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Recent results giving both the asymptotic behavior and the explicit values of the leading-order perturbation-

expansion terms in fixed dimension for the coefficients of the Callan-Symanzik equation are analyzed by the
the Sorel-Leroy, Fade-approximant method for the n-component P' model. Estimates of the critical
exponents for these models are obtained for n = 0, 1, 2, and 3 in three dimensions with a typical accuracy
of a few one thousandths. In two dimensions less accurate results are obtained.

I. INTRODUCTION AND SUMMARY

The problems of the computation of the behavior
of a physical system near its critical point has at-
tracted considerable attention in recent years.
One promising method for the calculations of these
properties has been the renormalization-group ap-
proach introduced by Wilson' and substantially
elaborated by others. ' ' Until recently, it has not
been made truly quantitative. In a previous brief
publication, ' we have shown how to implement a
suggestion of Parisi' to base quantitative calcula-
tions on the perturbative calculation of the coeffi-
cients of the Callan'-Symanzik" equations in fixed
dimensions. In that publication we introduced the
Pade-Borel summation procedure in the context of
this problem and reported the calculation of higher-
order terms in the perturbation expansion of the
coefficients. Specifically we considered the con-
tinuous-spin, three-dimensional Ising model with
an exp( As'+Bs'} s-pin-weight factor.

In this paper we have extended our calculations.
We have added one more term to the series expan-
sions and computed the terms for a more general
model with n-component spins and spin-weight
factor,

exp A sg + B sy

In addition, we have computed a smaller number
of terms for the one-component two-dimensional
model. All these calculations of perturbation-ex-
pansion terms are described in detail in a separate
paper. " In the present paper, we detail the anal-
ysis of the quantitative implications of these coef-
ficients. In addition, recently using the method of
Lipatov, Brezin et al."have computed the as-

ymptotic behavior of the perturbation theory terms
for large order. They refine our previous esti-
mate' of f„~ (n!} to

f„~n!a"n' (1.2)

with explicit values of a and b. We.have incorpor-
ated this information into our analysis and find
that it improves significantly the apparent accur-
acy of our results.

We find, as a result of what we feel to be care-
ful and extensive analysis of the series data, the
following results for three dimensions (more de-
tailed results are presented in Table XII&

n =0, v=0.588+ 0.001, y= 1.161+0.003;

n= 1, v=0.630+ 0.002, y= 1.241+0.004;

n = 2, v = 0.669' 0.003, y = 1.316+0.009;
(1.3)

n =3, v=0. 705+0.005, y= 1.39+ 0.01;
where v is the correlation length index i ~ (T
-T,) " and y is the magnetic susceptibility index

Xoc(T —T,) ". The central estimates for n=1, the
continuous Ising model, are not significantly dif-
ferent from those we had obtained previously, ' and
maintain the small difference with high-tempera-
ture series results" which do not appear to obey
hyperscaling, a property which holds automatically
for Callan-Symanzik theory. ' For n=2, the clas-
sical XY model with a distribution of spin lengths,
the results (1.3) do not differ significantly from the
high-temperature series results for the classical
XY model. Nor for n=3, the classical Heisenberg
model with a distribution of spin lengths, is there
a significant difference between our results and
the corresponding high-temperature series results
for the classical Heisenberg model. In the case of
the polymer n =0, there is a small discrepancy in
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n = 1, v = 0.9+ 0.3, y = 1.7+ 0.2, (1.4)

which are to be compared with the exactly known
Ising-model values of v = 1 and y = +.

In Sec. II of this paper, we introduce our method
of analysis and discuss its characteristics. This
method is basically the Sorel-Leroy, Pade sum-
mation method. We list the series data to be used.
In the third section we illustrate, and test this
method on Wilson's approximate recursion re-
lations. Here, a perturbation series of a similar
character is generated for the solution of a non-

the value of v between our results and the corres-
ponding high-temperature series results, but those
high-temperature series results do not appear to
satisfy hyperscaling, although the failure is not
very large compared to the apparent error.

Our results for two dimensions are of a more
preliminary nature, owing to the slower conver-
gence and shorter series. Here we find

linear integral equation. Since this integral equa-
tion can be solved to high accuracy, numerically,
we can compare the results of our series analysis
and error assessment with the correct results.
We find that our method of analysis is effective in
this case and that our error assessments are real-
istic.

In Sec. IV we present our analysis of the series
data for the n-component (Q')' model and our re-
sults.

II. METHOD OF SERIES ANALYSIS

The derivation of all the series considered in
this paper has been described in detail in a sepa-
rate paper. " For the convenience of the reader,
we list here the series to be considered. The
model for which these series were computed is
defined by the partition function,

g= ~ ~ dS exp —— dk FJ20+k S'g' S k Qo dR~ gd S$~ Sk2 Sk3 k~ k2 k3 (2.1)

where the Sg are n-component vectors defined
over a d-dimensional space. The series obtained
are for the coefficients of the corresponding Cal-
lan-Symanzik equation

zik equation' leads to the following prescription to
compute the critical indices of the model (2.1).
First compute the smallest positive value u~, such
that P(u~) =0. Then we have

g=)7(u~), v ' —2+q=q, (g*), (2.3)

np(1, Ã) 0 (2.2)

where the I" '~' are the N-point, vertex functions
with I s' insertions, or one-particle, irreducible
Green's functions. Analysis of the Callan-Syman-

where v is the exponent of divergence for the ana-
logue in this model of the correlation length in the
Ising model, $~ (T —T,) ", and )7 is the analogue
of the low-frequency, magnetic-susceptibility in-
dex, X~ 0" ' at T=T, .

We have, for d = 3, the series

P (v) = -v + v' —0.422 496 5707v'+ 0.351069 5978v' —0.376 526 8283v '+ 0.495 54 V 51v' —0.749 689v'+ ~ ~ ~,

q (v) = 0.010973 9369v'+ 0.000 9142223v'+ 0.001 796 2229v' —0.000 653 70v'+ 0.001 38V Sv' —, (2.4)

q4(v) = ——,'v+~~7v -0.0443102531v +0.039 519 5689v' —0.04440036v'+0. 0603632v —~ ~ ~

for n= 1. We have used the change of variable u=487)v/(n+8) and P(v) = (n+8)P(u)/48m to define a conven-
ient numerical scale in which the first two coefficients of P(v) are -1 and +1. It is to be noted that we have
improved the accuracy and extended by one term these results over our previous work. '

In addition, for d=3 and n=0 we now have

P (v) = -v +v -0.439 814 8149v'+ 0.389 922 6895v' —0.447 3160967v'+ 0.633 855 50v' —1.034 928v + ~ ~ ~,

)7(v) = 0.009 259 2593v + 0.000 V71 3750v3+ 0.001 589 8706v4 —0.000 660 62v'+ 0.001 4103ve+ ~ ~, (2.5)

)l4(v) = -~ v +~6v' —0.035 V67 2729v' + 0.034 3V4 8465 v —0.040 895 86v'+ 0.059 7048ve+ ~

and for n=2,
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P (v) = -v + v' —0.402 962 9630v'+ 0.314 9169420u' —0.317 928 48v'+ 0.391 1025v' —0.552 449u'+ ~ ~ ~,

3!(v) = 0.011851 8519v'+ 0.000 987 3601v'+ 0.001 836 8107v' —0.000 586 33v'+ 0.001 2514v' —~ ~ ~

q, (v) = --', v + ~~v' —0.049 513 4445v'+ 0.040 788 1056v' —0.043 761 96v'+ 0.055 5573v' —~ ~ ~,

and for n=3,

P (v) = -v +v' —0.383 226 2015v +0.282 946 6813v —0.270 333 30u'+ 0.312 5559v' —0.414 861v'+

7!(v) = 0.012 243 6486v'+ 0.001 020 0001v + 0.001 V91 9258v' —0.000 504 10v'+ 0.001 0883v' —~ ~ ~,

3!d(v) = —p v + ~3, u' —0.052 551 9563v'+ 0.039 964 0006v —0.041 322 00v'+ 0.049 0927v' —~ ~ ~ .
For d =2, @=1we have the series

P(v) = -v+u —0.716 1736v +0.9307665v -1.582 3882u'+ ~,

3}(u) = 0.033 966u —0.002 023v'+ 0.011393u' —~ ~ ~

3!d(v) = --,v + 0.250 047v —0.233 588v3+ 0.323 089vd —~ ~

(2.6)

(2.7)

(2.8)

where we have used the change of variables u = (8m/3}v and p(v) =!(3/8v) p((d) here.
In addition to these series, we have also the corresponding series for the Wilson-Fisher approximate

recursion formula. " Again the derivation of these series is discussed in detail in a separate paper. " This
set of recursion relations is

(2.9)

Q &„(x)= -b In f 1„(b ' x)/I& (0)] .
For b = 2'~d, Baker" has shown that (2.9) is equivalent to a long-ranged, continuous-spin Ising model on a
hypercubical lattice in d dimensions with a structure equivalent to that of Dyson's hierarchical model. "
We have evaluated the series for b = 1.4607378. This value of b was chosen so that ratio of the first two

coefficients would equal that in the exact series. Thus using the same normalization as in (2.4), we have

P (v) = -v+ v —0.444 444 445 282v'+ 0.374 393 946 26v -0.429 385 5887u'+ 0.603 655 7599v'

—0.984 533 962 84U'+ 1.806 V61 580v' —3-659 017 195v'+ 8.072 11637v"

—19.220 722 64' "+49.062 1493v' —133.545 1085m" + 385.992 7975 g '4+ ~ ~ ~

t!(v) = 0.0,

3},(v) = =', u + 0.074 OV4 074 2136v' —0.052 004 960 587v'+ 0.046 789 741 92u

—0.058 024 336 62''+ 0.084 352 578 67v —0.141673 0744@'

+ 0.265 534 7624() ' —0.547 312 744@'+ 1.22 5 383 755U"

—2.955 454 70U" + 7.629 863 88' —20.979 651 98v + ~ ~ ~

(2.10)

In view of the similarity of (2.10) and (2.4), and
since highly accurate numerical solutions of the
integral equations (2.9) are available, it is of in-
terest to analyze (2.10) by our methods.

In order to effectively analyze all these series,
it is useful to understand their structure. As we

pointed out previously, ' it follows from the general
theory of graphs with four lines joining at each
vertex that we expect of the order of (2j)! graphs
in jth order, but that the contribution (except for
a certain less numerous subset of graphs) of each
graph will be of order 1/(j!). Thus we expect the
series for P, q, and p4 to diverge like j t In fact,

more can be said. Brezin et al."have found that in

these series the jth coefficients diverge propor-
tional to

(j) ) ( )r (3+d+n)/3 (2.11)

where g &0 has been explicitly calculated. We will
incorporate this behavior into our analysis, and
leave to Le Guillou and Zinn- Justin" the exploita-
tion of their additional information in a variety of
ways. Their analysis depends explicitly on the
special hypothesis that B(x) [Eq. (2.12)] is analyt-
ic in the whole cut, complex plane.

Since these series are only asymptotic and not
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convergent, it is necessary to take this fact into
account when computing approximations to the
function that they represent. We have chosen the
Pade-Borel-Leroy method" of summation. This
method is as follows. First the Sorel-Leroy
method of summability is based on the formula

A(x) = Q a„x"=
n=p

I e 'B(xt)dt. (2.12)

L/M =Pi(y)/Qz(y)

Q&(y)B (y) -&z(y) = o(y"""),
Q„(0)= 1.0

(2.13)

where P~ and Q„are polynomials of degree at
most I. and M, respectively. We then replace
B(xt) in (2.12) by the Pade approximant,

If the coefficients a„diverge like those in (2.11)
then the function B(xt) has a Taylor series expan-
sion with nonzero radius of convergence. The
Sorel-Leroy method is then to continue analytically
B(y) for 0 & y&~ and to perform the integral in
(2.12). If the singularity at the origin of A(x)
which gives rise to (2.11) is the only singularity,
then the Borel-I eroy method will sum A(x) in the
cut-plane -~ & x,& 0. If there are other singular-
ities of A(x), not at x=0, then the method is lim-
ited to the Borel polygon of summability. This
polygon is constructed by drawing a line through each
singularity, perpendicular to the ray from it to the
origin. The smallest closed polygon of the cut-
plane containing the origin is then the Borel poly-
gon of summability. In order to make the analytic
continuation required by the Sorel-Leroy method,
we use the Pade-approximant method' on the ser-
ies for B(y).

The Pade approximant method is defined by the
equations

poles and residues of the Pade approximation to
B(y) and the hypergeometric function

"t 'e'dt
,F,(ot, 1;x)=

) 0
(2.17)

It will be noted that in the case where p, is real
and nonnegative approximation (2.16) is strictly
speaking undefined. In this case in order to assign
a value, since the correct answer is real for our
problem, we have chosen the principal value of the
integral. This procedure is implemented practic-
ally by replacing the integral in (2.16) by a numer-
ical integration along a parabolic contour in the
complex t = ~+ is plane described by

s'= 0.36r (2.18)

which happens to separate all the poles for our
cases in the correct manner. The contour is tra-
versed from small to large r on both (s is positive
and negative) branches.

From the theoretical point of view, we would like
to define A(x) of (2.12) by the requirement that the
formal series be asymptotic in the closed right-
half plane. The reason for this requirement is that
this requirement has been rigorously proven for
three-dimensional ~I)' field theory" and given the
behavior (2.11) of the coefficients, Carleman's
theorem' proves that there is then at most one
such function. As long as P, in the representation
(2.16) is not real and positive, we can demonstrate
this asymptotic property for approximation (2.16)
by the use of Cauchy's theorem to rotate the con-
tours of integration (separately) in Eq. (2.16). We
can equally well choose any path t=Te', 0 &7 &~
with --,'n & B &&m without changing the value of the
integral. In this case, that rotation is sufficient
to move all the cuts of the hypergeometric func-
tions in our approximation (2.16) into the left-half
plane.

The case when a p, is real and positive is much
different. Consider the function

A(x) = t'e ' z dt
Q„(xt)

(2.14) = 1+ 1!z +2!z'+3!z'+ . (2.19)
1 zt

In order to perform this integral we decompose the
Pade ayproximant in rational fractions as

= g y, (xt)'+ g ", (2.15)
N xt 9=0 @=1 t

where the sum over j is omitted if I —M&0. When

(2.15) ts substituted tn (2.14) we have

A(x) = r(j+5+1)y, x'
=0

a, " t'e 'dt
(2.16)

PI p & -PI '&t

which expresses the approximation in terms of the

This function is well defined in the cut z plane 0
&z &+~, or by contour rotation, with any cut z

)6= Te, 0 & T &~, -&m & B &&m. Thus, it can be de-
fined in the wedge =.'p &arg- &-', m, a range of 3m

in angle. Neither of these definitions for z real
and positive is real, however they are complex
conjugate of each other. The principal value inte-
gral is their average z [E(x)+E(xe ")]. This
function is defined only in the range ~argx~ &&w.

This range falls just short of that needed for a
unique definition, i.e., the imaginary axis is also
needed. That this problem is real in this example
can be easily seen, as the difference between the
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principal value integral and (2.19) is just

*—e-' =0+0~+Ox + ".l1T ~g g 2

x
(2.20) 8

as x is of arg0 or 2w. Since (2.20) approaches the
origin in the manner of infinitely rapid oscillations
of diverging amplitude when x-0 in a purely
imaginary manner, and since E(Z) is asymptotic
for z ~ e"~', it follows tha, t the principal value in-
tegral is not. In fact, for this example there are
no solutions which are asymptotic in the whole
angle

~ arg(x) (
- zz and an infinite number in the

angle ~arg(x)~ &2v as can be seen by adding Ze '~'

to the principal value integral. This solution is
however the only real function definable from the
integral representation (2.19) for positive real z.

In this paper, we take the view that when a pole
appears on the positive real axis, which situation
contradicts the rigorous results on the Sorel sum-
mability of field theory in three-dimensions, it is
either a reflection of a lack of local convergence,
or an approximation to a pair of poles or other
singularities symmetrically placed off the axis, or
even possibly a reflection of exponential growth in
the positive real direction. This last possibility
would limit the range of v for which P(v), for ex-
ample, is summable. In any case, we have sys-
tematically excluded the approximations with posi-
tive real poles from consideration in our analyses.

III. WILSON'S APPROXIMATE RECURSION RELATIONS

TABLE I. Coefficient of leading power of z at infinity
for 8 8(z), b =3.5; Wilson's approximate recursion re-
lations.

M +1/lL/I M +2/&VI kf +3/M

3.68
6.26

—1.95
5.38
8.45

0.320
0.176
0.134
0.128
0.122
0.13

—0.042
-0.009

0.003
—0.01
-0.004

In order to compute the approximations (2.16)
described in the previous section, it is necessary
to perform, at least approximately, the analytic
continuation of the Borel-Leroy transform B(xt).
In order to do this effectively it is helpful to deter-
mine something about the analytic structure of
B(z). For the Wilson approximate recursion rela-
tions if we select b of (2.12} in accord with (2.11),
that is b = 3&, then at least the dominant singular-
ity should be a simple pole which is well approxi-
mated by Pade approximants. We have performed
this calculation with b = 3~, and also b = 0. The

6

4

-2 L

0

FIG. 1. Broken line is B& (t). For comparison, the
solid line is the weight function of Eq. (3.2) which is
proportional to t 7~ exp[-9 t/(2e)] with e = 1.5.

B(z)=Z a, . [(b+I)z]',I'(b+ 1)
I' b+jI+

so that

(3.1)

features we report for b = 3&, also appear for b

=0, but less sharply. Since for b =0 we expect not

pole but a branch point, the ability to locate this
singularity is diminished and possible other singu-
larities behind it are obscured.

First, in Table I we consider the behavior of
Bz(z), the Borel-Leroy transform of the function
P(z) of (2.10) asz goes to infinity. By examination
of this table, we see that the coefficient of z' from
M+2/M is relatively stable and tending to a limit
while that for z from M+ 1/M is large and rela-
tively unstable, and that for z' from M+ 3/M is
small and also relatively unstable. The conclusion
here is that B8(z) behaves something like z' as z
goes to infinity so the best Pade approximants will
be the ones which mimic this behavior. This as-
ymptotic behavior at infinity agrees with that for
the spherical model' where Bz(z) is exactly a poly-
nomial of degree two. In Fig. 1 we give a plot of
Bz(z).

Next we seek to explore the singularity structure
of Bz(z). In Table II we list the location of the
closest pole for the same approximants as in Table
I. We note that in presenting these results, and
subsequent ones that, in order to maintain the nor-
malization of the first two coefficients, we define
the Borel-Leroy transform function instead of by
(2.12} a,s
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1Vi +1/M ~8+2/i'

-1.5611
-1.3686
-1.3463

1 3440
—1.3452 "

-1.9785
-1.4140
-1.3432
-1.3453
-1.3421
-1.8457

-1.6470
—1.3733
-1.3464
-1.3446
-1.3453

' In these cases, there is a closer pole with very small
residue, i.e. , a "defect. "

TABLE II. Closest pole to the origin for h 8(z), b =3.5;
Wilson's approximate recursion relations.

case from Hunter-Baker method rather than direct
intratabular comparison. The correct answer, ob-
tained by the solution of the integral equation for
this problem is

v*= 1.4805, (3.4)

which is quite compatible with our estimate (3.3).
If instead of using the full length of these series

to estimate the location of the zero, we use only
the same number of terms as we have available for
the exact series (entries above the dashed line in
Table III) then we estimate

v*= 1.483+ 0.005, (3.5)

A(x) = Q a, x'

(b 1)5+ g ao

e+ "t B(tx)dt.r(5+ 1)
(3.2)

v *= 1.481+ 0.001 . (3.3)

The larger component of the error comes in this

TABLE III. Zeros of p(v) for the Nilson's approximate
recursion relation for b =3.5.

m+1/u M +2/IVI M +3/h1

1.497 75
1.482 99
1.481 35
1.480 87'
1.48044»b

1.426 75
1.478 64
1.481 58
1.481 98
1.4S129
1.4S106

1.53143
1.4S3 79
1.481 36
1.480 95
1.480 44 ~ b

The results reported in Table II, and those from
other approximants not tabulated, make it reason-
able to conclude that Bq(z) has a simple polar sin-
gularity at about z = -1.345+ 0.003. This pole has
a residue of about+0. 35. By the same methods we
can observe some further structure. There also
appears to be a pole about z = -2.4+ 0.1 with resi-
due about 2.8 and a pole at -5a 1 with a residue
about +30. Thus the principal elements of struc-
ture of the Borel-Leroy transform that emerge are
a double pole at infinity and three poles on the neg-
ative real axis.

We now proceed to the estimation of the zero of
the P(v). We have listed in Table III the zeros for
the same approximants as in Tables I and II.
Based on these entries, plus the Hunter-Baker
method of error assessment (Sec. III of Ref. 23) we
estimate

v*= 1.482+0.005 y (3.6)

which is an improvement, but not a substantial
one, over (3.5). Since both methods are of com-
parable accuracy for the length of series available,
we have in fact performed the computations by
both methods for the exact series.

Another quantity of interest is %egner's correc-
tion to scaling index~

~ =P'(v). (3 'I)

We estimate it by procedures similar to those used
in Table III to estimate v*, we find from analysis
based on b =3.5, that

(d = 0.740+ 0.002 (3.6)

as compared to the correct answer ~ =0.7425 ob-
tained from the solution of the integral equation.

%'e now turn to an analysis of the other series
q4(v). Using the Borel-Leroy transform (b = 3.5),
we first investigate the behavior at infinity. %e

TABLE IV. Zeros of P(v) for the Wilson's approximate
recursion relation for b =3.5 and B&(—1.34) =~.

which is five times further than (3.3) with an ap-
parent error also five times greater. Since Brezin
et a/. have also computed the value of a for the
exact case in (2.11) as well as b, let us next in-
vestigate how the inclusion of this information (lo-
cation of the nearest pole) changes the results. In
Table IV we have listed the results when two-point
Pade-approximants to Bq(z) are used. In addition
to the series expansion about z =0, we require
Bs(-1.34) =~. This additional information allows
the calculation of approximants as though we had
eight instead of seven coefficients. This method
leads to the estimate

In these cases there is a close pole and zero, i.e. , a
defect. It may be that the entry is anomalously close to
the one above it.

In these cases there is a pole on the positive axis.
All are further from the origin than 5.

& +1/~vl

1 ~ 524 75
1.484 37

31 +2/M

1.473 51
1.481 51

IVY +3/iVl

1.740 88
1.486 76
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TABLE V. g4g. 48) for the Wilson's approximate recursion relations for b =3.5.

m-1/m m+1/u M +3/cM m+4/Si

-0.414 33
-0.414 32
-0.41929
-0.41929
-0.419 30 "

—0.406 74
-0.414 51
—0.418 89
-0.41932 b

-0.41929 b

-0.409 48
b—0.417 59

-0.41932
0 41932 & b

-0.41932 b

-0.406 45
-0.413 60

b-0.41802
-0.419 32
-0.419 30

-0.416 62
-0.415 11
-0.418 29
-0.416 95
-0.419 31

—0.412 33
—0.416 47
-0.419 48

0 41931& b

In these cases there is a close pole and zero, i.e., a defect. It may be that the entry is
anomalously close to the one above it.

In these cases there is a pole on the positive real axis at a distance of about 5 with a residue
of magnitude-of-order unity.

q, (v*) = -0.4193+0.002, (3.9)

where the largest contribution to the error here is
the intratabular variation. It may, however,
be noted that, except for the +4, all the higher-
order approximants have obvious structural defic-
iencies, such as poles on the positive real axis,
which are excluded by rigorous results" for the
exact three-dimensional Q' theory. The solution
of the integral equa, tion for the Wilson's approxi-
mate recursion relation gives (v=0.6331,q = 0)

q~(v*) = -0.4203 . (3.10}

If we restrict our attention to only the number of
coefficients that we have available for the exact
series in three-dimensions, (above the dotted line
in Table V) then we estimate

&4(v *)= -0.414+ 0.009, (3.11)

where the largest contribution to the error comes
from the Hunter-Baker projections. If we include

find poor convergence for B„(z)beyond z around
5. There are however some indications that B„(z)R4
is smaller at infinity than z' and larger than z '.
Generally the same poles appear, but with less
accuracy, on the negative real axis as was the
case for Bz(z). We list in Table V the values of
q, (u*), where we have simply used v ~= 1.49. As
will be observed from this table, there is apparent
convergence to a value of

the information on the pole location, then from Ta-
ble VI we estimate

q, (v *}= 0.414+ 0.005, (3.12)

where again the Hunter-Baker error terms are
largest Note . ihat (3.10) lies slightly, but not sig-
nificantly outside this error estimate.

We conclude that our methods are adequate to
analyze the series for the Wilson's approximate re-
cursion relations and to give reasonable estimates
of the error of estimation. We proceed to the
analysis of the exact series in Sec. IV.

IV. n-COMPONENT (g2)2 THEORY

In this section we analyze the series for the Cal-
lan-Symanzik equation coefficients quoted in the
second section by the methods which we explored
in detail in Sec. III for Wilson's approximate re-
cursion relations. We will discuss the case d =3,
n = 1 in detail and summarize the remaining cases.

First we have considered the location of the zero
of the function P(v). Using the Pade-Borel method
of Ref. f (b =0) we obtain the estimate v*= 1.42
a 0.03. The more conservative error estimate
quoted here, in spite of having an additional series
term represents a more thorough analysis of the
errors of estimation than was possible at that
time. The central value is however unchanged. If
we include the information on the nature of the

TABLE VI. g4$. .48) for the Wilson's approximate recursion relations for b =3.5 and a pole
fixed at -1.34.

i Lf —1/M M +1/ivy M+2/i' 1VC +3/i' iVI +4/M

-0.41541
-0.414 38

-0.412 84
-0.408 83
—0.412 33

-0.412 27
—0.423 02
-0.414 77

—0.40525
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TABLE VII. Zero v* of P(v) for the case n=1, d=3,
b =3.5 with a pole at -1.503 79.

TABLE IX. g4(v*) for the case n =1, d=3, b =3,5 with
a pole at -1.503 79.

~ ~ ~

~ ~ ~

1.546 93 1.36166
1.466 30 1.423 60 1.416 46 1.415 77
1.40713 b 1.41548 b 1.41568 b

1.416 93 1.415 69
1.41549

-0.385 50
-0.382 50

-0 ~ 389 37
-0.384 45 -0.383 47
-0.383 58 -0 ~ 383 54
-0.382 02

—0.378 92
—0.382 31

' No positive real zero.
Positive real poles.

g *=1.416+ 0.0015. (4.1)

This estimate is based on the data tabulated in Ta-
ble VII. The largest error is estimated by the
Hunter-Baker method in this case. It will be ob-
served that the incorporation of the location and
nature of the closest singularity has reduced the
apparent errors of estimation by a factor of 20 in
this case. The approximants with positive real
poles have been excluded from our analysis.

In addition from these approximants we may es-
timate the value of u& =P'(v~), Wegner's correction
to scaling index. We find

~ = 0.'788 + 0.003 (4.2)

singularity obtained by Brezin et al." (5 = 3.5) then
the estimate of the location of the zero improves
to v*=1.416~ 0.005. If we include alJ. the informa-
tion (location of the closest singularity at -1.503 79
in our units), then we obtain the estimate

' Pole on the positive real axis.

Hunter-Baker error in this case. The data is
given in Table IX.

The direct estimate of q from its series terms
has lead to a table which has so many positive
poles as to make interpretation impossible. We
have chosen instead to analyze the series for q,

Since q -=0 for the Wilson's approximate re-
cursion relations we have not been able to verify
these procedures there. We conclude that

or

q~ -g = -0.413+0.006

g = 0.031+0.011

(4.4)

(4.5)

on the basis of the results in Table X.
While we can compute from the scaling relations,

which hold exactly for this model, the value of y
in terms of g and g4, an estimate with a slightly
smaller error results from the direct estimation
of (1/y —1) =qJ'(2-q). We obtain

from the data in Table VIII.
Next we analyze the series for g4. We find

q 4
= 1/ v —2 + q = -0.382 + 0.005 . (4 3)

or

1/y —1= -0.1939+0.003

y = 1.241+ 0.004

(4.6)

(4.7)

Here it is to be noted that our fuller analysis has
slightly widened, despite more information, the
uncertainty in q4. However the central estimate is
consistent with our previous one. The error due to
the uncertainty in v ~ is small compared to the

again, the fuller analysis leading to a wider error
estimate than before. ' The data is tabulated in Ta-
ble XI.

We are able to derive from these direct esti-
mates several other indices of interest by the
scaling relations

TABLE VIII. ~ for the case n=1, d=3, b=3.5 with a
pole at -1.503 79.

TABLE X. (g4 —q) (v*) for the case n =1, d =3, b =3.5
with a pole at -1.503 79.

~ ~ ~

~ ~ ~

0.627 16 0.885 79
0.728 78 0.77562 0.786 69 0.78812
O.S04 37 0.788 83 0.788 38
0.785 42 0.788 35
0.78S 94 -0.41342

-0.412 50

—0.406 74
—0.412 56
-0.413 05

—0.416 69 -0.409 44
—0.41158 —0.412 76
-0.414 31

' No positive real zero.
positive real pole. Pole on the positive real axis.
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TABLE XI. (1/y —1) for the case n =1, d =3, 6 =3.5
with a pole at -1.503 79.

y = 1.165+ 0.003 v = 0.600+ 0.005. (4.11)

There is a small discrepancy here in v, but not a
very large one. It should be remarked" that using
the data for e the series analysis"" leads to

-0.194 80
-0.19382

—0.19709
—0.193 71 —0.194 00
-0 ~ 194 02 -0.19394
-0.19389

' Pole on the positive real axis.

-0.192 06
-0.19392

2 —z —dv= -0.05+ 0.03 & (4.12)

which also suggests that hyperscaling is violated in
this case as well as for n=1.

For the cases n= 2 and 3, the series results
are

y = 1.318+ 0.01, v = 0.670 + 0.006, (4.13)

n = 2 —dv =0.110+0.008,

P =~ (dv -y) =0.324+ 0.006,

5 = (d + 2 —q)/(d —2 +q) = 4.82 s 0.06,

A = ~ (d v+ y) = 1.566+ 0.006,

v = (2 + q4 —q)
' = 0.630 a 0.002 5 .

(4 8)

2b, -dv —y= -0.028+ 0.003 (4.9)

instead of zero as in (4.8). If hyperscaling is
forced, then one has"'" as the best results (@*=0
without this assumption)

e*= 1.46+ 0.02, v = 0.638+ 0.001,

y = 1.250 + 0.003, 4 = 1.563 + 0.003,
(4.10)

which are, while not quite in agreement with Table
XII, not so dramatically different.

For the polymer ease, series analysis gives" "

In exactly the same way we have analyzed the
series for n= 0, 2, 3, as well. Our results are
summarized in Table XII. It is of interest to com-
pare these results with those which have been pre-
viously obtained by high-temperature series meth-
ods for the corresponding fixed spin-length models
(Ising, etc.... .). The most complete comparison
is possible with the s=& Ising model. " There is a
difference with this model in that there hyperscal-
ing fails, i.e.,

for n = 2, and"'"

375+0 02 v 0 (4.14)

g*= 1.8+ 0.3, (4.15)

which we adopt. This result is to be compared

for n = 3. These results are consistent within the
respective quoted errors with ours as listed in
Table XII. We conclude that all the apparent dif-
ferences between the n component, (P')' model and
the fixed spin-length model are contained in the
variation of the critical parameters n,ecessary to
accomodate hyperscaling in this model, and its nu-
merically small, apparent violation in the fixed
spin-length model.

Finally, we have analyzed the series for the two-
dimensional, one-component model by the same
methods as we have used above. Here, because
the known series is both shorter and the location
of the apparent zero in units of the pole distance is
considerably further from the origin, the results
are not so good. If we use the Pade-Borel method
of Ref. 7 (b =0), we obtain the estimate v*= 1.8
~ 0.2. If we next include the information on the na-
ture of the singularity obtained by Brezin et al."
(b =3), then the estimate becomes 1.9+0.3. Final-
ly using all the information (the location of the
closest singularity is -1.047 52 in our units), then
we obtain the estimate

TABLE XII. Critical properties of the P4 model in d =3.

ft =2

1.421 + 0.004
0.794+ 0.006

-0.274 ~ 0.01
0.588 + 0.001
1.161+ 0.003
0.236 ~ 0.004
0.302 + 0.004
1.462 ~ 0.004
0.026 + 0.014
4.85 ~0.08

1.416 + 0.0015
0.788*0.003

-0.382 + 0.005
0.630 + 0.002
1.241 + 0.004
0.110~ 0.008
0.324+ 0.006
1.566+ 0.006
0.031+0.011
4.82 + 0.06

1.406 + 0.005
0.78 ~0.01

-0.474+ 0.008
0.669 +0.003
1.316~ 0.009

-0.007 + 0.009
0.346+0.009
1.662 + 0.009
0.032 + 0.015
4.81 +0.08

1.392 + 0.009
0.78 + 0.02

-0.550 + 0.012
0.705 + 0.005
1.39 ~0.01

-0.115+ 0.015
0.362 + 0.012
1.753 + 0.012
0.031+ 0.022
4.82 + 0.12
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with the high-temperature series result" of v*
= 1.751~ 0.005. We find, as in (4.2) the value of

the singularity or its nature (b =0 used) we obtain
the estimates

~ = 0.'7 + 0.4, (4.16) v = 0.9+ 0.2, y = 1.V + 0.1, (4.19)

q4
-—-0.83+ 0.2,

q4-q = -0.91'0.25,

q,i(2-q) =y ' —1=-0.42+0.07,

y = 1.72 + 0.2 .

(4.17)

From these we can derive, as in (4.8), by the
scaling relations

z = 0.16+ 0.6, P =0.06+ 0.4,
6 = 5 to ~, 6= 1.78+ 0.4, (4.18)

v = 0.92 g 0.3, q = 0.08 y 0.2 .
By comparison, if we do not use the location of

which is again rather inaccurate. analyzing the
series for q„q, q,-and qg(2-q) we obtain

of similar quality to (4.17) and (4.18). We conclude
that the information currently available is insuf-
ficient to allow precise prediction by our methods
in the two-dimensional case, nor can we make a
meaningful comparison with the ising-model re
suits derived by high-temperature series methods.
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