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MolecularMynamics results simulating a canonical ensemble with nearly conserved energy are presented
and discussed for a one-component model exhibiting a distortive continuous-phase transition. Our results
demonstrate (i) that the static properties are consistent with the universality hypothesis; {ii) the formation of
clusters; (iii) second sound in a temperature window below T„{iv)central peaks due to the cluster dynamics
and heat dNusion; (v) that the critical slowing&own data are consistent with the universality hypothesis for
dynamic critical phenomena; and (vi) envelope solitonlike heat-pulse propagation in the second-sound regime.

I. INTRODUCTION

This paper is concerned with a three-dimen-
sional one-component model for distortive-phase
transitions. It may also be vie~ed as a set of
harmonically coupled oscillators with quartic
anharmonic and identical single-particle poten-
tials. It belongs to the family of models which
have been used with remarkable success to eluci-
date the critical properties associated with ferro-
and antiferrodistortive phase transitions. ' As far
as the static critical properties are concerned, it
is equivalent to a one-component continuous spin
model' which reduces in a certain limit to the
Ising model. ' According to the universality hypo-
thesis for static properties, one therefore expects
that the system belongs to the Ising universality
class. Similarly, invoking the universality hypo-
thesis for dynamic critical phenomena, 4 the
dynamic critical behavior should be essentially
that of the time-dependent Ginzburg-I. andau
(TDGL) model with conserved energy. The re-
quirement of energy conservation reflects the fact
that our model is defined by a Hamiltonian.

It is not the main purpose of the present paper
to study the critical phenomena occurring close
to the phase transition. Our main concern is the
excitation spectrum, the nature of its dependence
on temperature variation, and the presence of an
order parameter. Nevertheless, some critical
properties mill be studied. Our main motivation
for the present study was to extend our previous
work on the two-dimensional version of the mod-
el' to a three-dimensional system and, in addi-
tion, to modify the molecular-dynamics technique.
The modified molecular-dynamics technique
employed here allows us to simulate a canonical
ensemble with nearly conserved energy. On this
basis, it mould be possible to study the effects of
the coupling between energy and displacement
fluctuations, heat diffusion, second sound, and

heat-pulse propagation. The folloming main re-
sults are obtained:

(i) The static critical properties are consistent
with the universality hypothesis. (ii) The forma-
tion of clusters of locally ordered regions is
demonstrated. (iii) Optical-mode second sound
is found in a temperature window below T, . At
the upper limit it becomes overdamped and goes
over to thermal diffusion. (iv) In the vicinity of
T„acentral peak (CP) is found. For wave vec-
tors $=0 it is a superposition of a Cp due to the
cluster dynamics and a CP due to heat diffusion.
(v) Above and close to T„ the central peak in the
displacement spectral density originates entirely
from the cluster dynamics, because the coupling
between order parameter and energy fluctuations
vanishes. (vi} The critical slowing-down data are
consistent with the universality hypothesis for
dynamic critical phenomena. (vii) Envelope soli-
tonlike heat-pulse propagation under second-sound
conditions is demonstrated.

In Sec. II, we define the model, the dynamic
variables, and the conservation laws. Moreover,
to approach the problem of excitations, we sketch
Mori's treatment" of the correlation functions,
which permits a discussion of the excitations as-
sociated with small-amplitude oscillations. Fin-
ally, we consider the implications of large-ampli-
tude oscill, ations, which may give rise to solitary
waves, and study the possibility of solitonlike
heat-pulse propagation.

The modified molecular-dynamics technique is
described in Sec. IQ. The details of the algorithm
used and of the generation of the random force
are given in an Appendix. In Sec. IV, we present
some of the numerical results. They include (a)
static critical properties; (b) dynamic properties
such as second sound, heat diffusion, central
peaks, phonons, large-amplitude oscillations, and
critical slowing down; and (c}envelope solitonlike
heat-pulse propagation in the second-sound regime. '
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Il. MODEL AND THEORETICAL DESCRIPTION

In this section, we define the model, the dynamic
variables of interest, and the conservation laws.
In addition, we shall outline Mori's treatment of
correlation functions, "where one takes into
account, right from the beginning, all relevant
variables which might introduce poles, including
the hydrodynamic ones. This discussion wil. l in-
clude the second- sound phenomenon. "'" Finall. y,
we study the possibility of solitonlike heat-pulse
propagation.

define the direct lattice.
Introducing

5X, =X, —(X,) =X, —(X&,

we may rewrite Hamiitonian (1} in the form

2

X=+ ' + —(X)' A —6C+ —(X&'
2M 2 2

+ (X) (A+ B(X) ) Q 5X, —C (X&Q (5X, + 5X,~)
g, m

+-,'(A+SB(X&')+5X', +B(X&P 5X',

A. Model, dynamic variables, and conservation laws

The Hamiltonian of the ferrodistortive model is

'+—QX', + —Q X', -C Q XPC( .
2M 2, ' 4

+ —Q 5X, —CQ 5X( 5X),~,
g

(10)

revealing the presence of third-order anharmoni-
city, bel. ow 7.', . The resulting equations of mo-
tion are

M5X, = (X&(A - 12C+ BQ'&')

l l.abels the particle with mass M in the 1th unit
cell. P, and X, are momentum and displacement
with respect to a rigid cubic primitive reference
lattice. M, A, 8, and C are model parameters,
which are chosen as

A=-1, a=-,', C=&, M=1.

+ ( A —12C + 8B (X&') 5X, + 3B (X) 5X ',

+ B5X, +2CQ (5xg —5X„~).

It then follows that

-M(5X, &
= (A —12C+ B (X&')(X&+ SB (X&(5X', &

Here, we have adopted the same units as in Ref.
6. This choice of the model parameters guaran-
tees that at 7 =0 the order parameter given by or

+B(5X',&=0 (12}

X', =(12C -A)/B~0

does not vanish. Consequently, the system will
undergo a ferrodistortive phase transition at
some T =T, &0"

To describe the static and dynamic properties
of the system, we shall consider the following
variables:

(12C -A)/BQC&=(X').

Invoking the exact inequality"

(X'& - (X'&(X&

we find that

(X&' ~ (12C -A)/B —(5X', ) .

(14)

(15)

II (4) =

g

1x(4)= ~,g. Q
1

1
p(4) =

&xf2

p ~C fg ~ Rg
g (4)

(X —@ ))e'~'Rg

[exp —fg ~ [R, + (X„O,O)]

—(exp —ig ~ [R, + (X, , O, O)]&), (6}

g x &f f L%,+(x, ,o,o) l
g

= fqg;(51, f), (16)

%e are now prepared to derive certain proper-
ties of the dynamic variables. From Eq. (6), we
hav8

X(ft) =,~, Q (3C, —(3C,&)e''~),

where

X= +—X+—X —C XXP', A 2 8
g 4 g g g+m ' (8)

so that p(0, f}=0, and the density is therefore con-
served because p(0, f) =0. The momentum current
J;(Q, f), however, is not a conserved quantity. In

fact, we find

z;(q, &) =,g, Z (x&+fqA&)

These variables describe momentum, displace-
ment, density, and energy fluctuations, re-
spectively, of wave vector Q. The vectors R,

l q PR, + (Xg,O,D) g

and, according to Eq. (11),
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—MQ X, = N(X)+Q 5X, (A —12C +B (X) )

(18)

3r(II, t) = 2C —g [X(g- g')X(fi')
N

-X(4- 4')X(fl')]F(4')

+ 3B (X) Q 5X ', + BQ 5X ', ,

representing the total force. Because the model
defined by Hamiltonian (1) is not translationally
invariant, the total force does not vanish. Con-
sequently, the momentum current is not con-
served because J;(0, t) eO.

From Eqs. (7) and (11), we find for the rate of
change of the energy fluctuations

Eq. (22) may be rewritten

G+„(t) ={A(t)lA), t )0 .

Introducing the Liouville operator

A. (t) =e' 'A

we find

G+„„(z)= e'*'{A(t)l A) d t
0

= (AIA)+(Al IA).

%ith the aid of the projection operator

F=IA)
I

(Al, q=1 —P,

(24)

(25)

(26)

(27)

where

+ 2C (X)[F(0)—F(g)]X(Q),

F(g) = cosa q, + cosa q„+cosa q, ,

(19}

(2o)

one may rewrite Eq. (26) in the form

G„„(z)= -(A IA)[z(AIA)+ t(AIA)+ tF„„(z}]-'

a being the lattice constant of the cubic primitive
reference lattice. K(0, t) is seen to vanish, so
that energy is conserved as it should be for a
Hamiltonian system. We express this conserva-
tion law in the form

x [i(AIA) +iF„„(z)],

Fzg(z) =(AIQ CIA).

(28)

(29)

x(q„ t) =i'~(q„, t) . (21)
The extension to n dynamic variables, where Eq.
(28) is an equation of the nx a Green's functions,
is

B. n-variable theory G'(z) = a(za —&u+iF-) '( ~+iF),- (30)

g

-i([A (t),A]) =+ dz(e~~A (t)e " A(0))
0

=- (A IA), (23)

To characterize the excitation spectrum, we

adopt Mori's treatment of correlation functions. '~
It is well known that a perturbative treatment of
the anharmonic terms has to treat hydrodynamic
singularities correctly. " These singularities
are a consequence of the coupling between the
dynamic variable, whose spectral density one
wants to calculate, and some further slowly
varying dynamic variable. Instead of summing

up infinite series of terms in a perturbation ex-
pansion, one tries, in the Mori approach, to take
into account right from the onset all important
slowly decaying dynamic variables which might
introduce hydrodynamic poles. Without going in-
to details of such a spectral density matrix for-
malism, we sketch below the structure of the
theory. For details, we refer to Refs. 7 and 8.

We consider the retarded Qreen's function

G„'„(t)= is(t)([A -(t), A]).
Using the identity

where

a, , =(A, IA,.),

~., =(A, II IA, ) =-t(A. IA, ),

(31)

(32)

F;g =(A;IQ q~ QIAy) i (33)

p= A, a '„, , Q=l. —P. (34)

In the foll. owing, we shall consider

X(4), X(fi), 3~(4), 30(4),

as dynamic variables. X(q) and X(g) are closely
related to p(q) and P(q), respectively, because
they represent the first term in an expansion
with respect to q. The conserved variable 3C

must be included to account for heat-conduction
phenomena. Moreover, the order-parameter and
energy fluctuations are coupled below T„because
(X(-q+(I|)) and (X(-Il)K((1)) do not vanish below

T,. In fact, from Eqs. (5), (7), (8), and (19), it
fol. lows that
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&X(-g)X(4))= B((X)' —&X')) &X(-g}X(g))+2C[F(0}—E(g}]&X) &X(-g}X(g}&

1 1

~ 1/2 2 [A+ 3B &X&-'—«:F(4')]&X(-%)X(q'}X(fl- 4')&

B 1
4 ~3/2

Z Ã(-4)X(4, )X(fi,}X(4-4, —~l. )&

Oyy q2

(X(-4)X(4,)X(g,}X(g)X(fi—g, —g, —4,)&,
q j.~ q2~'4

(36)

&X(0)3C(0)) = ksT ' (37)

&X(-q}IC(q)& = 2C&X&[F(g}) -E(q)] (38)

Here we took the classical limit of the scalar pro-
ducts defined by Eq. (23), namely,

B

(A ~B) = dX&e A'e "~B&= P&A'B&.
0

(39}

= M(d~(q), (41)

&30(-q)l0(q)& =4C
M

&X&'[E(&)-F(q)]'

k, T—Q [&~X(q-q') ~'&
4C' 1

+ (g(q')
~

')][E'(q') -E (q')E(q' —q)],
(42)

which follow from Eqs. (11) and (19}.

C. Excitation spectrum

Before turning to examine the explicit results,
it is helpful to summarize those features of the
excitation spectrum that might be expected on gen-
eral grounds. At low temperatures, the particles
oscillate about a mean position determined by the
order parameter. 'The displacements are small
and anharmonic perturbation theory is adequate.
%'e therefore expect an excitation spectrum exhib-
iting phonons and, by virtue of energy conserva-
tion, heat diffusion or second-sound modes. The
resulting Rayleigh peak or second-sound peaks

From the expressions, it is seen that below T„
order parameter and energy fluctuations do couple.
As a consequence, heat-conduction phenomena
are expected to occur not only in G3~ but also in
G'„„, below T,.

For completeness we also list

&X( q)X(q-)& k, T/=M, (40)

M&X(-q)X(q)&/(X(q)X(-q)& =A —12C+ 3B&X'&

i 4C[F(0) -E(q)]

may occur in both the energy and displacement
Green's functions, due to the coupling between
order-parameter and energy fluctuations below
Tc'

%lith increasing temperature, anharmonic ef-
fects become more significant, and large-ampli-
tude oscillations will appear, because the parti-
cles can overcome the potential barrier. Experi-
ence with the corresponding two-dimensional sys-
tems, which we studied previously, suggests that
this will result in the formation and dynamics of
clusters. " A cluster represents particles con-
nected by nearest-neighbor bonds, having dis-
placements with a sign opposite to that expected
from zero temperature. A cluster is surrounded
by a cluster wall where the displacements X,
change sign. This phenomenon illustrates the im-
portance of the solitary kink solution of the under-
lying equation of motion in the continuous lim-
it.'"" One anticipates, on the basis of the two-
dimensional systems, that the formation and dy-
namics of the clusters will certainly affect the ex-
citation spectrum producing, in particular, a cen-
tral peak. "' This peak will be superimposed, at
least below T„on the heat-diffusion peak. In this
temperature domain (immediately below T,},
second sound is unlikely due to the effectively
strong anharmonicity. A collective excitation in
the energy fluctuations can be expected only in a
temperature window below T,. The lower limit
is reached when anharmonicity is too small to
allow a collective excitation; at the upper limit,
second sound becomes overdamped and changes
over to heat diffusion, due to anharmonicity.

Above T„order-parameter and energy fluctua-
tions are no longer coupled. Hence, heat diffusion
will appear only in the energy Green's function.
Nevertheless, a central peak will be expected in
the displacement spectral density due to the clus-
ter dynamics.

Of course, the optical-phonon branch will also
exhibit a strong temperature dependence, becom-
ing soft (for small wave vectors) in the vicinity of

Above T„where the coupling between order
parameter and energy vanishes, the phonon res-
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1. High-frequency approximation

In a first step, we consider onlyX(q) andX(q) ex-
plicitly. According to Eqs. (30)-(34), we obtain
for the order parameter, Green's function

G„'.(q, z) = -~'r&X(-q}X(4)&

x [z'+ fz (m/a, T)I »(q, z)+ ~',]

where

~*,= u, T/&X(-q}X(([)&,

(43)

+„;(q,z) = &X(-q)
~
Q & Q IX(q}& (44)

onance will appear only in the displacement
Green's function.

Finally, at very high temperatures, the oscilla-
tors will be nearly independendent. Hence, the
spectrum is expected to be close to that of a quar-
tic anharmonic oscillator.

Next, we substantiate these conjectures by
studying the excitation spectrum in several limits.
We consider the high-frequency approximation, the
low-frequency, low-temperature approximation,
the implications of large-amplitude oscillations,
and, finally, nonlinear heat-pulse propagation.
We shall find that the results of this analysis am-
plify the interpretation of the numerical results.

z =k(dg y

where ~„ is given by Eq. (52).

(54)

2. Smafl-frequency low-temperature approximation

At low temperature (T«T,), the low-frequency
spectrum will be affected by heat diffusion or
second sound and the coupling between order-pa-
rameter and energy fluctuations. To allow the
possibility of second sound, we have to consider
four variables, namely, X(q), X(q), K(q), and 3C(q).
To simplify the discussion, we ignore the memory
function matrix. Accordingly, we assume that
second sound is a well-defined excitation. In this
case, the Green's function matrix is, according
to Eq. (30),

G'(q, z}=a(za —&u) '&a= (z —&ua ') '&o.

The matrices a and (d are

a„a, 0 0

a„ a„ 0 0

0 0 a,~ a~

0 0 a„a44

(55)

(56)

The regularity of E»(q, z) in z will be affected by
strong anharmonicity and for small z by the heat-
conduction pole. At high frequencies and low tem-
peratures, we expect„ therefore, a weakLy damped
phonon resonance at

To study the regularity of Et;(q, z), we rewrite Eq.
(44} in the form

~„;=&~,[/( -~,N, &, (46}

0 0 ia33 ia34

ia„ ia,4 (57)
where

X~=@X, L~=QIQ, (47)

-sa3~ -za34 0 0

-ia„-ia 4 0 0

and introduce the projector

I,= [X,& &X,X&-'&X, ~,

so that

f&x,'x,
&

z+ IE»/&X~+ )
where

I „=&q,fl.,X', [f/( zq, l, ,q, )]q,fI,,X,&,

(4g)

(5o)

&X~X,& = (u„' —(omr, (5I)

M~„'=& —12C+ 38&X'&+ 4C [E(0) Z{g)j. (52)

Substitution of relation (49) into (43) yields

G'„„(q,z) = -&A@X(-q)X(q)&

where

a» = &X(-q}X(q)&,

a„=&X(-q)3e(q)&,

a„=&X(-q)X(q)& = kz T/M,

a„=&X(-q)X(q)&,

a„=&X( qyc(q)&,

a„=&JC(-q)X(q)& .

(56)

(z' —I„)a„a„I-
«'- Isx»'- I4a}+I.iI m

* (5g)

The relevant Green's functions can now be calcu-
lated by matrix algebra. This leads to the foBow-
ing expressions:

+~ -(dr
(53)

a„(z' —I, )+a I.„ (60)
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where

L„=(1/f&)(a„a„—a s„),
L„=(1/b)(a„a„—a„a„),

=(1/f&)( „,.— „„),
42

= ( /5)(s44nii 42 12}~

The poles are given by

z2 =QSL, +L s[(L~ +L42)

—4(LsiL.S+L41Ln)]~'),

(61)

(62}

Q '%it q 12 21z+= 1a„' a„a,
(5X53O'

= *'"'('
«&2&&2&«»C&»&&

where

&dSr = ksT/(x (t})x(())& = iisT /(5x 6x&,

(5x Mc& =(x((})fc((I)&=ksTS

&mC53C& =&3C(()}le(t)}&=u, TS „,&f(X)

(70)

(71)

(72)

a„a-„
Gzx =

a G»= a
SS/ 11 44/ 22

(64)

From the g dependence of terms entering the sec-
ond-sound frequency z [Eq. (63)], we find for the
second-sound velocity, the relation

where z, describes the optical-phonon branch and
z the second sound. The crucial feature is that
second sound will appear inboth G„and 42222, pro-
vided that the coupling between order-parameter
and energy fluctuations (a», a~) does not vanish.
In fact, if we set a„=a~ =0, the Green's functions
(59) and (60) reduce to

G, (qz) a„1 1

a„(q) a„z' —a„/&2„"z' —(u„' ' (73)

These estimates are expected to describe the es-
sential features of the excitation spectrum in a
temperature window below 2;. In fact, second
sound can occur only if anharmonicity is sufficient-
ly strong, allow'ing a propagating collective mode
of the energy density. "'"

At very low temperatures, anharmonicity and
the coupling between energy and order-parameter
fluctuations becomes very small. At zero tem-
perature, where a„=a =0, G„=G„„reduces to
[Eq. (64)]

I 4C~&~1' I 1

~g[&Ix(q-q)I &+&IX(q }I &1

where, according to Eq. (52),

M&d2= 2(12C -&}+4C[E(5) -E(q)],
because

(74)

"9'(q') —&(q'}F(q' —q)].

An estimate may be obtained by setting

(65)

2CS(fsT}2g2 2CSg2" «(0@%)&3f~z(t}) ~~~%) ' (67)

In the last step we used

(6X 5X& =(X(0)K(0)& = kzTS „

&lx(q —q)l'& +&lx(q')I'& = 2~1 T/Ma&'„0), (66)

where the phonon frequency is given by Eq. (52).
This approximation is reasonable because at low

temperatures, (IX(q)l') is dominated by the phonon

resonance, having small dispersion. Substituting
Eq. (66) into (65) and expanding E(q' —q) for small

q, we find

(X')r.,= (12C -A)/8 . (75)

~„22(q,z), 1 G (q, z)
(76)

For very small but finite T, the first term in Eq.
(19) will give rise to an additional structure for
small z, due to two phonon processes.

At the upper limit of the window, second sound
ceases to be a well-defined excitation due to the
strong anharmonicity. It will become overdamped
and gradually change over to diffuse heat conduc-
tion.

However, G»= G33 will not reduce to the simple
expression listed in Eq. (64) because anharmon-
icity becomes so small that second sound cannot
occur. Here, the structure of G» can be deter-
mined from the equation of motion for K(q) [Eq.
(19)]. At very low temperatures, the second term
will dominate so that at T = 0,

(3C) = 122T +(36& Ir

which holds at low temperatures.
For the optical-phonon frequency, we obtain from

Eq. (63) at q=t},

3. Large-amplitude oscillations

So far, we have only discussed the small-ampli-
tude oscillation regime, where almost all parti-
cles will sit in the left or right well of
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~(A —12C)X + ~BX'= V(X), (77) longer play a significant role in the statistical me-
chanics.

depending on the preparation of the low-tempera-
ture phase. As soon as the temperature becomes
larger or comparable to the depth of the mell

V[X'= (12C -A)/B]= -g(12c A)'-/B, (78)

the particles will also undergo large-amplitude
oscillations, which can no longer be described by
conventional phonon-perturbation theory. For the
model parameters listed in Eq. (2), the tempera-
ture corresponding to the depth of the well is k~T
= 6.75.

To illustrate the implications of those points, we
consider (following Krumhansl and Schrieffer")
the equation of motion in the continuum limit. De-
noting the total displacement field by g(X), the
equation of motion corresponding to Hamiltonian
(1) reads for X=(X,O, O),

D. Nonlinear heat-pulse propagation

Heat-pulse techniques have been used extensive-
ly in the past to study second sound. " Experimen-
tally, the systems are usually studied at very low
temperatures, where the available power input is
insufficient to drive the nonlinearities. In this
regime, the propagation of heat can be described
by a diffusion or wave equation, or in other words,
within the framework of linear response theory.

In this section, we study the possibility of non-
linear heat propagation. In doing so, we consider
the effect of the nonlinearities on the phononlike
solutions. It is convenient to recast the equation
of motion (11) in the continuum approximation

Mf (R, f-) = (X)(A —12C+ B(X)2)

Mg(X) -= (A —12c)g+ Bg' —2Ca2g„„, (79) + (A —12C+ 3B(X) )f+ 3B(X)f
having the solitary wave solution

g(X, f) =g(X —vt) = tanh
12C -A ' ' X-vt

(80)

where

$'= (2Ca2 —vaM)/(12C -A) . (81)

According to this kink solution, the displacement
field is constant over the semi-infinite region X
-et&0 and given by the negative value of the zero-
temperature parameter [Eq. (3)]. For X —vt& 0,
however, the displacement field equals the posi-
tive value of the zero-temperature order para-
meter. The transition takes place through a clus-
ter wall of approximate thickness 2v 2 $, and the
wall moves with velocity e.

From our work on the two-dimensional version
of the present model, we know that the kink solu-
tion is relevant to the explanation of the formation
and the dynamics of clusters. "A cluster repre-
sents particles connected by a nearest-neighbor
bond and having a local displacement with a sign
opposite to the zero-temperature order parame-
ter. Different clusters are separated by cluster
walls, where the local displacement changes sign,
in close analogy to the above kink solution. It
should be borne in mind, however, that the for-
mation of clusters and their dynamics will set in
gradually with increasing temperature. In fact,
particles have to overcome the potential barrier
to form a cluster. At very high temperatures, on
the other hand, the system mill behave like inde-
pendent quartic oscillators, so that the dispersion
term in Eq. (79}can be ignored. Consequently,
one anticipates that the kink solution will then no

+ Bf' —2C a'V'f, (82)

where f(R, t) denotes the fluctuating part of the
displacement field. We wish to consider solutions
which reduce to phonons. For this purpose we
follow karma" and introduce a small parameter
z so that for & = 0, we have a linear problem. The
equation of motion is then

-Mf =(X)(A —12C+B(X) )+ (A —12C+ 3B(X)2)f

+ +(n&(X T)«(nl le(tl(cx Qlot) (84}
ff
%0

It is assumed that the variations in (g"'(X, T) are
slow compared to the phonon part. Accordingly,
we introduce, following karma, '

T= et, X= ex.
Equation (83) then becomes

f, —2Ca'f„A~ f+ 3«B(X)f-+ «'Bf'+ «'f»

(85)

where

—2C2«'f»+ 2«f, r —4«Ca'f~ = 0, (86)

A2= 12C —A —3B(X)~.

We have assumed that

12C -A —B(X)'= 0,

(87)

(88)

which holds for very low temperatures [see Eq.

+ 3«B(X)f'+B«'f' —2C v'f . (83}

Following Varma we look for solutions which re-
duce to phonons in the linear limit. Restricting
the analysis to one space dimension, we set

f(x, f) = [(((o'(X,T)+ (((0'(X, T)]«
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(3H.
Inserting (84) into (86), equating dc first and

second harmonic terms, we get

Carrying out the asymptotic analysis, one finds

y=, +(2)f R~ p )'~'

&"'= ' ){~"')'a&x~

A, A2

( 2f&d &p«' 4gqCo&y'& )+ Q '+ 3g
42fi 3A

A,

x ~y«'~'y«'+y«' 2C«'&p"„&=0.

(89)

(90)

p,{z',s') = — o,(z', s'),2~f R~ "'
pp

where o, obeys the KdV equation

o„,+ c,o„+5'o, ;~=0,
with

5'=(f 2/p, )(2~f R~/p )-"'.

(100)

(101)

(102)
Introducing the group velocity

dcoo 2Ca'q'
dk co0 (91)

A soliton solution of the KdV equation (101}is"' "
o', = 2u sech'

2
= o&(z' —us'} . (103)

Wu z'-us'
5

&oo = (A —12C + 38(X)')+ 2C a'q',

and the new scales

z=X-V~T, s=eT, (92)

Equation (90) reduces in lowest order in c to the
nonlinear Schrodinger equation"'" (NLS)

7 &p"'+Pp" '+ R
~

&p" '
~

'«&" = 0

where

(93)

(94)

The solution of the NI 8 equation depends in a
crucial way on the sign of PR. Here PR is nega-
tive. In this case, one class of stable solutions
is plane waves with frequency

{d=PR' -R . (95)

«"'= p"'exp i —dz' .
o 2p

(96)

Subsituting (96) into (93) and separating real and
imaginary paris, one finds

Other stable solutions can be obtained by noting
that for PR & 0 the NLS can be reduced to the
Korteweg-de Vries (KdV) equation. This can be
achieved by following the procedure of Taniuti
and Yajima. " One introduces real functions
p and o by ksTPC, f ) =Mf(X, f)'. (104)

From Eqs. (84), (89), (96), (98), (103), a.nd

(104), we find that the height H of the envelope
soliton is proportional to the third power of its
velocity

From our point of view, the important result is
that the effect of the nonlinearities on the phonon-
like solutions leads to a modulation of the ampli-
tude. In the lowest order of asymptotic expan-
sions, the original equation was reduced to the
KdV equation, which exhibits solitons, deter-
mining the amplitude modulation. One expects,
therefore, that the effect of the nonlinearities on
the phononlike solutions will lead to an envelope
or modulation of plane waves, in terms of envelope
solitions. "

In general, solitons have certain features in
common. '"" These mutual features are (i}an
initial perturbation can break up into a series of
solitons; (ii} solitions may collide and pass through
each other without change of shape or velocity but
with a phase shift; and (iii) the speed of an in-
dividual soliton often depends on its amplitude.

The first property implies that a heat pulse re-
presenting an initial perturbation of our system
can break up into envelope solitons. In our case,
the heat pulse can be described by the kinetic
energy, describing the temperature field

p, + (po), = 0,
—2PR p +&'h "'(p '"p.)]. (97) and its half-width 4 obeys

(105)

Now one introduces the small parameter p. and
writes so that

(106)

P PP+ PP1 + ~ ~ ~

O'= OO+ PO1+ ~ ~ ~

and also introduces new scales

z'= p.' '(z -ys) s'= u' 's (99)

g ~~1/6 (107)

This analysis indicates that nonlinear heat con-
duction might be associated with envelope solitons,
provided that the effects of nonlinearity are suf-
ficiently small. It should be remembered, how-
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ever, that the foregoing analysis is somewhat

oversimplified in that we have considered only a
one-dimensional system in the continuum approx-
imation.

HI. MOLECULAR-DYNAMICS TECHNIQUE

To simulate a canonical ensemble, we assume
that the particles suffer collisions with much light-
er ones, which represent the heat bath. The col-
lisions are described by a friction -I'P, and a ran-
dom force q, (t). The associated equations of mo-
tion are then coupled Langevin equations

Mx, = 6,x/6x, -rMx, +q, (f}, (108}

where

(q, (f)rig. (t')) =2MrksT6, ),6(t —f'). (109)

T denotes the temperature of the bath. The sta-
tionary solution of the associated Fokker-Planck
equation i8 the canonical distribution

P.,(X„.»s') Xg, .,X~)-e '+. (llo)

Starting from initial values for positions and
velocities, the particles are then allowed to move
under the influence of the computer-generated ran-
dom force. The temporal evolutions of the varia-
bles are then calculated with a set of difference eq-
uations approximating the Langevin equations
(110). On this basis, one obtains

x, (t), x, (f), Y,(t), . . . , etc.

For a more detailed description of the algorithm
and the random force generation, we refer the
reader to the Appendix.

The system is then allowed to age or, in other
words, to reach equilibrium. After this interval,
the subsequent 10' steps are used to perform time
average, representing estimates for canonical
ensemble averages. An example is

It is obvious that the dynamic properties will be
modified, in particular due to the damping term
in Eq. (108). To reduce these modifications I" must
be chosen in such a way that

where v; denotes the characteristic times of the
dynamics. This implies, for example, that the
excitations do not become overdamped due to the
friction term. Another important constraint on
I" evolves from the energy conservation of a Ham-
iltonian system. Since our system evolves accord-
ing to the Langevin equations, we obtain from Eq.
(108),

= -r[2E~(t) -NksT), (114)

implying that energy is nearly conserved in the
time interval 7„

1/I'» r„
which is equivalent to Eq. (112). Since the system
evolves according to the Langevin equation, the
tifne interval over which its evolution is followed
must clearly be larger than 1/I', so that

1/I'» r,„. (116)

T h denotes the equilibrium chain length. Com-
bining Eqs. (112) and (116), we finally obtain

r,&» 1/r» v, . (117)

From this relation, it becomes evident that en-
ergy can be nearly conserved provided that F and
the chain length r,„are appropriately chosen. An
exception is the region very close to T„where
the characteristic times become very long. In
this region, however, numerical methods become
difficult in any case because the linear dimension
of the system must exceed the corre1ation length,
to avoid finite size effects.

To summarize this section, the above molecular-
dynamics technique allows the simulation of the
canonical ensemble where the global temperature
is fixed. Energy conservation can be nearly re-
alized by choosing the damping constant I' ap-
propriately. The numerical solution of the coupled
Langevin equations then allows estimates of all
the static and dynamic properties which can be
derived from the variables entering the Hamil-
tonian. This includes static and dynamic proper-
ties. For a detailed discussion of the algorithm
and the calculation of time-dependent correlation
functions, we refer to the Appendix and Ref. 22,
respectively.

IV. NUMERICAL RESULTS

In this section, we present and discuss some
numerical results as obtained with the molecular-

d3C g MC 6P, 5X 5X,dt, 5P, M 6X, 5t

=-g[rMx& x,q, (f)]. (113)

Consequently, energy is not conserved because
the Hamiltonian system is in contact with the heat
bath. To avoid artifical features due to the ran-
dom-noise p~lses, the mean time between two
pulses must be small compared to v', . In this case,
we may average Eq. (113)over some pulses. This
leads to the expression
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dynamics technique described in Sec. III, and

applied to systems of 10' and 8 x 10' particles,
subjected to periodic boundary conditions.

-4/S
XT

(X) =G(T, —T)"~', (118)

(119)

In Fig. 1 we summarized the calculated tem-
perature dependence of the order parameter.
From the (X)"~' plot, it is seen that the numerical
estimates are consistent with the Ising power law.

Figure 2 shows the calculated temperature de-
pendence of the isothermal susceptibility

}tr= —Q (8X,8X,,) .1

ls l~
(120}

The data are again consistent with the Ising po-
wer law and yields for the universal amplitude
ratio"

I"/I' =6.3, (121)

which should be compared with the corresponding
ratio of the Ising model,

&x& &x&

A. Static properties

The partition function associated with Hamil-
tonian (1) reduces in the limit as A- -~, 8-+~,
butA/B=-l, to that of the Ising ferromagnet. '
Invoking the universality hypothesis, one there-
fore expects that the static critical exponents
should be equal to the three-dimensional spin-&
Ising model, except at the displacive limit (12C
=A), representing an isolated point. " In this
case, it makes sense to plot the order parameter
as a function of T to the power —", and the isothermal
susceptibility as X~4 ', anticipating three-dimen-
sional Ising-model behavior~

0
0 I

BC
15 20 25 50

FIG. 2. Calculated temperature dependence of the
isothermal susceptibility g& [Eq. (120)].

r = 5.07,
~ Ising

(122)

as obtained by series. '4 In view of our limited
data, we consider the two estimates in reasonable
agreement.

From the data of (X}"' and }(r'~', we also es-
timated the critical temperature yielding

0 T, = V.1. (123)

The temperature dependence of various other quan-
tities are listed in Table I.

As mentioned in Sec. IIC, one expects, in an-
alogy with the previously studied two-dimensional
version of the present mode, the formation of
clusters. '" Figure 3 shows snapshots of the in-
stantaneous positions of the particles in a plane
parallel to (100). Only those particles are marked
where sgnX, =-sgn(X). At ksT =2, where the
probability of overcoming the potential barrier
is small, clusters rarely occur, as illustrated
in Fig. 3(a). With increasing temperature, the
cluster formation becomes more probable and

3 e

TABLE I. Numerical estimates for (6XMQ, (BOX),
(X), (X&}, and ~~ defined in Eqs. (41) and (52).

k T (6XMC) (6Xt5X) (X2i)

2-

0
0

kST
I

2 4 6 k T 8SC
FIG. 1. Calculated temperature dependence of the

order parameter (X) and (X) 6

0.25
0.50
1
2

4
5
6
8
8.5
9

15
30

0.05
0.28
0.77
4.05

16.59
39.13
95.29
49.90
50.48
58.18

166.35
614.45

0.02
0.09
0.16
0.46
1.43
4.00

16.60
89.66
54.36
37.58
16.19
14.07

-6.50
-6.25
-5.74
—4.67
-2.23
-0.76
+ 0.91
+ 4.15
+ 4.55
+ 4.97
+ 9.45

+ 20.35

8.94 2.44
8.87 2.42
8.73 2.39
8.42 2.33
7.56 2.13
6.93 1.98
6.17 1.78
4.91 1.38
4.94 1.39
5.00 1.41
5.77 1.67
7.49 2.12
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S„,(II, (o)

=
JI

e-' '(X(-q, t)x(q, 0)} (x(-g, o)x(q, 0))

(124)

I'~((a&) = lim G~e(e = &u+ ie) = -X~(~),
where

(128)

Sax(tl »
X q, tX q, O X -q, OX q, 0

(125}
when the variables X(j) and 3C(q) are as defined in
Egs. (5) and (7). The Green's functions introduced
in Sec. II and the spectral densities are related as
follows:

FIG. 3. Snapshots of instantaneous cluster configura-
tions in a plane perpendicular to [100]. The squares
designate particles whose local displacement X& have a
sign opposite to (X,)p-p (a) A'gT =2' (b) @AT =4' (c) @AT
=5; (d) k~T =6; (e) kgT =8; (f) k~ T =15.

X„~((u)= n(1 —e )S„„((g),

and in the classical limit,

X~~(~) = vPS ~~(~) .

(127)

(128)

the cluster size is seen to increase by approach-
ing A'sT, = 7.1. Above T, [Figs. 3(e} and 3(f}], the
clusters of positive and negative X, must, of
course, be equal on the average so that the order
parameter vanishes.

The formation of these clusters and the associ-
ated cluster walls has important consequences.
Their formation implies large-amplitude oscil-
lations which can no longer be described by con-
ventional phonon perturbation theory. The associ-
ated theoretical difficulties that beset a description
of such complicated oscillations are particularly
severe around T,. In fact, at low temperatures
the formation of clusters is unlikely, and at high
temperatures the system will behave like uncoupled
quartic oscillators. In other words, at low tem-
peratures we have nearly linear equations with
dispersion, around T, nonlinear equations with
dispersion, and at high temperatures dispersion-
less equations. In the present case, we know
(Sec. II C) that nonlinearity and dispersion may
lead to solitary waves; a prominent example is
the kink solution (80), which may be interpreted
as a cluster wa11. Figure 3 then demonstrates
that kinklike solutions play an important role
around T„even in a discrete and three-dimen-
sional lattice model.

B. Dynamic properties

To investigate the excitation spectrum, we cal-
culated the spectral densities

I I I I I I I I I I

0 0.25 0.5 I 2 4 6 8 15 30

AHHARI40}IIC PERTURSATIOII THEORY

72

T, &SxSX& =0 TROEPEROERT

QUARTIC

OSCILLATORS

FIG. 4. Sketch of the essential features of the excita-
tion spectrum in S„„(q,~) and S&@(q,co) at various
temperature for wave vectors q= 0 and q=(7I/10a, 0, 0).
HD denotes the central peak due to heat diffusion, and C
the central peak arising from the cluster dynamics. ss
denotes the second-sound peak, and oss overdamped
second sound.

According to Sec. IIC, the excitation spectrum is
expected to be rather rich and complicated due to
the implications of energy conservation and the
presence of small- and large-amplitude oscilla-
tions. It might be appropriate, therefore, to start
with an overview of the essential features of the
numerical results. In Fig. 4, we have sketched the
essential features appearing in S„(II,u&) and

%3:(q, to} for various temperatures at wave vectorsj= (0, 0, 0) and q = (s/10a, 0, 0), respectively. At
k&T =15 and 30, there is a broad phonon peak in
S„, but no ceIitral peak (GP) occurs. Sa& only ex-
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83,6

As» (q,~)

FIG. 7. S „(q,a) at k ~ T
=6 for q=0.

8.6

0 OQ8 0.058

35

C„—= 0.31,1r"a (129}

its properties were estimated. According to Eqs.
(69) and (60), it should occur as a weak resonance
in S„„and as a strong peak in 83 3., in accordance
with Fig. 5. A further prediction relates to the
second-sound velocity C„, given by Eq. (67). Set-
ting ~&= 2.42, we obtain the estimate

0 0$ 036 058 078 098 1$

FIG. 9. S„„(q,rv) and S&3 fq, ~) at k&T =8 for q
= {&/10a,0, 0).

s~~(q, ~)

leading to the frequency

&u=0. 1 C„w/a=0. 031, (130)

I I I I

068 Q88 (08 1.28

50

908

0 0Ol8O(68 454

A

xx A.)

I I I ~
068 088 lO8 N3 138 l.58

FIG. 8. S, (q, ~) z&QS+X(q, ~) at k&T =6 for q
= (~/10, 0, 0) .

atq„,„,=qs/a = 0.1. This estimate is in very good
agreement with the peak at ~ =0.028. %e conclude,
therefore, that the low-frequency peak is due to
second sound.

Figure 6 shows the dispersion relation derived
from the peak maxima in S,„and S~3.. The phonon
frequencies agree very well with the high-frequen-
cy estimates based on Eg. (52) (full line) which
have been included for comparison. The straight
line in Fig. 6(b) represents the estimated second-
sound velocity Eg. (129}; evidently it fits the nu-
merical data very well. The second peak is found
to decrease in intensity and its half-width to in-
crease with increasing wave vector.

As discussed in the overview and sketched in Fig.
4, second sound becomes overdamped around k&T
=2. This is illustrated in Fig. 7, showing the (d

dependence of S,„(g,~) and Saa(j, ~) at

RENT

= 2
for q = (v/10a, 0, 0). Consequently, well-defined
second sound occurs only in the temperature win-
dow below T,.

Around kT=4, anew feature sets in, namely, a
CP at q=5. This is illustrated in Fig. 7, for ksT
= 6. Since the half-width of the CP, due to heat
diffusion, is proportional to q~, the q = 0 peak must
be attributed to the cluster dynamics. At finite q,
the cluster CP is superimposed on the heat-diffu-
sion peak. This situation is illustrated in Fig. 8.
Obviously, the superimposed central peaks are the
dominating feature in both S„„and S~~. The
strength of the additional peak around ~ = 1.08 in
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11.2
Sxx ~q ~~

194

FIG. 10. S,„{0,(d) at
k~T =8. 9.7

0 018 038

S„(q,~) is very small, so that the phonon is es-
sentially overdamped. The small intensity of the
phonon contribution indicates that on approaching
T, and for small wave vectors, the phonon branch
disappears from the scene. For larger wave vectors
it gradually appears and becomes well defined near
the zone boundary.

Above T„energy and displacement fluctuations
are no longer coupled. As a consequence, heat
diffusion will no longer give rise to a CP in S,„.
Figure 9 shows the e dependence of S„, and S3.3. at
knT=8 for q=(tt/10a, 0, 0). Due to the reasons
mentioned above, the CP in S„„is only a result of
the cluster dynamics. Its counterpart in S~3.,
however, is still a superposition of heat diffusion
and cluster peaks. The cluster contribution is il-

Sxx (q.~)
1.7—

I I I I I I I

0.18 038 0.58 0.78 098 1.18 138 1.58

FIG. 12. S» {q, ur) and S~& {q, ro) at k sT =15 and q
= (x/1Qa, 0, 0).

2.4
Sxx (4)

8.8

0 0.18 038

lustrated in Fig. 10, showing S„„(0,u&). Figure 9
also reveals that on approaching T, from above,
the phonon becomes overdamped for small wave
vectors. It becomes better defined for larger wave
vectors, as is seen in Fig. 11. Finally, we con-
sider k&T =15. Here, we no longer observe a cen-
tral peak in S„(0,~) because at high temperatures
the jump frequency over the potential barrier be-
comes quite large. Consequently, the CP in S~~
for q 4 0, as shown in Fig. 12, is only due to heat
diffusion. S,„no longer exhibits a CP but a broad
"phonon" peak.

Finally, we turn to the critical slowing down.
According to the universality hypothesis for dynamic
critical phenomena, 4 one expects that our sys-
tem should become equivalent to a purely relaxa-
tional time-dependent Ginzburg- Landau model with
conserved energy. Accordingly, the characteris-
tic time of the order-parameter fluctuations is ex-
pected to diverge as4

I I I I

0 Q18 038 Q58 078 0.98 1.18 138

FIG. 11. 8„,(q, ~) and $~3. (q, {d) at k&T =8 and q
=(2~/s, o, o).

(X(-q, t)X(-q, 0)) d
0

where

« = (T-T,)/T,

(-q, 0)X(-q, 0))

(132)
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TABLE II. Numerical estimates of the characteristic
time Eq. (131)and of the amplitudes B (P& Pc= 7.1) and

a'(r & T,).

5
6
8
8.5
9

0.44
0.30
0.15
0.13
0.20
0.27

15
35
84
17
12

9

4.8
6.5
5.9
0.98
1 ~ 26
1.44

& = v(2+ o./v) . (133)

v is the critical exponent of the correlation length
and o. of the specific heat. According to the uni-
versality hypothesis for static properties, which
we dicussed in Sec. IIIA, v and 0. should be iden-
tical to the corresponding exponents of the three-
dimensional Ising model, namely, "

0.638, o = s

yielding

&=1.4 .

(134)

(135)

our results are summarized in Table II. Since
the limited data do not allow an estimate of &, we
have taken the above value and calculated the am-
plitudes B and B, yielding

B+/B = 4.7 . (136)

The reasonable agreement between the values for
B' and B, respectively, suggest that the critical
dynamics is indeed equivalent to that of the TDGL
model with conserved energy.

C. Nonlinear heat-pulse propagation

To study the propagation of heat pulses in the
second-sound regime, we adopted the following
procedure. The system, subjected to periodic
boundary conditions, was brought into thermal
equilibrium with temperature T. The particles in
the first layer of two opposite planes of the cube
were then brought into contact with a gas of par-
ticles having temperature T~ and mass M. After
switching off this contact, we followed the propa-
gation of the resulting temperature pulse, charac-
terized by the distribution of the kinetic energy of
the particles. The heat source was simulated by
assuming collisions between the gas and layer par-
ticles occurring at random time intervals t&, dis-
tributed according to (1/&) exp(- fq/7'), 0«q & ~, &

being the mean time between two collisions. The
resulting new momentum MX, (t&) of the ith layer
particle was then chosen according to a Gaussian-
distributed random number with variance Mk&TI, .

This procedure was applied to any particle in the
first layers of the two opposite planes of the unit
cube. We chose 7=-,' time units and the "heat
source" was switched on over five time units.
Consequently, there were 15 collisions per layer
atom, on the average. The remaining part of the
system was assumed to evolve according to the
Langevin equations (108}. As a consequence, this
part of the system was in contact with a heat bath,
and its temperature fixed correspondingly.

Figure 13 shows the propagation of the tempera-
ture pulse of initial height k~T~= 0.6 with the aid of
a hypsometric plot. The intensity of the blackening
measures temperature and is discretized into four
levels. The ambient temperature is k&T = 0.125,
lying within the second-sound regime. According
to Eq. (103), the profile is represented by the kin-
etic energy in the I th plane, perpendicular to [100]
in the cube. The profile is seen to propagate with

velocity s, according to T = T(t -X/u}. It then col-
lides with a pulse coming from the opposite side.
The collision has some features reminiscent of
solitons, i.e., the pulses penetrate one another
without considerable change of shape or velocity
but with a small phase shift, defined by

TABLE III. Profile velocities for various initial pulse
heights k&T& at ambient temperature WI 7.'=—0.125. These
values should be compared with the second-sound velo-
city C~7t/a= 0.28.

g 7(/a

0.2
0.4
0.6
0.8
1
1.2
1.4

0.30
0.31
0.32
0.33
0.33
0.33
0.35

An important difference with respect to the col-
lision of solitons is the appearance of a localized
pulse (u= 0) after the collision. It should be borne
in mind, however, that the system is a three-dim-
ensional discrete lattice model, where infinitely
long-lived solitons are unlikely.

To substantiate the solitonlike properties, we al-
so estimated the relation between height and half-
width of the profile before the collision occurred.
The results are shown in Fig. 14. For small pulse
heights, the prediction &-H 'i' [Eq. (107)]fits re-
markably well. For higher pulses, however, sys-
tematic deviations occur. This indicates that the
1ow-order expansion, outlined in Sec. IID, is rea-
sonable for small amplitudes only. Nevertheless,
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FIG. 13. Hypsometric
plot of the temporal evolu-
tion of the temperature
profile with initial height
k&T =0.6 at ambient tem-
pe rature k z T =0.125. The
intensity of the blackening
measures temperature and
is discretized into four
levels. Temperature is
measured in terms of the
kinetic energy in the Lth

plane perpendicular to [100).

for small amplitudes, the pulses propagate like the
envelope solitons derived from the continuum ver-
sion of the equation of motion [Eq. (103)].

From Table III, it is seen that the profile veloc-
ity u, evaluated before the collision, approaches
the second-sound velocity if the initial pulse height
T~ approaches the ambient temperature k&T= 0.125.

At the upper limit of the temperature windom,
where second sound becomes overdamped, inher-
ent nonlinearity becomes crucial because the for-
mation of clusters sets in. Here the basic as-
sumption underlying the derivation of envelope sol-
itons breaks down. It is the assumption that the so-
lution of the deterministic equation of motion is
relevant in the statistical description of the sys-

15—
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FIG. 14. Profile half-width 6 vs height H to the
power —

6
for k ~ T = 0.125.
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FIG. 15. Hypsometric
plot of the temporal evolu-
tion of the temperature
profile with initial height
kT =3 at ambient temper-
ature k&T =2.

tern. From the spectral depsities, we know, how-
ever, that the local temperature fluctuations be-
come purely relaxational above the upper window.
Here, the local temperature fluctuations shouM be
well described by the conventional heat-conduction
equation

8T
V2

8$
(13V)

This is illustrated in Fig. 15, showing the propa-
gation of a temperature pulse with initial height
k&T~= 3 and ambient temperature kT= 2, where
second sound is overdamped. There is no longer a
solitonlike propagation. The pattern is in qualita-
tive agreement, however, with the relevant solu-
tion of Efl. (13V), namely,

T(x, t) = T (4Dfft) '~'exp(-X'/4Dt)+ T . (138)

U. SUMMARY AND CONCLUSIONS

The present study has revealed that nonlinearity
and dispersion lead to a very rich excitation spec-
trum. Moreover, we have found that energy con-
servation and the nonvanishing coupling between
order-parameter and energy fluctuations below T,
plays a crucial role.

At low temperature, anharmonic-perturbation
theory applies. A well-defined optical mode exists
and second sound occurs in a temperature window
in both the energy and displacement spectral den-
sities, due to the nonvanishing coupling between
order-parameter and energy fluctuations. At the
upper limit of the window, large-amplitude oscil-

lations set in, leading to the formation of clusters.
Second sound becomes ovexdamped and changes
over to heat diffusion, giving rise to the Rayleigh
central peak. On approaching T„ this CP is su-
perimposed on a CP arising from the relaxational
cluster dynamics, which also occurs at zero wave

vector. The optical mode becomes overdamped
and its weight in the spectral densities decreases
as one approaches T,. Above T, heat diffusion oc-
curs in the energy spectral density only, because
energy and displacement fluctuations are no longer
coupled. The CP in the displacement spectral den-
sity can be unambiguously traced back here to the
cluster dynamics.

The critical slowing-down data are consistent
with the universality hypothesis for dynamic phe-
nomena, according to which the critical dynamics
should be equivalent to that of the time-dependent
Ginzburg-I 'mdau model with conserved energy.

At very high temperatures, the system behaves
like independent quartic anharmonic oscillations.
Another interesting discovery was the envelope
solitonlike propagation of heat pulses. This ~ e-
sult and the demonstration of the cluster formation
and cluster dynamics revealed that solitary wave
and solitonlike behavior play an important role
even in three-dimensional discrete lattices, where,
however, they certainly have a finite lifetime only.

Finally, it might be appropriate to discuss the
connection between the model which we have stud-
ied and real systems. There is considerable evi-
dence that the static properties of distortive phase
transitions are well described by anisotropic n-
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component versions of the present model. ' It then
appears that even the one-component model con-
sidered in this work embodies some of the essen-
tial features of real systems. Nevertheless, one
should bear in mind that these models are incom-
pressible, due to the rigid reference lattice. Con-
sequently, acoustical modes and their interaction
with the order-parameter fluctuations are either
lacking or taken into account in terms of an adia-
batic approximation. In any case, they would also
affect the static properties.

The fact that our model is that of a pure system
appears to be more crucial. As the history of the
experixnental work on second sound reveals, ' to
produce equivalent real systems may be a lengthy
procedure.
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x,(t - n) =x,.(t) —nx,.(t)+-.'~ 2x, (t)
~ ~ ~

--', ~'x, (t)+ o(~') . (A4)

Using the ansatz

x (t)=e' "'e (AV)

where n and P are real constants and e is a unit
vector, we obtain together with the equation of
motion (A5),

Adding these two quantities we get, as in Ref. 26,

X,(t+ ~) =2X,(t) —Xz(t- t )+ ~*X((t)+O(t 4) . (A5)

Let us investigate its stability properties for the
harmonic oscillator problem

V(X,) =-,mu&', X'z. (AS
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or

~~«+8~ &-iah, -Bh+ 2 0

cosa d coshP 4 = 1 —
& b, (d~

(AS)

(A9)

APPENDIX: INTEGRATION OF THE LANGEVIN EQUATIONS

and

sin+6 sinhPA= 0. (A10}

The integration technique of the Langevin equa-
tion

~0

m, X, =-V,V(X„.. . ,)x„,t) —I'MX, + l, (zt) (Al)

will be suMivided into the following parts: (A) in-
tegration of the deterministic equation; (8) mod-
ifications due to the presence of damping; and

(C} introduction of the random-noise source.

To discuss the solutions to these equations, we
have to consider three different cases:

(i) hn enzz, n=O, +I, +2, . . . .
In this case, P has to be zero and the solution is
thus stable. Thus, the approximation only leads
to phase errors which result in a frequency shift.
The frequency o. is found to be

A. Integration of the deterministic equations

We write our system of coupled differential
equations in the following form:

n = (1/ti) arc cos(1 ——,
'

L'&uzo),

and for small 6u,
Q = (do(l + 24 LP(do) ~

(A11)

(A12)
0 ~

mz Xz = -VzV(xz, X2, . . . , X~, t), (A2)

where the subscript i refers to particle i with
mass m, . Including the presence of external
forces, the potential V may be explicitly time de-
pendent. In this section, however, we confine
ourselves to conservative forces. Thus, V is
taken to be independent of the particle velocities

This suggests the use of a numerical scheme
which does not require the knowledge of first der-
ivatives.

A simple formula" can be derived from a Taylor
expansion of X,(t + &) up to third derivatives

~ ~

x,(t+ n) =x, (t)+ nx, (t)+-,'n'x, (t)

(ii) bn =2nzz, n=O, +1, . . . .
Ezluation (A9) in this case becomes

coshPb, = 1 ——,dP~'p (A15)

which for nonzero ~p has no real solution for P.
For ~p=0 we get the correct result P=O.

(iii) an=(2n+ 1)zz, n=O, +1, H, . . . .
In this case, Ezl. (A9) is

coshPA = 2 (h&o,)' —1, (A14)

which has no real solution as long as h~p~2 For
h, mp& 2 we find unstable solutions with P & 0.

Thus, the stability limit is given by

t ~ ~

+ -', a.'x, (t)+ o(~') (AS)
h(dp= 2. (A15)

The finite difference approximation is thus stable
as long as
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n& T/v, (A16) C. Introduction of the random-noise source

where T is the period of oscillation.
The numerical procedure defined by Eq. (A5)

is not self-starting because it requires the knowl-
edge of both X(-ti) and X(0). In initial-value prob-
lems, where X(0) and its derivative are defined,
X(-b,) must be calculated using Eqs. (A2) and

(A4).
. The dynamical initial conditions, i.e., X,(t=0},
X,(t = 0) are not generally known. Instead we have
prescribed values of thermodynamic quantities,
e.g., temperature, density, number of particles,
etc. In order to generate corresponding initial
states, I' must not be chosen too small in order
to reach equilibrium in a reasonable time interval.
To avoid artifacts caving to a particular choice of
I' and of the random force, equilibrium is best
reached by stepwise decreasing values of F.

The stochastic force q, (t) in Eq. (11}is a. Gaus-
sian-distributed random vector. Its + component
has the following property:

{q, (t)q™(t+~))= 2m P,TI 6,.„6(~). (A23)

Here, k~ denotes the Boltzmann constant, and T
stands for the temperature of the heat bath on
which our system is coupled by F. In a Gauss-
Markov process, the times t,. between two random-
noise pulses are distributed as

(A24)

where 7 is the mean time between two pulses. In
a system with a discrete time-interval grid of
time steps 4, the probability p that after b one
random pulse acts, is given by

B. Equations of motion with damping
p, (t) dt = 1 —exp

T
(A25)

In contrast to the situation considered above,
here the equations of motion explicitly depend on
the velocities R„

~ ~

m) X( = -V)V(x„.. . , X», t) —I'm ) Xg . (A17)

The velocities X, are eliminated from Eq. (A17)
by introducing new variables

y =e"'"X (A18)

or inserting the definition of y, ,

X (t+ n) = 2X,(t)e-". " e '"X,(t n-)+-n'8-" t-'

x [4 I' Xq(t} —(1/m g)V (V(x~, . . .„X»,t)]

Then Eq. (A17) becomes

y) = ~l'y) —e ~ (1/m;)V)V(X~, X2, . . . , X», t) ~

(A19)
This equation can now be integrated by means
of Eq. (A5),

y, (t+ a) = 2y, (t.) y, (t —a)+ t—i'~y, (t)+ o(n'),
(A20)

An ansatz that satisfies Eqs. (A23) and (A25) is

q', (t) =A Q 6(t —t~)y, (t~)e(p .—ao, ,). (A26)

j labels the time steps, y, (t~) is a Gaussian-dis-
tributed random number, and a„& is a random
number equally distributed between 0 and 1. In-
troducing Eq. (A26) in (A23) and averaging over
a long time period T, we get

(y, (t,)y', (t,,)e(p-,„)e(p- '„, ).
(A27)

The properties of the Gaussian random numbers
y,. (t,.) lead to the relation

(y (t&)y', (t&)e(p - u, „)e(p- u.,& ))

=P~ t~ia6gp (A28)

+ o(n') . {A21) Therefore, Eq. (A27) can be written

This equation, although of order n' like Eq. (A5),
has a serious deficiency; it is not translationally
invariant. However, this can be corrected by re-
writing Eq. (A21) as

x,(t+ n) = x,(t)+ [x,(t) -x,.(t —t )]e-"'
—n'e r~ ~'(1/

m) (VX„... , X„,t)
+ o(rd) . (A22)

This equation is identical to Eq. (A21) up to
third order in &. Furthermore, it displays trans-
lational invariance.

(q, (t)q,'(t+ ~))= iim — dt +6(t t,)
p~qy T p

x 6(t t, + v}p6,~6„

= lim ptV6)~6 q6(7), 'g2
(A29)

where T=Rd.
Comparing Eqs. (A29) and (A23), we get for A,

A = [2m, k» T I'b./P] '~' (A30)

and introducing this value in Eq. (A26) leads to
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q, (t) = [2m, k~T ra/p] 't'

x g 6(t - t,) y (t,)e(p -a, ,) . (A31)

power residue method (Ref. 28)

ug = Xug i(mod2 );

Qp and X must be odd numbers,

(A38)

The properties of the 5 function can now be used
to integrate Eq. (Al) over a time interval t~ —~

to tf+ z and z-0,

l

dll'
x, dt' = q, (t') +—0(~) .

tf &t -6 if

The left parts read X,(t+ 0') - X,(t —0'). So we
find for the velocities

(A32}

X;(tq+ 0') =X, (tq —0')+ [ke Tra/Pm (]'

~ y, (t,)e(p . a„.,)—
=x;(t, 0'.)+.6-x; (A33)

The second term depends on l where, according
to Eq. (Al),

6X, (t) = 6X;(0)e-", (A34)

so that
rz

6X, (t+ Lk) = 6X; (0) e ' dt = 6X, (0)

=6X, (0)ne r~t2. (A35)

Using 6Xf (t+ n) introduced in Eqs. (A22) and (A33),
we find

X,(t+ n) =X,(t)+ [X,(t) -X,(t- n)]e "~- cPe "~~'

x (1/m, )[V,V(X„.. . , X„,t)

+ (m, k, Tr/t py t~.

x y;(t)e(p —a. )I, (A36)

where the o, components of y and a„are collected
as vectors.

The random part in Eq. (A36) now acts as a rec-
tangular function in the acceleration with height

(m, ks Tr/np)' ', over the interval between --,'n
and+-,'b, . These folding properties show that a
Gauss-Markov process is simulated only if 2v/n
is much larger than the frequencies for which
the spectral densities are different from zero.

The Gaussian-distributed random numbers can
be combined from a set of l2 random numbers
equally distributed between zero and one (Ref. 27),

12

y = + a,~
—6.0. (A37)

a„=u, /2'. (A39)

([X, (t)]') = ([Xf (t —0')]')+ (1/m ()ks Trn,
and, together with Eq. (A40),

([X;(t)]'&=((X;„„)')+(I/2m, )k, Trt . .

In equilibrium, when we can assume that

([X, (t)]'& = keT,

we then get

&[X.(t)]'&=
1 ——' I'4

(A42)

(A43)

(A44)

(A45)

A further condition is that the distribution of

6X, is much smaller than the Boltzmann distribu-
tion of the particles, and using Eqs. (A44} and

(A31}we obtain

and

k Tr(t/pm, )«k T/»m, . (A46)

These pseudorandom numbers have good random
properties in the left-hand-side figures. The
right-hand-side figures are correlated. To obtain
reasonable randomness with only marginal re-
peating parts, we have chosen b= 64, X=2"+ 3

belonging to the odd-number subclass St+3, and
for up an odd number corresponding to the
time and date to start with uncorrelated noise
initials.

In equilibrium systems, the mean-square vel-
ocity of one component corresponds to tempera-
ture. For calculations of X, and its mean square,
we approximate the tangent at f, by a secant through
the points t —4 and t+ 6; these approximations
lead to second-order correction terms of 6 in
&X',&. The random noise on the other hand, in-
volves first-order corrections which may be
taken into account,

X,. „„(t)= [X,.(t+ n) —X,(t —4)]/2nt . (A40)

Using Eq. (A33), we observe that the mean square
at I; has two parts,

&[x (t)] &=-'&[x;(t-0')]'&+-'&I;(t+o')]') (A41)

Combining Eqs. (A41), (A33), and (A28), we ob-
tain

To create the random numbers a,~ we used the I'g« —,'p . (A47)
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