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Vortices and the low-temperature structure of the x-y model
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An exact duality transformation is applied to the partition function Z for the x-y model in two
and three dimensions. The fields which appear in the dual representation of Z are integer valued
and represent the topological excitations, or vortices, of the x-y model. Furthermore, this form of
the partition function is particularly simple at low temperatures. In two dimensions, the dual
representation of Z at low temperatures describes a two-dimensional Coulomb gas in which the
point charges are vortices. In three dimensions, the dual form of Z describes a locally invariant

gauge theory, analogous to QED, and coupled to integer-value, conserved currents which
represent the line vortices of the three-dimensional x-y model. Qualitative comments about the
low-temperature behavior of the theories are made. The meaning of vortices on a lattice is also
discussed.

I. INTRODUCTION

Topological excitations are certain stable or meta-
stable configurations of fields which exist because the

system in question has a compact symmetry. These
excitations which in general represent rather compli-
cated field (or spin) configurations can have a pro-
found effect on the behavior of the system. Because
the relevant field configurations are so complex, ordi-
nary perturbation theory {or the high-temperature ex-
pansion) is not useful for describing these excitations.

Recently, a new method was proposed for dealing
with these objects. ' ' The method is applicable to a
class of theories in d dimensions which possess a U(1)
symmetry and consists of transforming the usual parti-
tion function of the theory into a new form using a
duality transformation. The fields which appear in this
new form are integer-valued fields which directly
represent the topological excitations of the theory.
Moreover, this new form is particularly simple at low

temperatures (or, in the language of field theory,
small coupling constant).

The simplest member of the class of theories con-
sidered in Ref. 1 is the x-y model. In this paper we
will apply our methods to the two- and three-
dimensional x-y models. The extension to higher di-
mensions will be clear."According to the usual
homotopy arguments, "the globally U(1) -invariant
theory in d dimensions should have topologically
stable excitations of dimension d —2. In two dimen-
sions, therefore, we expect the x-y model to have
point vortices, while when d =3 we expect line vor-
tices. (For d =1, localized topological singularities are
not important at low temperatures, although smoothly
varying spin configurations which go through several
revolutions from one end of the lattice to the other
are. Formally, we can consider this an excitation of

dimension —1.) After applying our transformation to
these theories we will obtain expressions for the parti-
tion functions in terms of the vortex degrees of free-
dom. This exercise will also demonstrate in detail the
steps involved in the general duality transformation
described in Refs. 1 —3.

For the d =2 x-y model, we will be able to write the
partition function in terms of point vortices. The
low-temperature limit of our expression wi)l coincide
with the low-temperature approximations to Z derived
by other authors, ' and is just the partition func-
tion of a neutral Coulomb gas in two dimensions.

In three dimensions, we will show that the x-y
model is equivalent to a locally invariant gauge theory
for which the symmetry group is Z„, the additive
group of integers. At low temperatures, this partition
function becomes identical to the generating function-
al for photons coupled to integer-valued conserved
currents in three Euclidean dimensions. These con-
served currents represent the vortex-line filaments
(actually, vortex rings) which appear in this theory.

In Sec. II, we will present the duality transformation
for the two-dimensional x-y model. %'e will also dis-
cuss in what sense the integer-valued fields of our
dual representation may be regarded as vortices. This
point requires some elaboration. The physical degrees

tH

of freedom of the x-y model are the spins, s, =e
Physically, we associate a vortex with a spin
configuration in which the spins rotate through 2m

some nonzero number of times as we move along a
contour which surrounds the vortex. To describe this
vorticity mathematically, , it is common to say that the

phase integral dH(x) (or, on a lattice, a phase sum

gott, around the closed path} is nonzero, which

means that 0, is multivalued. (Of course, the physical
degrees of freedom, s„are single valued. } However,
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II. T%0-DIMENSIONAL x-y MODEL

A. Partition function at low temperatures

We now present the details of our duality transfor-
rnation for the two-dimensional x-y model. This
operation will result in an expression for the partition
function which is simple at low temperatures. Some
of the steps involved are well known and have been
described by others in diA'erent contexts, but are re-
peated here for the sake of completeness. In the Sec.
II B we will discuss the interpretation of the integer-
valued fields that will appear in our final expression.

The usual form of the x-y partition function is

de„
exp P icos(l}, —8,}

2% ( )

(2.1)

where the limits on the 8 integrations follow from the
fact that Z includes a sum over all (physical)
configurations of the spins, UI, =exp(iH&). The sum
in the exponent runs over all nearest-neighbor pairs
on a two-dimensional square lattice. Using the charac-
ter expansion for the interaction,

in the usual formulation of the x-y model, {2.1), this
criterion is difticult to implement since the range of 8
is only —m to m. Moreover, performing the duality
transformation, one obtains integer-valued fields only
after integrating over all spin configurations, and so it

is difticult to uniquely identify a given configuration of
dual integer-valued fields with a configuration of spins.
It is possible, however, to define another model'
whose low-temperature behavior is the same as that of
the x-y model. The vortex excitations of this model
can be simply described in terms of a multivalued an-
gle variable, v, and can be related in a unique way to
configurations of the spins, e". Our integer-valued,
dual fields will be put in a one-to-one correspondence
with the vortices of this model, and in this sense can
be regarded as the vortices of the x-y model. In Sec.
III we apply our duality transformation to the three-
dimensional x-y model. %'e discuss problems of gauge
invariance and demonstrate that the currents of the
gauge theory represent the line vortices of the model.
Conclusions and a summary are presented in Sec. IV.

In this expression, we are instructed to sum over a set
of integer-valued fields, {n },one for each link of the
lattice, Since the links can be labeled by a site i and a
direction p, , the n, „can be thought of as a collection
of two-vectors, n, . The coeScient of 8; in the ex-
ponent is the discrete divergence of n at the site j.
Specifically,

5 n-= n- - —n- - - + n- -,
—n- -, -

J J, & J
—X~ X J, t' J

—t', (2.4)

where we recall that the site labels are two-

dimensional vectors. (We will usually omit the vector
symbol from site labels for notational convenience. )
Since the fields, n, are integer valued, integrating over
the 8, in (2.3) will just give us a set of Kronecker 5
functions which enforce the condition

5 n, =0 (2.5)

at all sites j. This condition is automatically satisfied if
we write

= Xexp gin[r, , (p)l (2.7)

Now, for integer n, l„(P) has the representation
'il'

1„(p)=— d~e""' cosncu
n'

(2.8)

We insert this representation in (2.7) and expand
cosnco in powers of n. The partition function can then
be written

(2.6)

where {@,} is a set of integer-valued fields iocated at
the sites of the dual lattice. For a d-dimensional hy-

percubical lattice, the dual lattice can be obtained by
shifting the original lattice by half a lattice spacing in

each direction. (See Fig. 1.) Using (2.6) in (2.3)
(and neglecting overall constants), we have

exp[pcos(8, —t},)] = g l„(p) exp[in (8, —8,)]
ll= oo

{2.2)

(2.1) can be rewritten

exp i $8,(Z n;) . (2.3)
d8g

27K
FIG. l. Original square lattice and its dual in two dimen-

sions.
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z = /exp X g ' (a„d,)'~
" D, (p)

I4I, .I, p p

(2.9)

So, for example,

D 1 T1

D2= T2 —T)2

D3 = T3 —3T& T2+2T&', etc.

Using the identity

(2.11)

g(d k) X ie2wmg

lj,
' ~—oo m= —oo

we can rewrite (2.9) as

(2.12}

Z = 5@ exp, h„$,)2~+i 2+m/Q,
D, (p)

ImI, j, p, p

(2.13)

where now the $j's are treated as continuum fields,
—oo ( $j ( oo.

Now, let us estimate the behavior of the D, (p).
For very small p, the T, (p} have the form

T (p) =(-1) p! +
(2p +1)! ~(2p)!

where we have dropped an overall multiplicative factor
of 10 (p},W being the number of sites of the lattice.
Dp (p) ls the pth curn ulant of a set of functions, T, (p)
defined as

] rr

T, (p) = {-I) d cu co "e&"g" . (2.10)
(2p)! ~1,{P)

Using (2.15), we see that D, (P) = —1/2P. Further-
more, in the calculation of D~(p) for p & 1, there are
cancellations among terms of low order in p ', so
that, for example, Di(P) —O(1/P'). Now, the ex-
pansion in the exponent of {2.9) [that is, the expan-
sion of Inl„(P) in powers of n] is certainly convergent
for all real (dQ}'. Moreover, if p » 1, and
(4p)' ~ p, we make errors only of order p ' in the
exponent of (2.9) by keeping just the p = 1 term.
Thus to show that keeping only the term with p =1 is

in fact a good large p approximation to Z, we need to
show that configurations of [$) such that (A$)' ) P
make a negligible contribution to Z. This is not com-
pletely obvious since the series in the exponent (2.9}
alternates in sign, and so the p =1 term which be-
comes large and negative when (b@)' & p could be
canceled by terms of higher order in p. That this does
not happen can easily be shown using a uniform
asymptotic form for 1„(p) valid as n and p both go to
infinity. ' The quadratic term in (2.9) is therefore a
good low-temperature approximation to Z. A sys-
tematic expansion about this approximation is possible
by retaining higher and higher terms in p [and more
and more accurate approximations for the D, (P))
Such an expansion is related to (but is not exactly} a
perturbation series in powers of T. It will be suScient
for our purposes to keep only the term with p =1,
which we shall do the rest of this paper. It is impor-
tant to remember, ho~ever, that each term in the ex-
ponent of (2.9) (or in the analogous expression in

higher dimensions) has the same symmetry proper-
ties, and so we will never introduce artificial sym-
metries by retaining only the quadratic term.

For p » 1, we can therefore write (2.13) as

x d cu ~"cosco + (2.14)

so that even though the expansion in (2.13) converges
for all real b@, all D, (p) will have contributions which

are of low order in p and so cannot be neglected.
consider now large p. %e want to show that for

p » 1, Z is well approximated by keeping only the

p =1 term in the expansion (2.9) or (2.13). To do
this we first examine the coefTicients D, (p) for p » 1

and p »p. In this limit, the behavior of the T~(p)
can be calculated using a saddle-point estimate of the
integral in (2.10), or, more conveniently, we can re-

place one power of ~ in the integrand by sin co and do
integration by parts. This procedure will pick up the
leading contribution in p, since for large p the major
contribution to the integral comes from small co. Re-
peated use of this trick will let us determine higher-
order corrections. Doing this, we find

p! ( p — ) ~ ~ +0(p—p —}.
(2p)! pu

p»1, p . (2.15)

Z = 5& exp — {5„@,)'+i 27' m, g,
1

imI pj 2p

(2.16)

where we have used the approximation of (2.15) for
Tl{p). The functional integral over qb can be done by
introducing the representations

1 d'q e- ~ ~&(q),
(2m)'

(2.»a)

fP1
1 d'q e q I(q)

(2m)'
{2.17b)

where the q's are vectors in the first Brillouin zone. If
we have periodic boundary conditions, this representa-
tion will diagonalize the Hamiltonian. Inserting {2.17)
in (2.16) and summing over the lattice sites, we can
write
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r

Z= $ Jtgq(q)exp Jt d'q —K(q)}q(q)}'+ ' i'(q)v)(q)
ttm }

(2.18)

where

-r, (p) -T, (p)
'

K(q) = 1(q) = I ——Xcosq p, = I ——gcosq p,n2 m2 2 2P~2 2
P.

{2.19)

Z g J)"„, 2K(q) }l(q)'}

Inverting the transformation (2.1'7b), we have

i(q) = gm-, e'~'

(2.20)

(2.21)

which we insert in (2.20). Integrating over q, and
dropping an overall constant, we finally have

Z = Z'O' Xexp g m, V„m,
1

', rrt I
16T,{p)

I

where

(2.22)

and where we have dropped an inessential Jacobean
and have used the fact that since @j and m, are real,
g(—q) =q (q), and I(—q) =I'(q). The Gaussian in-
tegrals over q(q) can now be carried out with the
result

iq (i—j)
2V„= dq

Z' ' is the partition function of free, noninteracting
spin waves in two dimensions and, as we shall see
describes the x-y model in the absence of vortices.
The second factor in (2.22) is just the partition func-
tion of a neutral Coulomb gas in two dimensions.
This can be seen as follows: There is a divergence in

V„which can be removed by writing

v„=f d2q —U
I (q)

d2q 1 pi q (i—j)

I {q)

{2.23)

{2.24)

The first term in (2.23) is divergent. Its coe%cient in

the Hamiltonian is proportionai to —( X, m, )'. Hence,
the total net charge of the system must be zero. ' For
i =j, U„=O. For i & j, U„ is well approximated by

U„=grr(lnli jl+, I»+y)

and

Z'0' = exp— 2K( )
'rr 2 7r

t

—=Str(ln}i —j}+c) {2.25)

y being Euler's constant. Using (2.25) and (2.15) we
can display the low-temperature form of (2.22):

Z =Z'+ X exp Xm, U„m, = Z' ' X'exp n'P pm, In}i —j}m, —aPc gm,
i

(2.26)

where the sum over (m) is understood to include only
those configurations satisfying X, m, =0. We there-

fore have the partition function of a neutral gas of in-

teger charges interacting through a logarithmic poten-
tial. Note also that there is a chemical potential which
one must overcome to excite the m's.

8. Interpretation of the m fields

The expression (2.26) looks the same as the ap-
proximate low-temperature form of the partition func-
tion for the two-dimensional x-y model derived by
Berezinski, Kosterlitz, and Thouless, Polyakov, and
others. " In their works, the fields (m } have been in-

terpreted as vortex excitations, but strictly speaking,
(2.26) has a some~hat different interpretation.

To understand the difference, we need to briefly
summarize what other authors have done. '0 Although

(t,v(r) = g q„ lm [In(r —r, ) l (2.27)

where the (q~) is a set of integers. One then writes
8= 8,. + P, and inserts this into the quadratic Lagrangi-

the details of the analyses differ from author to au-
thor, the general approach has been to construct a
compact, (really, periodic) quadratic theory which at
low temperatures agrees with the small-T behavior of
the x-y model. The first step is to approximate
cos(8, —8,) by its quadratic term. Next, the range of
integration over 8 is allowed to extend from —~ to ~.
One then essentially solves the equation of motion'
'7'8=0, but remembers that since 8 is really an angle,
discontinuities of 2n n are allowed in the solution since
this discontinuity in 8 will still correspond to a mostly
smooth configuration of spins. The classical solution
is then
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where

(2.28)

V, = ghp

around the plaquette surrounding the jth site of the

dual lattice, and the limit L ~ should be taken.
However, this is the same as (2.9) since
exp(i2m@, V, ) =1, so in this formulation the partition

function is independent of the "vorticity, "
V;.

To see this another way, keep the last term in

(2.28) to a later stage in the calculation. Then we see
that the effect of this term is simply to redefine

m, m, + V, in (2.13), but we still sum over both m,

and V, separately, so m, cannot be identified with any

particular vortex.
The problem, of course, is that we have been too

an, The result is a partition function which is equal to
(2.26). P, the perturbation about the classical solu-
tion, gives rise to the factor Z' ' and represents a
noninteracting spin wave, or free boson field (on the
lattice). In this approach the integers q& are naturally

interpretable as vortices at the positions r&. That is, a

small contour integral d8, , about the point r& has

the value 2nqk. Moreover, in this formulation, the
vortices emerge as pieces of the original angles 6},

namely the classical parts.
In our approach, on the contrary, the discrete fields

P, are a complete set of fields replacing the angles
which have disappeared from the problem. These
fields are then represented in terms of the m fields
and the continuum $'s, just as in the approach out-
lined above 8 was represented by 8,. + P. Further-
more, in our formalism, the m's cannot be interpreted
directly as vortices, if by a vortex on the lattice we

mean some spin configuration in which the spin ro-

tates through some multiple of 2m around a closed
contour. This difhculty has two sources: First, in per-

forming the duality transformation we have summed
over all spin configurations, and the spin degrees of
freedom have been replaced by another complete set
of variables which include the m fields. It is therefore
difticult to associate a configuration of m's unambigu-
ously with a configuration of spins. Second, since in

the expression (2.1) for the x-y model, —m & H ~ m,

the phase sum X 58, will be zero around any closed

path, an& so this quantity cannot be used as a measure
of vorticity. One might suppose that if we extend the
range of integration —~L & 8~ ~L and let L
we will be able to identify the m's as vortices. One
way to implement this should be to let 0, 8, +2m p, in

the original partition function and sum over the ~tp, ) as

well as integrating over the (8, ) from —w to e. Il' we

do this, Eq. (2.9) will read

Z=, Xgexp X g ' (6„@,i"+i27r V, d,
1

" D, (P)

'tel iVj t i, p. p 1

careful in retaining the periodic structure of the Harn-

iltonian. Once we have integrated over the principal
part of the angle in (2.28) we will have integrated over
all spin configurations of the system. Summing over
the set ) V} merely repeats the process, but does not
give any new contributions to Z. To put it another
way, the variable 8 which appears in the x-y model [or
in the paragraph preceding (2.2gi] does not have the
same meaning as the variable 8 associated with the
compact quadratic theory. ' The final low-

temperature form of Z derived by both methods is the
same, but in the compact quadratic approach leading
to (2.27) one is able to associate a unique vortex dis-
tribution with each distribution of 8's {or spins),
whereas that is not possible in the formalism leading
to (2.28).

Nevertheless, even though our m fields cannot,
strictly speaking, be identified as vortices, it is clear
that they do play the role of vortices in the partition
function. The connection between our m fields and
the bona fide vortices of the compact quadratic theory
can be made somewhat clearer by the following con-
siderations: Look at Eq. (2.28) and set all the V, =0
and for simplicity keep only the p =1 term. The
discreteness of the sum over @ is a reflection of the
periodicity of the original Hamiltonian. If we make
the substitution

I y fg~
L .'v

{2.29)

then, with V, =0 (2.28) will just be a functional Gaussian
integral which, when transformed back to the 8 vari-
ables is seen to be just the partition function with only
the quadratic term of the cosine interaction and with
—~ & 8 & ~. This nonperiodic Gaussian form has no
vortices —that is, only smoothly varying configurations
of 8, have a significant weight in the partition func-
tion. If we make the substitution (2.29) in the full
expression (2.28), then (2.28} will be the same as
(2.13) with the m's replaced by V's. On the other
hand, remembering that we must sum over [V}, the
substitution (2.29) does not change the numerical
value of (2.28}. All it does is reshuNe the
configurations of spins among the configurations of
V's, so that it is possible to assign a definite distribu-
tion of V's to a given spin configuration. The substi-
tution (2.29} is essential to this reshuNing since it en-
sures that in the absence of vortices there is no
periodicity, and that only smooth configurations of 8's
are important.

To summarize, our understanding of vortices is as
follows: To talk sensibly about vortices one needs: (i)
criterion for measuring vorticity, and (ii) a method of
unambiguously associating a vortex distribution with a
given spin configuration. A common criterion for
measuring vorticity, namely the value of a phase in-

tegral, is not directly applicable to the x-y model
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defined by (2.1). In addition our duality transforma-
tion does not allow us to uniquely associate a distribu-
tion ot ~n fields with a given configuration of x-y spins.
Qn the other hand, these objections do not apply to
the compact quadratic theory as treated in Refs. 5 and
6. Now, at very low temperatures, a configuration of
spins in the compact quadratic model will have essen-
tially the same energy as the same configuration of
spins in the x-p model. There is therefore a one-to-
one correspondence between the spin configurations in
ihe two models. Since vortices can be identified in the
compact quadratic model, the corresponding spin
configurations of the x-y model can be assigned the
same vortex distribution. However, the partition
function of the compact quadratic model written in
terms of the vortex degrees of freedom is the same as
{2.26), and so our m fields can be thought of as
representing the vortices of the x-y model.

One might ~onder what effect the fact that the lat-
tice is spatially discrete plays in this discussion. After
all, homotopy arguments concern continuous maps
which are not possible on a lattice. For the purpose of
this discussion, the continuity can be though of as a
criterion tor associating a ~ ortex distribution with a spin
configuration. However, at low temperatures, at least
in the compact quadratic model, there is approximate
continuity for the spin configurations, since only those
configurations in which the spins vary smoothly from
site to site will be important. Hence, it is compactness
of the symmetry, and not spatial continuity which is
important for the existence of vortexlike exeitations.
{Ofcourse, the continuum limit in ihe sense of the
renormalization group could ~ priori have diA'erent

physics, but that is another question. }
We have made some eA'ort to explain in what sense

our m fields are vortices. However, this nomenclatural
discussion notwithstanding, it is important to
remember that in terms of the original spin variables,
the low-temperature partition function of the x-y
model is still dominated by vortexlike spin
configurations as described by other authors. " Bear-
ing all this in mind, in what follows we shall some-
tirnes gloss over these distinctions and simply refer to
our integer-valued fields as vortex exeitations.

It is worthwhile stressing one other diAerence
between the compact quadratic approach and our dual-
ity transformation. Some previous discussions- of
the x-& model involved at some point an explicit sum
over an infinite number of minima of the Hamiltoni-
an, all of which had the same energy. This was ac-
complished either explicitly in the partition function.
or by solving the classical equations of motion as
described above. Using this procedure, one might a
priori be concerned with problems of overcounting in
the partition function when one calculates very high
orders in perturbation theory about these vacuums.
Such a problem does not arise in our approach. The
duality transformation leading to (2.13) is exact and

so there is no possibility of overcounting. %e view
this as a significant conceptual advantage that might
be of real value in more complicated problems. "

Finally, we mention that since our analysis yields a
low-T partition function which is to a first approxima-
tion &i.e., keeping only the p -1 term in 2.13) identi-
cal to that derived by other methods, our approach
predicts the same qualitative features for the low-
temperature behavior of this model as have been pre-
viously discussed. This is clearly true when describing
the theory in terms of its vortex excitations. Further-
more. although the formalism is somewhat difTerent,
the expressions for the spin-spin correlation functions
calculated by our method (which involves the duality
transformation) will be the same as those computed
using more traditional methods.

III. TH REE-DIMENSIONAL x-y MODEL

W'e turn now to a discussion of the three-
dimensional x-p model. In this case application of the
duality transformation shows that the d =3 x-v model
is equivalent to a locally gauge-invariant theory which
resembles QED. In fact, the low-T limit of the parti-
tion function is the same as the generating functional
for photons which are coupled to conserved, integer-
valued currents in three Euclidean dimensions. These
currents are the vortex lines of the three dimensional
.~-y model {in the same sense in which the m fields of
See. II were the vortex points of the d =2 x-y model. )

As before, we begin with the usual expression for
the d =3 x-y partition function

dHI,
Z = ff '

exp P icos(tI, -tt, )
/ 27K

{3.1)

where now the spins U~ =exp{i&I,) are associated v ith
the vortices of a three-dimensional cubical lattice, and
the sum in the exponent runs over all nearest-
neighbor pairs. Proceeding as before, we use (2.2) to
wriie (3.1) in a form analogous to (2.3). Integrating
over the angles 8& results in a product of kronecker
5-function constraints which enforce the condition

5 n, =0 (3 7)

The 3 „., are a set of integer-valued vector fields which
are naturally associated with the links of the dual lat-
tice. Referring to Fig. 2, we see that there is a one-
to-one correspondence between links of the original
lattice and plaquettes(elementary faces) of the dual

at each site j, only now n is a three-vector {since there
are three links pointing in positive directions associat-
ed v ith each site) and 5 in (3.2) is the three-
divergence. To satisfy (3.2) it is necessary and
sufficient to write n in the form
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of the photon field in QED, only in our case the vec-

tor potentials and gauge functions take on only integer
values. (Actually, an overall, nonintegral constant can

also be added, but this is trivial. ) In fact, (3.3) shov s

that the n„, cari actually be thought of as F, „„or
integer-valued E and 8 fields in three space-time di-

mensions.
W'e will return later to a discussion of' this gauge

symmetry and how one can define the functional sum

in Z, but first we wish to extract the leading low-T
piece of (3.4). This is easily done in a manner analo-

gous to the treatment 0& the two-dimens)or)a1 x-~

model. W'e use (2.R& to ~expand the exponent of (3.4)
in a power series in n„,. Doing this we have

FIG. 2. Simple cubic lattice in three dimensions and its

dual lattice.

lattice. Four fields, 3 „„are coupled together accord-
ing (3.3) to yield a value of a given n„,. Each of
these A„, is associated with onc of the links of the
dual lattice which borders the dual-lattice plaquette
through which the original lattice link associated with

the given n„, passes.

Using (3.3), (3.1) can be written

Z =/exp gin[I, ~, (P))
In I. g

~ h. I
-~ h, I+~hPI ~ (3.5}

where p, is an integer-valued field, will give through
(3.3) the same set of n„,. This problem is just the

usual problem associated with defining a functional in-

tegral (in our case, a functional sum) in a theory with

a local gauge symmetry, expressed herc through (3.5).
On the dual lattice, the symmetry (3.5) can be visual-

ized as follows: associate a number with each dual-

lattice site j. Add that number to each A „, „- and

subtract it from each A „, (A. =1,2, 3). This operation
leaves the n„, invariant. Since this transformation
can be carried out at each dual-lattice site indepen-
dently, the symmetry is local.

The symmetry (3.5) is quite similar to the symmetry

The sum in the exponent runs over sites and direc-

tions of the dual lattice. The sum over (n) is under-

stood to be a sum over all distinct configurations of
n„, which can be obtained from a set of 3 „,via

(3.3). Putting it another way, one chooses a set of
3„„then forms from them the set in„, ) and calculates
a contribution to (3.4). Moving on to another set iiA „,I

one repeats the process, but one must be careful to

avoid counting distinct sets of A „,which give rise to
the same set of integers in„, ). Sets ol' A's related by

Z =—g exp g (A„A, ,
—A, ,A„,)-'; P )& l

2p, „,,
(3.7)

~here

I ~v~ h'I ~h~ t'I (3.8)

according to (3.3}. (emote that the indices on n refer
to sites and directions on the original lattice, while the

indices on F and A refer to sites and directions of the

dua1 lattice. )
EquatIon (3.7} looks exactly like the generating

functional for free photons in three-space time dimen-

sions except that the fields A „, are restricted to take
on only integer values. It is interesting to compare
(3.6} or (3.7) with the corresponding expression in

the d =2 case, (2.9). Keeping only the p =1 term in

(2.9), we see that we have a discrete two-dimensional

Gaussian model which would describe a free massless

spin-zero boson if the field @ took on continuous
values. In both cases it is the discreteness of the

fields that gives rise to nontrivial topological struc-

tures.
To understand (3.7) Ior (3.6), since the symmetry

properties are the same] we need to rewrite Z as we

did in Sec, II by using the identity (2.12). Here, how-

ever, we must be somewhat more careful because of
the local gauge symmetry. First we present a heuristic
derivation of the final form for Z. This will be fol-
lowed by a more careful discussion in which Z will be
defined by choosing a gauge.

The heuristic argument proceeds as follows: In

(3.6) or (3.7) we need to sum over a set of variables

iin„, ), Each n„, can take on integer values from —~
to ~. %'e use (2.12) to write

Z = /exp $ X ', (e„,„h,.A, ,)"
" D, (P)

I ~tP=) P

with Dp(P) given by (2.11) and (2.10). The analysis

of the coeScients proceeds as in Sec. II, and so it is a

good low-T approximation to keep only the term with

p =1. Doing this we can write
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2

f eegeep 2 $((„,e„;
Xl I I4

(3.9)

Using (3.9) in (3.7), and making use of (3.3), we have

1

z= XJe( „,,A, .A, ,)e p X ( „,,A, .A, ,(e+ 2 K„,, „„A,.A, ,
(K tt , .„2P

We sum the last term in the exponent by parts and rewrite (3.10) (dropping Jacobeans)
( 1

l

Z = X' J 5(A „,) exp X F„, , F„, , + (2n J„;A„,
Ijl

pI 2 IxvI jttI
I

(3.10)

(3.11)

where

(3.12)

The prime on the functional integral indicates that,
as usual, a gauge condition must be imposed in order
to define the functional integral. The prime on the
sum over J indicates that not any arbitrary set of in-

tegers, (J} is allowed; in particular, only those J's
satisfying the representation (3.12) will appear. This
immedia. tely implies that

A„J„j=0, (3.13)

so the currents are conserved. This is heartening
since it assures us that every allowed configuration of
J's will give a gauge-invariant contribution to Z. Fi-
nally, choosing a gauge and performing the functional
integral we have

(3.14)Z = Z' ' g'exp 2rP g J„(Dp jk J k.
I4, V

j,k

where D„,,l, is the three-dimensional photon propaga-
tor (on a lattice), and Z' ' represents the contribution
to Z from the sourceless J =0 sector. The currents
J„., which are associated with the links of the dual lat-

tice represent the vortex lines of the three-
dimensional x-y model. Before elaborating this point,
let us examine the steps from (3.7) to (3.14) more
carefully.

This sequence of steps constitutes a good example
of proof by notation. The sleight of hand happens in

the substitution (3.9). The point is that the variables
n„., are not all independent, so it is not precisely clear
what is being done in (3.9) ~ To properly carry
through the derivation of (3.14), one should identify a

complete set of independent variables which will be
summed over and then perform the substitution (3.9)
on those variables. This can be done by choosing a
gauge in the sum (3.6) or (3.7).

The gauge we will consider is an axial gauge defined
as follows: First we choose p, in (3.5) so that all the
A „,=0 for A. =1. Referring to Fig. 3, which is a pic-
ture of the dual lattice, this corresponds to setting all

the A), j associated with verticaL links of the dual lat-

tice to zero. This does not yet completely specify the
gauge, however. We can still add a piece to p, , p;
which satisfies h[pj =0 without aAecting the condition
that A I; =0. We do this by choosing p, such that
A2. , =0 for all jwhich lie on the bottom plane of the
lattice. Finally, we have one last gauge choice to
make since we are free to add to p;+ p, another piece

p, such that 4]p, =42pj =0. This piece we choose by
requiring that A3 j =0 for all jwhich lie along the bot-
tom front edge of the lattice as indicated in Fig. 3.
We therefore have

AI j=0, all j
~2;.I=0. i =(—J 2.i3),
A43j=0, J =( OO, OO J3)

(3.15a)

(3 ~ 15b)

(3.15c)

/ /' r' r' / r' /p'

/j' /' /' / r' /' / /'
/p' /' I' / / / r'

/ /' /' f / / r'
I

I
l j 1 ) I

I 2 I I ~ 2
~ 2 ~ I

I

I I I I I

! ! ' ! I i v
I t tA(j A sr & jr 8 tr t/p jr

/I /& l /" r Ir' 1/j' ]r'
/s rt r ' ~ jr tp(

tep jp' tr e/' ir' I& r jr
r, /. r rp ri

t(' M Jc JC JC'W~ it .t

FIG. 3. Representation of the gauge choice (3.15) on the
dual lattice. The dashed lines indicate those links along
which the field A„., =0.

Up to a trivial overall constant, this completely
specifies a gauge: the remaining A „;are a complete
set of variables which independently take on integer
values from —(2(2 to —00. We can now write (3.7) [or
(3.6)] in the form

( 2

Z = /exp g (jj„A„,—B„A„;)', (3.16).
IA] P j I4 v

where the set [A] includes all those variables not fixed
by the gauge (3.15).

Now, for each member of the set [A ], we can use
the identity (2.12) to write (3.16) in the form
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(3.17)

where there is one H„, for each of the fields A „,not
fixed by the conditions (3.15). The functional integral
over A is understood to be carried out in the gauge
specified by (3.15}. Note that condition (3.15a) is

sufhcient to define the inverse of the quadratic form
in (3.17), but all conditions (3.15) are necessary to
completely specify the gauge.

Carrying out the integral over the A' s, (3.17) can be
written in the form

Z =Z' ' /exp rrP QH„, D„„,I H, ~ . (3.18)
fe] p, , v

(3.15) will the set of fields [hl be large enough to
uniquely construct closed loops from any configuration
of H fields.

%'e now will demonstrate that the J's represent vor-
tex lines in three dimensions in the same senses in

which the m fields of Sec, II represent vortex points in

two dimensions. The simplest way to proceed is to
first construct an approximate, periodic form of the
model, valid at low temperatures, in terms of the spin
degrees of freedom. The representation for the case
d =2 used by Berezinski, Villain, and others' is appli-
cable here too and we approximate (3.1) as

D is the three-dimensional photon propagator in the
gauge (3.15), and Z' ' is the partition function with all

H„, =0—that is, the partition function for the free-
photon field.

How are we to interpret the fields H? To answer
this, note that there is a one-to-one correspondence
between the terms in the sum over H in (3.18) and
the terms in the sum over J in (3.14). To each
configuration of 0's (which in general do not satisfy
the condition 5 H =0) we can construct a
configuration of J's satisfying 4 J such that the contri-
butions to (3.18} and (3.14) match. This is done as
l'allows: Consider a set of fields [h] complementary to
the set [H]. The set [h] consists of integer-valued
fields, h„.„which are associated with the dual-lattice
links along which A „,= 0 according to the gauge
choice (3.15). For any configuratK)n of fields H, we
can construct in a unique way a configuration of
closed contours by filling in the configuration of H
fields with h fields. In other ~ords, any line segment
corresponding to an allowed configuration of H fields
can be closed by tracing lines along the links defined
in (3.15). A simple example of this is indicated in

Fig. 4. By choosing the h fields to have the correct
strength, this closed contour will represent a diver-
genceless configuration of a current, G„,= H„, + h„,.
In the gauge (3.15)

(3.19)

for any configuration of H fields and its attendant
configuration of G fields. Since 5 6 =0 a
configuration of G's will give a gauge-invariant contri-
bution to Z. These G's can be identified with the J's
of (3.14), so that the 0's are just a representation of
the J's in a particular gauge. Note that in order to
construct the divergenceless current from an arbitrary
configuration of H fields, one must recognize that all
the conditions (3.15) are necessary to completely
specify a gauge. Only by fixing all the conditions

dHI,
Z = g "

exp P icos(t), —tt, )
/. 2' (H)

g +2~I
tjI

(3.20)

where, for this discussion we are ignoring overall
(infinite) constants. The sum over ~/I is a sum

over a set of integers, one f'or each link of the
lattice, and ensures that the effective Hamiltonian
is periodic, i.e. , invariant under the operation
01, 0& + 2m ql„ for q& an integer. The range of the 0
integration has been extended from —~ to ~. For
large P this makes a negligibly small effect in Z. This
form for Z demonstrates how one may view the
periodicity as arising from a sum over an infinite set
of inequivalent minima of the Hamiltonian in 0 space.

The argument of (3.20) may be written in terms of
its Fourier components. The partition function then
becomes

I

I+l--t--

FIG. 4. Construction of a conserved current from the

gauge-dependent sources, H. The solid line segment in the

space on the left represents a configuration of currents, H„,
associated with the links of the dual lattice in the gauge
(3.15). The dash-dotted lines in the lattice on the right

represent the complementary currents, h„, which lie along

the dashed links of Fig. 3 and uniquely complete a closed
path.
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OO OO —1 2Z = ad&, gJ ddt„, exp X t„', +i(A„H, +2trl„,)t„;

= g Jt ddt„, s(.h„t„;)exp g t„', +l2trt„, t„
tI

j P,, I

{3.21)

where the Dirac 5 functions come from the 8 in-

tegrals, and where we have again neglected overall
constants, As before, we can enforce the 5-function
constraints by writing

1ttt j Ep ti g 5 p A (3.22)

Ho~ever, from {3.21), I„,just tells us, loosely speak-
ing, how many revolutions 8 has gone through as we
move from the site j to the site j —

A. . J~. , therefore,
tells us how many revolutions 8 goes through as we
move around an elementary plaquette of the original
lattice, and so represents the vorticity.

In accordance with the discussion in Sec. II, this
demonstration is, in a sense, heuristic. In Eq. (3.20)
we have surreptitiously changed the meaning of the
variable 8. As in the two-dimensional case, wc cannot
associate a configuration of J's uniquely witk spin
configurations of the theory defined by {3.1).
Nevertheless, the Js which exist because of the
periodicity of (3.1) faithfully embody all the physics
associated with the vortices of the compact quadratic
theory.

A determination of the detailed low-T behavior of
this system requires more work, but from the form of
(3.14) we can make some qualitative statements. At
targe distances, D„, ;&

—1/
~j —k ~; thus, to produce a

vortex ring of linear dimensions -r requires an ener-

gy ~r. At very low temperatures, Z should be dom-
inated by spin configuration without vortices. As T
increases, vortex excitation becomes more likely with
increasingly more vortices of increasingly larger size
being produced. Finally, it is possible that some sort
of phase transition occurs signalled by the appearance
of states which are dense with vortices of arbitrarily
large size. That there is some simple relationship (not
necessarily an equivalence) between such a transition
and the standard Wilson-Fisher fixed point is an intri-

guing possibility, but it is far from obvious. These
questions require further study for which the
representation (3.14} provides a useful starting point.

IV. COMMENTS

The duality transformation which we have used to
recast the x-y model has yielded some very interesting

where the A „,are associated with the links of the
dual lattice and take on continuous values from —~ to

Inserting (3.22) into (3.21), we obtain an expres-
sion of the form (3.11) ~here the J„,are now

(3.23)

insights. First„we recall that the transformation itself
is exact: the low-T approximations which result in the
simple forms (2.16) and (3.7} were made on the dual
theory after the transfromation. Because the transfor-
rnation was exact, we did not encounter the conceptu-
al difticulties which exist when using the approach of
some previous work which involves summing over
inequivalent minima of the Hamiltonian to enforce
periodicity. Our transformation involved replacing the
complete set of angle variables by a complete set of
conjugate variables which are the discrete $ or 3 fields
and can be represented by the smooth spin ~aves plus
the vortices. Moreover, since the low-Tapproxima-
tions were made on the dual form of Z, corrections to
(2.16) and (3.7) are well defined.

A very interesting feature of the three-dimensional
x-y model is that it is equivalent to an Abelian gauge
theory with the structure of QED. Since the x-y
model is thought to describe superAuid helium, the
vortices in the superOuid should be described by the
currents in (3.11). This is therefore an example of a

system with "extended" excitations which obeys a
gauge principle —and a very familiar and important
one at that. In any case, this theory is a good one to
study further the intriguing equivalence between
locally and globally invariant formulations of the same
system.

Finally, we mention that since the dual forms of Z
are fairly simple at low temperatures, the vortex fields
should provide a good basis for investigating low-T
properties of these systems. In particular, one might
try using (2.16) and (3.7} as the basis for for a
renormalization-group calculation. Such an exercise
should reveal if there is a phase transition associated
with the topological excitations and may help answer
the question of its relation (if any) to the usual
%'ilson-Fisher critical point. "
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