2qF. Should one as-
sume that the particles respond to eA'ective field as
free particles, the only way in which one can obtain a
peak at q =2qI- is by constructing a local-field correc-
tion having a maximum at that particular wave vector.
For example, in a three-dimensional (3D) electron gas
the local-field correction of Geldart and Taylor exhi-
bits a structure at q =2qI.-.9

In the absence of translationl invariance, one needs
to evaluate the functional G[r, r';p]. Knowing the
eigenfunctions and eigenvalues of Schrodinger equa-
tion for the paramagnetic state, it is straightforward to
obtain the kinetic part of G[r, r';p] from Eq. (9).
The exchange and correlation contribution to
G [r, r ';p], is obtained from Eq. (19) by taking its
Fourier transform with respect to q and then replacing

pp by p(r). Having obtained G, [r, r';p] and

G,, [r, r ';p], one can evaluate the right-hand side of
Eq. (7) for the specific form of b p(r), given by Eq.
(20). If the right-hand side is negative, the ground
state of the system will be a VDW state and not a
paramagnetic state.

G(qp) 0 . (21)
HARTREE-FOCI(i', APPROACH

By definition,

q po} = G ( q ' po) + G - ( q' po)

Using Eq. (19) for G„,, (q;pp), we obtain the following
condition for a VDW instability;

4(q)(8 ~ '(q, po) —9 ... (q, po)) «G*(q po) (22)

G, '(q, pp) can be easily obtained from Eq. (9). It is

obvious that G, '(q;pp) is a non-negative quantity and
that

& intra( q' pO) & 8 inter {q' pO)

Thus it is possible to satisfy the condition expressed in

Within the Hartree-Fock (HF) approximation, Chan
and Heine have obtained the condition for an SDW or
CDW instability. ' These authors note that the condi-
tion for a CDW instability cannot be satisfied unless
there is a periodic lattice distortion (PLD). Since in

the VDW state the two charge-density waves are out
of phase, the net lattice distortion in the system is
zero. Thus, one would expect that the direct
Coulomb energy should remain the same as in the
paramagnetic state. In this respect, a VDW state is

very much like a SDW state and, therefore, the condi-
tion for the existence of a VDW state is expected to
be similar to that for an SDW instability.

The Hartree-Fock energy of the system can be sim-

ply written
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1

E&&»=$ ](dr +&'&~& &&I&.'&~&«. & &14&+XJd f&~ U&~. ~''& &4l&!& &~& &T.&14&
I

'&~&.« & &.Iy-& —XJdr)(d v-&-', r &&&'I&!&~&&.&~'&ly& (23)

and (24)

+ y-,', (r) cose-„, ,

where the parameter 8-K„ is a measure of mixing

between the occupied and unoccupied orbitals. Since
we are interested in examining the change in energy in

the neighborhood of paramagnetic state, we shall be
concerned with only small values of 8-K „,. It is easy to

show that the new set of orbitals Q-„" (r) and

(r) give rise to a CD% in each valley. In order
to have two canceling CDW's we should impose the
condition

(25)

where (v = ~1 for valleys 1 and 2, respectively. To
obtain the condition for the existence of a VD%' state,
we need to find the HF energy in the deformed state

~&I&), which consists of orbitals &I&-„and &I&
~ . For

small values of 8 K, , the difference of the HF energy

between the deformed state ~T&&) and the paramagnetic

where ~&t&) is the Harpree-Fock ground state of the sys-
tem. In Eq. (23), &I& (r) is a field operator, Vz(r) is

the lattice potential, U(r, r ') is the direct Coulomb
potential, and V(r, r') is the exchange potential.

The Hartree-Fock ground state is acceptable only if
the energy corresponding to it is minimum with
respect to variations in ~&t&). However, the HF energy
is only assured to be stationary with respect to the
variations in ~&t&). Thus, it is conceivable that the
paramagnetic state obtained from the solution of HF
equations may not be the ground state of the system.

In order to find the condition for a VD% instability,
we shall examine the behavior of energy of a
paramagnetic state in its neighborhood. Let us as-
sume that &t&-„' (r) represents a Block orbital of an

occupied state in valley v and spin o-. %e can mix the
occupied orbitals $-„' (r) with unoccupied orbitals

(r) to form a new set of orthonormal orbitals:
K+q, v, o

(r) =y-„" (r) cose-„,,

+$K (r) slnHK „

V'Ill&& f/ Ill&el ) I /Z ( q ) (26)

re ~-,'"""and V-,
'""' are the local ~~lues of intra-

valley and intervalley exchange energies and

( ) g~K ~K+q

K+q K

(27)

In Eq. (27), ~-„'s are the single-particle energies in

the HF approximation and f -„is the Fermi-

distribution function. Since both the numerator and
denominator in Eq. (27) have the same signs, Xo(q)
is always a non-negative quantity. Furthermore, the
intravalley exchange is always expected to dominate
the intervalley exchange term. Thus, within the HF
approximation the VD% state will constitute the
ground state of the system, if the difference between
the intravalley and intervalley exchange is greater than
or equal to the inverse of the single-particle response
function of the paramagnetic state.

CONCLUSION

Using the density-functional formalism, we have
shown that under certain conditions the ground state
of a two valley system will consist of two identical
charge-density waves that are completely out of phase
with each other. Such a state of the system will not
be accompanied by any periodic lattice distortions.
The instability condition for valley-density waves
depends critically on the magnitude of intravalley and
intervalley exchange and correlation effects. %e have
shown that the valley-density waves form the ground
state only when the difference between the intravalley
and intervalley exchange and correlation effects be-
come equal to or exceed the inverse of single-particle
response function for the paramagnetic state. A simi-
lar result is also obtained in the Hartree-Fock approxi-
mation.

state ~d&) has only quadratic terms in 8-„,; the linear

terms in H-K, vanish because of the stationary property

of the Hamiltonian. Treating the difference in energy
as an eigenmode problem, it is easy to show that the
instability toward the formation of a VD% state oc-
curs only if
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