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The resistivities in amorphous ferromagnetic alloys of Ni.Au;_., Co.Au,_., and Fe _Au,_,. are
measured as a function of temperature. The amorphous alloys are purely metallic and obtained by
quenched condensation. The resistivity shows a T2 temperature dependence which is due to
electron-magnon interaction. From a theroretical point of view, the temperature dependence of
the resistivity in amorphous metals provides an interesting problem because the lifetime of the
conduction electrons is much shorter than the oscillation period of the magnons and phonons.
Therefore, the elastic and inelastic scattering processes cannot be treated independently and the
Ziman-Baym formula fails. Only exceptionally in Fe-rich Fe Au,_, alloys (¢ > 0.9) we found the
strong increase of the resistivity towards low temperature which has been observed by others in
meltallic glasses. This behavior is correlated with the sudden drop of the magnetic moment of

the Fe atoms in this concentration region.

1. INTRODUCTION

In this paper we present some accurate resistivity
measurements in amorphous ferromagnetic alloys.
The resistivity measurements have been performed
for two reasons: (i) to look for the influence of the
electron-magnon scattering on the resistivity and (ii)
to check the supposition by Cochrane et al.! that
amorphous metals have a resistivity minimum.

Measurements of the specific heat in amorphous
metals?>™ prove the existance of an atomic vibration
spectrum in the amorphous state. Nevertheless there
is no direct experimental evidence of a phonon-
induced resistivity in these materials. Korn et al.,’
Bergmann,® and Collver’ found only a small linear
dependence of the resistivity on the temperature.
Therefore it is interesting to examine whether the
scattering of conduction electrons by thermally excited
spin waves in amorphous ferromagnets yields a contri-
bution to the resistivity, and if so, which temperature
dependence the resistivity shows. From the theoreti-
cal point of view this problem is quite interesting be-
cause in amorphous metals the lifetime of a conduc-
tion electron in a momentum state is so small that it is
much less then the oscillation period of thermal exci-
tations. Therefore it is not clear whether the elastic
and the inelastic scattering can be separated and treat-
ed independently in the Boltzmann equatien.

Cochrane et al.! tried to find an indication of the
amorphous state in the transport properties. Experi-
mentally they found a resistance minimum in a large
number of metallic glasses.® Similar results have been
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reported by Lin,’ Hasegawa and co-workers,'°"'? Liang
and Tsuei," and Poon and Durand.'* This minimum
occurred as well in ferromagnetic alloys as in the non-
ferromagnetic alloy Nig15sPo3s. They interpreted the
resistance minimum as originated from the amorphous
structure and explained it with the same model which
Anderson et al.'’ suggested for the interpretation of
the linear T dependence of the specific heat in glasses.
We extend their investigations to amorphous alloys
which do not contain glass formers and are purely me-
tallic.

1. EXPERIMENTAL RESULTS

We investigate the amorphous alloy system
Ni.Au,-., Co.Au,_., and Fe,Au,_.. These amor-
phous alloys are prepared by quenched condensation
onto a substrate at He temperature, the most effective
method to obtain amorphous metals. The amorphous
structure of the investigated alloys has been proved
previously by x-ray or electron diffraction.'®~'® The
composition of the evaporated films is analyzed by x-
ray fluorescence. For the Co.Au,_. system we use in
addition a He-backscattering analysis. The agreement
between the two determinations of c is better than 2%.

Since the amorphous state is metastable many alloys
transform during annealing to room temperature into
the crystalline state. This transformation is accom-
panied with a steep decrease of the resistivity. The
resistivity measurements have been performed
sufficiently below the crystallization temperature and
after a thermal cycling. The resistivity hysteresis is of
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the order of 0.01%.

Figure 1 shows the resistivity of two amorphous
Ni.Au,_. alloys. These alloys are ferromagnetic and
their Curie temperatures have been determined by the
anomalous Hall effect.'® It is obvious that the strong
temperature dependence occurs below 7¢ and is corre-
lated with the loss of magnetic order. Above T¢ there
is only a small negative linear temperature depen-
dence. At low temperature the thermal part of the
resistivity is proportional to T2. This is demonstrated
in Fig. 2 for amorphous ferromagnetic Co.Au,_. al-
loys. Here we plot p(T) —p(4.2) as a function of T2
In this plot the usual spin-wave contribution to the
resistivity would be a straight line. The 72 law is well
obeyed over a large temperature region except for the
very dilute ferromagnet Coy3Auye. For low tem-
peratures the curves flatten. The increase of the resis-
tivitity towards low temperatures as described in Ref.

1 corresponds to one-third of the ordinate in Fig. 2.
We do not find such an increase of the resistivity. For
Ni.Au, . alloys a possible raising of the resistivity is
not larger than the accuracy of the measurement of
0.01% of p(4.2). In amorphous Co.Au,_, alloys a
small minimum with a depth below 0.03% of p(4.2) is
observed.

Figure 3 shows p/pm., for pure amorphous Co at
low temperatures. The accuracy of 0.01% of p(4.2) is
not sufficient to study this temperature dependence
systematically. The experimental results for the amor-
phous system Fe . Au,_. are plotted in Fig. 4. In the
concentration range 0.9 < ¢ < 1 we find a clear
minimum at low temperatures. The resistivities are of
the order of (0.5-1.0) x 10™® Q m, depending on the
composition. Magnetic fields of the order of 75 kG do
not change the shape of the curve. [Only p(4.2) is
decreased because the alloys show a negative magne-
toresistance.] For Fe concentrations below 0.9, the
depth of the minimum reduces to the accuracy of the
experiment. There is again a T? law in a certain tem-
perature range. The coefficient o = dp/dTZ increases
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FIG. 1. Resistivity as a function of temperature for two
amorphous ferromagnetic Ni-Au alloys. The corresponding
Curie temperatures are marked with an arrow.
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FIG. 2. Resistivity of the alloy series Co.Au,_, as a func-
tion of T2.

drastically with decreasing concentration of the mag-
netic atoms for all three investigated alloy systems. In
Fig. 5, a is plotted as a function of the composition
for Co.Au,_. and Fe,Au;_.. A comparison between
p(T) in the amorphous and p(7) in the crystalline
state is given in Fig. 6. An amorphous Feg10Aug 3 al-
loy is annealed up to 100 K without crystallization.
Then the reversible temperature dependence of the
resistivity is measured and plotted in the upper part of
Fig. 6. Afterwards the alloy is annealed up to 300 K.
It transforms at about 270 K into the crystalline state.
Finally, the low-temperature dependence of the resis-
tivity is measured and plotted in the upper part of Fig.
6. The Curie temperature of the investigated
Co.Au,_. and Fe.Au,_, alloys lies always above room
temperature.

P/ i, Co
10004
II|||
1.0002 |||||
10000+ —HHH

15
TK]

FIG. 3. Low-temperature resistivity of pure amorphous
Co.
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FIG. 4. Resistivity of the alloy series Fe.Au,_. as a func-
tion of T2

I1I. DISCUSSION

For the amorphous Ni.Au,_. and Co.Au;_,, the
low-temperature resistivity obeys a 72 law. The same
applies for the Fe.Au,_. alloys with ¢ <0.9. Above
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FIG. 5. Coefficient a=dp/dT? for amorphous Co Au, _,
and Fe Au,_. alloys as a function of the composition.
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FIG. 6. (a) Compatison between the temperature depen-
dent resistivity in the amorphous and the crystalline phase of
Feg70Aug 3p. (b) The annealing curve of the resistivity of
Feg 70Aug 3. The crystallization occurs at 270 K.

the Curie temperature the resistivity is almost con-
stant. This favors the explanation that the leading
mechanism for the thermal part of the resistivity is
the electron-magnon interaction and not the scattering
of conduction electrons into the d states (Mott®)
which also yields a 72 law.

In amorphous ferromagnets one expects that
electron-magnon processes without momentum con-
servation play an important role. The inclusion of
these processes into the calculation of the resistivity of
magnetic metals has been performed by a Lang and
Turner?! and Mills et al.?? for dilute ferromagnets.
They obtained—within a free-electron model—an ad-
ditional 7%? dependence for the resistivity. The ex-
tension of this theory to amorphous metals
corresponds to the Ziman-Baym theory.?>-2* However,
the application of these theories to small momentum
transfer appear to be problematic. The conduction
electrons ha\;e quite a small mean free path of the
order of 10 A. Therefore, they should not feel the
variation of the potential over much larger distances.
For the calculation of the residual resistivity this res-
triction is not important because the contributions for
small g are weighted with the factor (g/2ks)3. This is
one of the reasons why the Ziman formula works
surprisingly well. For the calculation of the thermal
part of the low-temperature resistivity the situation is
opposite. At low temperature, magnons (and pho-
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nons) with small ¢ are excited and the potential is
mainly changed on a scale of large distances. In addi-
tion a similar problem occurs because of the small
lifetime of the conduction electrons in a momentum
state which is of the order of 107'° sec. This time is
much shorter than the oscillation period of the mag-
nons. Therefore the conduction electrons should not
feel the low-energy oscillation of the excitations dur-
ing one scattering process.

Heuristically we sketch the scattering in Fig. 7. The
conduction electron is scattered in a series of scatter-
ing processes. During each process the scattering is
quasielastic because the lifetime 7 of the conduction
electron in the state k" is much smaller than the
period of the oscillating magnon (or phonon). The
next scattering process is again quasielastic but the
phase of the magnon has changed by w7 (w is the
magnon frequency) with respect to the first process.
After many scattering processes the conduction elec-
tron has probed the oscillatorial behavior of the mag-
non and has to fulfill the energy conservation between
electron and magnon energy. The mathematical prob-
lem is that it is not sufficient to describe the elementa-
ry processes alone but one has to follow the long se-
quence of quasielastic processes which are enveloped
by the energy conservation. In addition, the conduc-
tion electron has probed the spatial phase variation of
the magnon over a distance of the diffusion length.

We cannot give the mathematical treatment of this
problem nor its solution. However, we want to show
firstly that the Ziman-Baym theory gives a wrong tem-
perature dependence of the resistivity, and secondly
that the inclusion of magnons into the quasielastic
scattering essentially corrects this fault.

In the Appendix we perform a calculation of the
thermal part of the resistivity in amorphous ferromag-
nets within the classical framework of the Ziman-
Baym theory. We use the magnon dispersion relation
ho, = Dq?. This relation has been experimentally ob-
tained by Mook er al.?® for amorphous ferromagnetic
Co4P. We obtain three different contributions due to

magnon

quasielastic

inelastic

FIG. 7. Series of quasielastic scattering processes which as
a whole emit inelastically a magnon.

the electron-magnon interaction: (i) the contribution
of electron-magnon processes which conserve momen-
tum (coherent scattering); it obeys a T2 law as in the
crystalline state?°~2%; (i) the contribution of electron-
magnon processes which do not conserve momentum
(incoherent scattering); it obeys a T%/2 law; (iii) the
contribution of the elastic scattering which is tempera-
ture dependent because of the temperature depen-
dence of (S.) and (S2); it is negative and obeys a T/
law.

In the Appendix we show that the sum of the
second and third term should be much larger than the
contribution of the coherent 72 term. This contradicts
the experimental results. First we found a 72 law in
the amorphous state. Secondly, the temperature
dependence in the amorphous and the crystalline state
do not differ drastically. We believe, that this devia-
tion between experiment and Ziman-Baym theory is
due to the inappropriate treatment of processes with
small momentum and energy transfer.

In a second calculation we take the opposite point of
view. We consider the conduction electrons as plane
waves within volume of the order of /* (/is the mean
free path). Within this volume the magnetization S°
does not show a spatial variation. In addition we con-
sider S° as quasistatic because the time scale of its os-
cillation is much larger than the lifetime of the con-
duction electrons. Then we obtain essentially two
contributions of the thermal part of the resistivity: (i)
a quasielastic contribution due to spin-flip processes by
the "static" magnons; its contribution is one-third of
the incoherent electron-magnon contribution; (ii) the
unchanged elastic contribution due to the temperature
dependence of S-.

If we restrict ourselves to a rough calculation—
where we do not distinguish between (S°)? and
((S%)? —both contributions cancel quantitatively and
we obtain a temperature-independent resistivity at low
temperatures. We believe that the correct treatment
of the thermal part of the resistivity lies somewhere
between these two extremes and presents an interest-
ing challenge in the transport theory.

With regard to the resistance minimum we summar-
ize the experimental situation. A pronounced
minimum occurs in many metallic glasses. In amor-
phous metals with purely metallic binding the resis-
tance minimum is two orders of magnitude smaller
than in the metallic glasses. Therefore it is difficult to
believe that only the amorphous structure is responsi-
ble for the minimim. One may suspect that the high
concentration of glass formers is involved in this
phenomenon. On the other hand the amorphous
structure is of importance since the flat minimum
disappears after the crystallization. The occurrence of
the more-pronounced resistance minimum for
Fe.Au,_. in the concentration range ¢ > 0.9 is rather
interesting because it coincides with the concentration
range in which the Fe atom changes its magnetic mo-
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ment.'? Within this concentration range we found
several peculiarities in further transport properties.”’

APPENDIX

We calculate the thermal part of the resistivity for
an amorphous Heisenberg ferromagnet. The ex-
change interaction between the conduction electrons
and the localized magnetic moments shall be

ZZw(r—r,)§§,=2w(r -r)
]

!

X (s*S”+s7 S +2s°S)
_._1_ 3 —ipr
wp = o fdrw(r)e L

where () is the atomic volume. For the sake of sim-
plicity we neglect the normal potential of the magnetic
moments. Then the Fermi function f; in the pres-
ence of an electrical field is the same for spin-up and
spin-down electrons and given by

_df
e b«
The resulting resistivity formula is
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where 8=1/kgT, Q is the volume, P}, is the transi-
tion probability for an electron k| to absorb a magnon

¢ and to go into the state k'f.
The transition probability is given by

Pl = Qm/ B)| gy 1?8 eq + hw, — &)
xnfO = f2) (2)

where g, is the electron-magnon matrix element, nq"
is the boson occupation number, and f is the Fermi
occupation number in equilibrium.

For the calculation of the electron-magnon matrix
element one replaces S*,S~ by magnon operators and
obtains

|gqq|z=(ZS/N)[W:(‘P&/‘W
+(Q2S/NH)|w,2alq' +q)

3,+, =1 when ¢' +¢ =0 and otherwise it is zero, a (p)
is the structure factor of the alloy.

The first term describes the coherent electron-
magnon processes and yields the 72 law for the resis-
tivity26-28;

2
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The second term describes the incoherent electron-
magnon processes and yields a 732 law for the resis-
tivity
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($)14(3) =3.472, where ($)!=T(3). In addition
the elastic scattering due to 2s°S” is temperature
dependent. Its contribution to the thermal part is
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This negative contribution to the resistivity has the
same temperature dependence (772 law) as the resis-
tivity due to incoherent electron-magnon processes.
Therefore we have a partial compensation. A quanti-
tative comparison between p, and (p,, +p.) is difficult
because the ¢’ dependence of the exchange potential
is hardly known. For the ratio we find

p__ _0.118

pntp: z
1 , )
2 q q L2 '
x||w0| /4], dlzkf][zkf] I, | a(q)]

1/2
» kgT ’
Dk}

where z is the total number of conduction electrons
per atom.

To get an estimate of the ratio we set z =1,
a(q') =1, and w, = wo=const. Furthermore, for D
we take the value by Mook er al., D =0.185 eV A?,
and for kr the value for Co, kr=1.36 A=, Under
these conditions the ratio takes the value
0.118 x (8.6 x10°7/0.34)'/2. For T =30 K we obtain
for the ratio a value of about 1072, Although the ¢
dependence of w, and a(g’) may alter this ratio, one
would expect from this calculation that the 7%/2 law
overpowers the T2 law.
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