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Correlated states in a model two-dimensional layer
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We present results of a calculation to model the behavior of density-wave correlated states in layered

compounds of the trigonal prismatic type. The effect of an attractive or repulsive intrasite interaction

between itinerant electrons is studied in the Hartree-Pock approximation for a two-dimensional band

structure. The stable state depends on the electron-electron interaction parameter and it may be (i) the

normal paramagnetic state, (ii) the ferromagnetic state, (iii) a single charge-density wave, (iv) a single spin-

density wave, (0) a triple charge-density wave, (vi) a novel asymmetric charge-density wave, or (vii) a mixed

state which shows spin and charge-density waves for repulsive electron-electron interactions. The solutions

are characterized by a generalized conductivity.

I. INTRODUCTION

In 1960 Overhauser" suggested that the param-
agnetic state of agas of interacting fermions isun-
stable to the formation of spin-density waves
(SDW) or charge-density waves (CDW, DW col-
lectively), In the formation of a density wave the
electrons correlate so that the electron density
for a spin shows a new periodicity

p.(r) =a[I —icos(Q* r-o)].
In the CDW, the spin-up and spin-down density
waves are the same so there is nowhere a net
magnetization. For the SDW the two density waves
have opposite phase so that while the total charge
density is uniform, there is a wave of magneti-
zation. In general intermediate states are pos-
sible.

Interest in density waves has intensified recently
as a variety of materials now seem to show den-
sity-wave behavior. Chromium' ' provided much
of the early interest as an example of an itinerant
antiferromagnet (SDW). Recently, ' "the guasi-
one-dimensional compounds tetrathiafulvalene-
tetracyanoquinodimethane and NbSe, have been
shown to exhibit charge-density waves. Another
class of materials are of interest because of their
anomalous electronic properties: the layered tran-
sition-metal dichalcogenides. "" Wilson et al."
have shown that CD% formation is the source of
the periodic lattice displacements for these materi-
als and that these DW correlations occur in three
symmetry related directions simultaneously to
form a triple charge-density wave (TCDW). It has
been proposed that a mechanism that leads to D%'

formation in the 1T polytypes is related to a spec-
ific nesting character of the Fermi surface.

More recently, +ice and Scott" have noted that
the generalized susceptibility y(q) of two-dimen-
sional materials that have two or more saddle

points in their band structure ean diverge. The
divergence occurs if the Fermi level approaches
both saddle points and it is exhibited in X for wave
vectors g* connecting the saddle points. This
divergence signals that the paramagnetic ground
state should be unstable to DW fluctuations of wave
vector Q„*. The detailed nature of the ground state
is not obtainable by this susceptibility calculation.
A more complete model should go further to in-
clude finite amplitude effects, as well as the sym-
metry of the system.

It is our purpose to solve a simple two-dimen-
sional model that incorporates the lattice symmetry
and a nontrivial Fermi surface and to characterize
the properties of the resulting solutions.

The transition-metal dichalcogenides show a
structure in which triple XMX layers are held
together mainly by Van der Waals forces. " Each
XMX layer consists of three hexagonally packed
atomic planes; one metal plane M is surrounded
by two planes of chalcogen X atoms. An atom of
the metal atomic plane can find itself in either
trigonal prismatic or octahedral coordination with
the surrounding chalcogens. The various methods
of stacking the layers give rise to a large variety
of "polytypes. " Our parameters were chosen to
reflect a single layer of these materials.

II. THE MODEL

Because of their conductivity behavior, "'"the
transition-metal dichaleogenides can be regarded
as quasi-hvo-dimensional. We feel that since
conductivity takes place mainly through the metal
orbitals, it would suffice to take a model of a
single band of states arising from a layer of metal
atoms. The band parameters are chosen so as to
copy the main features (maxima, minima, and

saddle points) of the single band at the Fermi level
in the so-called 2H polytype of NbSe. , as cal-
culated by Mattheiss using the augmented-plane-
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wave method. '0 We made slight alterations to set
the Fermi level to coincide with the saddle point at
the 7 point, exactly halfway behveen I' and K.
Since an instability is expected to set in for wave
vectors connecting the saddle points, we have
altered the bands slightly so that Q*=—,'6, where
G is a particular vector of the reciprocal lattice.
In this way the 0%'s will be in a commensurate
state. The paramagnetic Fermi surface is shown
in Fig. 1. It corresponds to 0.74 electrons per
chemical unit cell, i.e., the Fermi surface occu-
pies 0.27 of the original Brillouin zone (BZ). The
itinerant-electrons effective Hamiltonians 2'22 is
given by

0.42
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0.3&

~ 036

0.34

0.32
M

&= z t;~a( a~ +Urn()n(I.

The at and a,, are the creation and destruction
operators of the tight-binding Wannier states for
site i and spin o. The t,j are the hopping param-
eters between atoms i and j, so the band energy is

Our model contains hopping out to the fifth nearest
neighbor. The model includes only short-range
interactions, i.e., Coulomb interactions for elec-
trons only in the same ceU.

We solved the Schrodinger equation for the above
Hamiltonian in the unrestricted Hartree-Fock ap-
proximation. The equivalent Hartree-Fock Hamil-
tonian in the Bloch basis is then

FIG. l. (a) Six-parameter fit to the conduction band
in 2H-NbSe2 as calculated by Mattheiss. The dis-
placement in the bottom of the band is an artificial
result in improving the curvature of the Fermi surface.
(b) Fermi surface with the wave vectors and the sym-
metry points of the BZ indicated.

scF= ~P~f ~k +
& f 5&ski)sk'-lt k't ( k'-5& k'k) k 5t kt ( k+5& kt) ( k'-lk k't)

k k'

4+at k't) k'-lk kt (sk'-lgk kt) k+5tsk't ( k+51 k%) (sk'-fiske) ~ ' (2)

We only consider solutions for which the corre-
lation functions

-x~
5g N(ap, g,a-„,-, )

are nonzero only for g =o', and Q=Q„*and Q=O.
We thus exclude solutions for which the last three
terms in (2) contribute.

For general Q, incommensurate with the lattice,
the gap parameters gg =U5y, connects any state
of spin g with an infinity of other states. But if the

Q is an integral fraction of some reciprocal-lattice
vector, i.e., commensurate with the lattice, the
set of connected states close and the system dis-
plays a new periodicity to which Bloch's theorem
can be applied. In the model we are considering

there are four states interacting and the new, re-
duced BZ is one fourth the original size [Fig. 2(a)I.
Ai this point it is more convenient to relabel the
original unmixed Bloch states k by a reduced wave
vector k and "band" index g = 1,2, 3, 4. The new
folded paramagnetic band structure is shown in
Fig. 2(b). The Hamiltonian matrix takes now the
form

+Un'ql
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F&G. 2. (a) Folded BZ in the extended-zone scheme.
(b) Folded band structure.

where

n, =5y, , N ' P(ak, ap, )

5g =N Q f~q (kq'o~ keg)(khan~ kq(y), (4)
k, q, X

where there is, for each k vector, a unique one-
to-one correspondence between the band indices
q and q' and the Q vector connecting any two rele-
vant states; fk~, is the Fermi factor. The values
of d,y, resulting from (4) are inserted into (3) and
the process is repeated until self-consistency is
obtained. In our calculations the unfolded BZ was
covered with a grid of 1200 points. The state can
be characterized by calculating the site density of
electrons

p, (r) =g5y cos(Q r).

is just the average number density for spin p.
The Hartree-Fock equations were solved by an

iterative procedure. An initial approximation for
the 5y, is used in Eq. (3). If the eigenstates of the
approximate Hartree-Fock Hamiltonian are labeled
~keg), where A, is the new band index, then the
correlation function can be calculated by

While convergence was good for ~U( either small
or large compared to the overall paramagnetic
bandwidth B, the convergence was often slow in
the intermediate regime

~ U~ =B. Solutions were
found for the cases of both attractive and repul-
sive U. Several states were studied in each regime
and a phase diagram of total energy per electron
(Fr/N, ) as a function of U was calculated.

One point is worth considering. The band struc-
ture given in Figs. 1 and 2 contains, as all two-
dimensional structures, logarithmic singularities
due to the saddle points. These do appear in the
density-of-states and in the susceptibility calcula-
tions. These logarithmic singularities are by nec-
essity extremely weak and the numerical proced-
ures used in this paper are not sensitive enough to
produce the corresponding divergences in the rele-
vant quantities. In this sense our real band struc-
ture is not the continuous curve depicted in Figs.
1 and 2, but rather the collection of 1200 points
chosen in the grid used in our numerical proced-
ures.

It should also be pointed out that we are not con-
cerned with instability (susceptibility) calculations,
but with total-energy values. Since typical energy
gaps are of the order of 10 ' Ry, our error in
total energies due to our numerical approximations
in the vicinity of the saddle point can be estimated
to be less than 10 4 Ry per electron. This should
be kept in mind when analyzing our results.

III. RESULTS

There were several types of solution that were
studied: (a) The simplest is the paramagnetic
state (P) in which the single-particle band is doub

ly occupied according to Fermi statistics. (b) The
ferromagnetic case (F} in which the band is filled
with electrons of mainly one spin. (c) The CDW
which has correlations for a single Q,* only. (d)
The TCD%, which has the full symmetry of the
lattice and has correlations in the three symmetry-
related Q,*'s simultaneously. (e) The asymmetric
charge-density wave (ACDW) which has correla-
tions in the three Q» but of different amplitudes so
that the resulting state is of low symmetry. (f) The
SD% which only differs from CD% in the phase of
the waves of opposite spin. (g) A mixed density
wave (MDW) which has the full hexagonal symme-
try of TCD%, but it has correlations in charge
and spin. Further details are summarized in Table
I.

Some of the physical limits should be noted. As
U-0 it is obvious that the paramagnetic state is
stable. At the opposite extremes, p-+~, the value
of the electron density becomes the most important
parameter, In the attractive atomic limit (U--~}
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TABLE I. Characterization of the various states.

Atoms
Degree per cell Symmetry 6n 5f f 62 f 63f Qf ) '62$ 63)

Paraniagnetic Q)
Charge-density wave (CDW)
Triple charge-density wave P'CDW)
Asymmetric charge-density wave (ACDW)
Ferromagnetic (E}
Spin-density wave (SDW)
Mixed-density wave QNDW)

+6h
D2a

D8h

D6I,

&2a

Dsa

0 0
0 a
0 a
0 a
a 0
0 a
a b

0 0
a 0
a a
a a
0 0

-a 0

0
0
a
b

0
0
C

electrons always try to pair up on a site, while for
the repulsive case electrons try to avoid being at
the same site. If we consider n =-', (which is ap-
proximately our value of n =O.V4) the smallest unit
cell containing an integral number of electrons
would be a 2x2 or 4x j. structure. However, in the
attractive atomic limit, a lower energy is obtained
with an eight-atom unit cell that contains an even
integral number of electrons. This allows for sev-
eral states with complete site pairing. For repul-
sive U, a four-atom unit cell is sufficient to mini-
mize the energy. While the simplest state one can
construct to minimize the energy is ferromagnetic,
there is a large number of other possible states
that have no site pairing and derive from antifer-
romagnetic states. To get a clear picture of the
most stable state, one must do perturbation theory
in the bandwidth (IIjU) to find the stable state. For
other n, very large unit cells become possible.

In principle one could also calculate a Landau
phase diagram in which energy is given as a func-
tion of the relevant order parameters. It is ap-
parent that for our model there are, in general,
seven order parameters: six zz, and b, n =n& -nf„
so that a complete Landau diagram cannot be easily
visualized. At the same time, no stable solution
with more than three independent order parameters
has been found. This number is given as the "de-
gree" of the state in Table E. With these prelimin-
aries completed we can discuss the solutions in de-
tail. For clarity, most of the states are also il-
lustrated in Fig. 3.

where

k, a

X, =nV,

and N is the number of atoms.
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B. Charge4ensity wave

The CD% is characterized by one nonzero cor-
relation function 5 = gy~& =5y~& for only one of the

A. Paramagnetism

The paramagnetic solution exists for all U. In
the band structure of Figs. 1 and 2, since the
Fermi level E~ is placed at the saddle points, the
density of states Nz at the Fermi level and )((Q,*)
diverge so that p is only stable for p =0. How-
ever, in the numerical calculations, ~' the two
quantities become finite so that p is stable for a
range of small U. The total energy of p is simply

Z, =Z, +m,'/4N,

g. MDV/

() ()
il () 4I

() (t (t
lk () II f) Il

FIG. 3. Real-space depiction of the self-consistent
states. In all these diagrams open circles are sites of
low density, closed circles are high density, shaded
circles indicate intermediate density. (a) Real-space
lattice; p) E; (c) CDW; {d) TCDW; (e) ACDW; (f) SDW;
(g) NDW.
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that the transition to ~ is discontinuous (1st order
phase transition) as a function of U.

C. Triple charge-density wave

FIG. 4. BZ for the single charge-density and spin-
density wave states.
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FIG. 5. Behavior of CD% near its transition point.
(a) Energy is measured with respect to the paramag-
netic energy, bZ= LE~(CD%) —E~(P)]/N~ ~B~. (b) Varia-
tion of 6 vs p/~p~.

three vectors Q*. This causes the CDW to break
the point-group symmetry and yield a rectangular
unit cell with two atoms, with the BZ shown in
Fig. 4. The relationship of the rectangular BZ of
Fig. 4 to the basic one of Fig. 2(a) is evident.
Since the three Q„*are. equivalent, there are three
equivalent CDW states and microscopic domains
might coexist. The CDW exists for U &-0.288.
However, up to U=-0.35B there is a multiplicity of
CDW solutions (see Fig. 5). The values are such

The TCDW has one order parameter 5, =5, for
all i, g, so that the state has the ful1. hexagonal
symmetry with a unit cell of four atoms. From (5)
above the electron density for spin g breaks into a
three-and-one structure; three atoms with density
n, —5, and one with n, +35„where in our case only

5, &0 appears. The TCDW state exists for U

&-0.29B. The transition to p as a function of U

is continuous (second-order transition).

D. Asymmetric4ensity wave

The ACDW has two independent order parameters
that yield a four-atom unit cell and allows only in-
version symmetry. For particular limits, the or-
der parameters become identical to those for either
TCDW or CDW. In the ACDW state, one site is
highly populated, two have low populations and the
fourth is of intermediate value. While for large U,
ACDW is unique, for U ~-0.62B there are two
solutions, one resembling a single CDW and the
other resembling TCDW. In fact they do merge
into those states at U = -0.35B approximately.
These ACDW-CDW and ACDW- TCDW transitions
are second-order within the accuracy of our cal-
culations. The relationships between the order
parameters of CDW, TCDW, and ACDW are il-
lustrated in Fig. 6. There are three equivalent
ACDW's, one for each value of Q„*,as a conse-
quence, three types of domain may exist. Figure
6 can also be looked at as one that provides a mea-
surement of the instability of the CDW against the
formation of ACDW, i.e., the tendency towards the
formation of a multiple density wave.

E. Ferromagnetism

As with p, F has hexagonal symmetry and a unit
cell of one atom but the spin symmetry is broken.
With ferromagnetic occupation the one electron
band for one spin contains more electrons than the
other. This state may only exist for repulsive U.
If U is not large enough, the state becomes un-
stable against the transfer of electrons from the
top of the majority band to the lowest unoccupied
state in the minority band. This entails a decrease
in the magnetization and in fact it is necessary to
minimize E~ with respect to the magnetization M
for given U. We find a second order transition of
I to a partially ferromagnetic state at U =0.61B
and then a first order phase transition for M/cV,
=0.081 to 0 at U =0.34B. This is illustrated in Fig.
7.
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FIG. 6. Relationship of ACDW to CD% and TCD% for
small U/I BI. The ACDW state has two order para-
meters (5„62.For the CDVIt state 6&=0 always, and
for the TCDW state 6f '62 always. (a) plot of Bf vs
U/IBI (upward) and ()& vs U/IBI (downward). (b) Plot of
AE = [Er-E r(TCDW)]/1V I BI vs UII BI. ACDWV and

ACDVH represent two different solutions.

F. SpinMensity wave

For any U in which there is a CD%' solution,
there is a SDW state existing at (-U) with the
same D% amplitude in magnitude but 5y~ = -5y& so
that the peak in the wave for one spin falls on the
trough of the other. Once again the hexagonal sym-
metry is broken and the solution becomes multiply
valued for small U, resulting in a first-order
transition to P. Figure 5 is the corresponding
graph if U--U.

—30 [

0.30 0.40 0.50 0.60
uilsl

0.70
I

0.80

FEG. 7. Behavior of E. The upper graph gives the net
magnetization ~/Mm~ =—(n t —e ))/(n k+n h) as a function
of Ul I B I. The lower graph is a plot of A E —= [EgE)
—E&P)I/)v, I BI «U/IB I

metry of the spatial arrangement and the breaking
of the spin symmetry, the total symmetry is the
same as I but with a larger unit bell. The three
order parameters decrease with U, down to U

=0.29B, where a transition to p occurs that is
second order to within the accuracy of our cal-
culation.

0.35

0.34—

H. Phase diagram

Figure 8 illustrates the stable states and the
regions in which they are stable. From the attrac-
tive atomic limit U--~ to p=-0.56B, ACD% is
stable. For -0.568 & U & -0.47B there is a cross-
over region in which the ordering of the three
most-stable DW states completely reverses and

G. Mixed&ensity wave

The MD% state depends crucially on the number
of electrons and in our model exists only for —,

' ~I
In the MD% one of the spin bands is preferen-

tially occupied and there are bvo symmetric triple-
density waves, one for each spin. These involve
the same three @~ vectors but have different amp-
litudes for each spin. The majority spin niainly
populates one site of afour atom unit cell and more
weakly the other three, while the minority spin popu
lates mainly the last three sites. The result is that
MDW exhibits SDW and CDW behavior togs(her with a
net magnetization. Because of the full hexagonal sym-

z~ 0.33—

0.32— F

—0.56 —0.29 0 0.29

uilel
0.77

FIG. 8. Phase diagram for the states for both attrac-
tive and repulsive U. Circles indicate second-order
(continuous) transitions; squares represent first-order
(discontinuous) transitions.
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during which their energies are quite close. None-
theless TCDW remains stable after a second-order
transition from ACDW and up to U = -0.298. There
is, at this point, a second-order transition to p
which is stable for the remaining range of attrac-
tive interactions. The state P remains stable for
repulsive U up to U =0.298, where there is a sec-
ond-order transition to MD%. The state MDW is
stable up to @=0.77B at which point there is a 1st
order phase transition to I . The pure ferromag-
netic state then remains stable to the atomic limit
0'~~

I. Generalized conductivity

We have also calculated a generalized conduc-
tivity tensor in the basal plane by means of the
formula

where v, is the band velocity

x ~~k
V. =@

9

This formula does not include scattering time ef-
fects and it only gives information about the dyn-
amics of electrons, i.e., their velocity and avail-
ability of phase space. ~

All states showed a qualitatively similar behav-
ior. The magnitude of the &y„.(P) is the largest gen-
eraQy and the other states start with small values
for large U. This is typical and reflects electron
localization and band narrowing in the atomic re-
gime. As ~U~ decreases, &y„„ando„,increase to
values similar to those of the paramagnetic state.
Rice and Scott' have pointed out that the electrons

at the saddle points may be especially effective in
electron-electron scattering so that their removal
from opening a gap might actually increase the
conductivity; our calculation oes not exhibit the
predicted increase in g.

IV. SUMMARY

In this work we have tried to characterize more
fully those states that should be of importance to
the study of electron correlated density-wave states
in hexagonal layers. Of necessity the model con-
tained significant simplifications, and the exact
relations of stability can be sensitive to details of
the band structure. However we feel that the act-
ual stability relations in the 2H layer materials
are similar and that the essential nature of the
states investigated is accurate.

In addition, some results have supp1ied new de-
tails to the theory of charge-density waves in layer
compounds, while other results are distinctly
novel. If the effective intrasite quasiparticle in-
teraction is attractive, an ACDW is quite possit::1y
the ground state.

It is worth noting that if the actual band struc-
ture and the placement of the Fermi level are found

to be favorable (so n, = —,m, m is an integer having

no common divisors with 9) we can expect that an

ACDW on a Sx3 supercell will show two types of
site. There mould be m sites that are nearly full;
and 9-m sites that are nearly empty. This state
would exp1ain the NMR experiments of Ehrenfreund

et al."which the TCDW cannot do. Alternatively,
for a repulsive effective intrasite interaction a
MD% is stable in a wide region and shows a strong
triple charge-density wave amplitude that arises
in a natural way from the symmetry of the system.
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