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Cluster variation theory of the paramagnetic anisotropy in MnF& susceptibilities
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The cluster-variation theory is used to predict the anisotropy in the paramagnetic susceptibilities for the
uniaxial antiferromagnet MnF, . A Heisenberg model is assumed where the Hamiltonian includes dipole-
dipole interaction, the source for the anisotropy. The sensitivity of the anisotropy to the number of dipole
pairs permitted to interact is exp1icitly demonstrated. The effective g factor for the unpaired electrons in the
Mn'+ ion is obtained from the anisotropy calculations.

L rNTRonUCnoN

Manganese fluoride possesses a magnetic cry-
stal structure that is relatively simple. Conse-
quently this material has been well studied, ex-
perimentally and theoretically. Experimental
studies have been quite extensive over the past
20 years. In particular, the temperature depen-
dence of the anisotropic susceptibilities has been
of interest to a number of investigators, ' ' and
serves as the basis for the present paper. The
difference between the susceptibility measured
along the easy direction and that found for the hard
direction constitutes the anisotropy. Many theories
have been proposed to explain the results obtained
by Griffel and Stout." In the latter data the aniso-
tropy increases as the temperature is lowered.
Near twice the Mel temperature, a maximum is
reached. The anisotropy subsequently decreases
becoming negative at a temperature approximately
10% higher than the Nisei temperature. Griffei and
Stout explain this behavior in terms of exchange
forces which couple the spins together in groups,
which produce a long-range order in the neighbor-
hood of the critical temperature. Keffer' found that
about 85% of the anisotropy was attributed to the
long-range dipole-dipole interaction, the remain-
der being associated with the interaction of para-
magnetic ions and their surrounding crystalline
fields which produces a spin-orbit coupling. His
calculations are based on classical dipole sums
and the gneiss molecular field approximation along
with the experimental value for the powder suscep-
tibility as measured by Bizette and Tsai. ' He was
unable, however, to reproduce the measured max-
imum in the anisotroyy. Instead, he found a mono-
tonically increasing behavior with decreasing tem-
perature down to TN. Short-range exchange
forces are cited as the mechanism for the maxi-
mum and subsequent negative anisotropy. Yosida, '

using the Van Vleck model, found the anisotropy
of the susceptibility at high temperature. He as-
sumes the anisotropy originates from the action
of the crystalline electric field on the Mn" ion
combined with the spin-orbit interaction. A high-
temperature power series in the partition function
is generated, from which the anisotropy is deter-
mined. Its temperature behavior is monotonic and
again no maximum is present. Nakamura" as-
sumes that in some manner, the details of which
are not known, the anisotropy energy of coupled
spins increases as the Neel temperature is ap-
proached from above, in such a way that the energy
becomes infinite at the critical temperature. Con-
sequently, the anisotropy in the susceptibility is
negative just above and has a square root singular-
ity at the critical point. Treating the syins as
classical vectors, and assuming the anisotropy
is somehow crystalline field in origin, the aniso-
tropy is expressed in terms of a spin-pair corre-
lation function, where interactions between near-
est-neighbor pairs are specifically taken into
account. As a result of his approximations which
force the required qualitative behavior on the tem-
perature dependence of the anisotropy in the sus-
ceptibility, Nakamura's results are necessarily
in fairly good agreement with Griffel and Stout's
measurements. Heller' made nuclear magnetic
resonance measurements and from this was able
to deduce the sublattice magnetization in the neigh-
borhood of the transition temperature. He also
made measurements of quantities proportional to
the parallel and perpendicular susceptibilities in
the paramagnetic state. The temperature behavior
of this data, in combination with the anisotropy
data of Griffel and Stout below the Noel tempera-
ture shows the susceptibility in the anisotroyy goes
to zero just belou and quite close to the Noel tem-
perature. This is in direct conflict with the em-
pirical results of Griffel and Stout showing that
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this occurs above T„. Heller's qualitative behav-
ior of the paramagnetic susceptibility anisotropy
is nevertheless in agreement with that of Griffel
and Stout's, in that both reveal a maximum just
above the transition temperature and then a mono-
tonic decrease with increasing temperature. Al-
though the temperature at which the anisotropy
changes sign differs by only a few degrees, ac-
cording to the different investigators, the uncer-
tainty as to its occurrence above or below the Noel
temperature is significant.

A number of theorists have recently made at-
tempts to reproduce this behavior. Libelo and
Tanaka" use the self-consistent-cluster-variation
technique" to obtain the susceptibility anisotropy
above the Noel temperature, assumirig a pseudodi-
polar-anisotropy energy. The results are some-
what disappointing in that with decreasing temper-
ature, monotonically increasing anisotropy is
found. Itoh and Kanamori" used spin-wave theory
to find the parallel and perpendicular susceptibili-
ties below the Noel temperature. Their results
are in good agreement with the data of Trapp and
Stout up to temperatures as high as —3T~. This
fails, however, to cover the temperature range of
interest, namely the immediate neighborhood of the
phase transition.

%e shall use the self-consistent-cluster-varia-
tion method to calculate the para, magnetic suscep-
tibilities. The anisotropy energy will be repre-
sented by the dipole-dipole interaction, consistent
with the findings of many investigators. The theory
will be restricted to the two-spin correlation limit.
Nea, rest-neighbor dipole interactions are consi-
dered first, then next-neighbors and so on until
many neighbor pairs are correlated to each other.
The strength of the interaction will be determined
from a comparison of the theoretical results to

high-temperature data. The effective g factor of
the unpaired elections in the Mn" ion will be
found as well.

II. HEISENBERG SPIN HAMILTONIAN INCLUDING

DIPOLE-DIPOLE INTERACTION

KS~ (e»e» -I/3) ~ Sl,r ', (2.1)

where IC is a measure of the interaction strength
for a dipole-dipole pair. The quantity e» is the
unit vector between the j th and 4'th lattice points,
I is the unity dyad, and r is the distance between
these lattice points. In accord with Keffer's con-
siderations, ' we shall ignore the much smaller cry-
stalline-field anisotropy. Then the spin Hamiltonian
for the magnetic system of ions may be expr essed as

Single-crystal manganous fluoride possesses the
tetragonal rutile crystal structure. '~'" In the cry-
stallographic unit cell the Mn" ions are located
at the corners and the body center of the tetragonal
cell. The c axis is taken along the foreshortened
direction.

Six F ions, forming an irregular octahedron,
surround each Mn" ion located at the center of the
octahedron as can be seen in Fig. 1. Low-temper-
ature neutron-diffraction studies"" have deter-
mined the ordered magnetic structure of MnF, .
These neutron experiments reveal successive
planes of Mn" ions aligned normal to the c' axis.
The spins in these planes of Mn" ions, alternate
from parallel to the & axis in one plane to anti-
parallel to the c axis in the next plane and continue
in this manner along the & axis. For this reason
wecan conveniently consider the Mn" iona to be
distributed over two magnetic sublattices.

The dipole-dipole interaction is represented by
the term

&( (( Qs .+ 8&.=.H Qs ~ s&. +. 2J, Z ((((e '((~( & E ~(s()(~&»
a CX Q(a), 4( a)& &~( s), ~(8)&

~ 2z, () s 8() 2z, 2 8;() s(~ & E ~((&) ~(B)j
&n, 8& & f(~)p( ~)& & 2(8), ~(8)&

I I
SJ(~) e» e» ——' Sp(~) t'„+ +n ~ y(8)»e» 3 &(8)

n & y(a), e(n) &„ & s(8). &(8)&„

(2.2)

Clearly the notation in this Hamiltonian requires
some elaboration. The two magnetic sublattices
are labeled by n and P. The first sum is the Zee-
man energy in the external magnetic field 8, and
the second sum is that in the external field 8„.

Then following these are the first-neighbor intra-
sublattice-exchange energies, the second-neigh-
bor antif erromagnetic-inter sublattice-exchange
energy, and the third-neighbor intrasublattice-ex-
change energies. Lastly we have the dipole-dipole
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FIG. 1. NnF2 crystallographic unit cell. The first
subshell of dipoles coincides rvith those comprising the
unit cell. Nearest neighbors lie along the e axis and

second neighbors along the body diagonal.

perpendicular susceptibility with the antiferro-
magnetic-resonance-f requency measurements oi
Nethercot and Johnson. ' They found J, = -1.76'K
and for the nearest-neighbor exchange an antifer-
romagnetic value J, = —1.3 'K. Brown eI; al."made
paramagnetic resonance measurements on dilute
solid solutions of MnF, mixed with ZnF, and found
for the nearest-neighbor exchange J, =0.2 +0.1'K
and for the second-neighbor exchange ~J, ~

=2 'K.
The discrepancy in the nearest-neighbor exchange
integral is not understood. In this paper an at-
tempt is made to resolve the sign of the exchange
by performing calculations with the values found

by Low et al. ,
"for J, equal to both = 0.32 'K and

-0.32 'K.

interaction energies. The indices n and n', re-
spectively, denote whether the neighbor pair par-
ticipating in the interaction resides either on the
same sublattice or on different sublattices. For
example, n =1 denotes the nearest-neighbor pair
where in fact both members of the pair reside on
the same sublattice. Again, only as a matter of
convenience, we shall define the dipole subshell.
Using any dipole as our reference, a dipole sub-
shell consists of all those dipole neighbors that
are oriented parallel to the reference. The term-
ination of the subshell is determined by the neigh-
bor that is oriented antiparallel to the reference
and is included in the subshell as well. In MnF„
the nearest-neighbor dipole is oriented parallel to
the reference, which for convenience may be taken
at a corner of the unit cell. The second-nearest
neighbor is oriented antiparallel to the reference.
Thus, the first and second neighbors comprise
the first subshell. This is clear from Fig. 1. In
the same manner we may obtain successive dipole
shells. This techniques is a rather liberal exten-
sion of that introduced by Evjen" and applied to
ionic crystal lattices. For convenience of book-
keeping we have adapted it to the magnetic sublat-
tiees in our problem. The primed position vectors
denote the direction in the XY plane perpendicular
to the applied field H„.

Antiferromagnetic spin wave dispersion in MnF,
was measured by means of inelastic neutron scat-
tering. " Using spin-wave theory, values for the
exchange integrals were obtained. J„J„and J,
are the first, second and third-neighbor exchange
integrals along the c axis, the body diagonal axis,
asd the a-~ axes, respectively. The obtained
values are

J, =0.32 'K, J2 =-1.76'K, J3 & 0.05'K =0.

The second-neighbor exchange J, is in close agree-
ment to that found by Trapp and Stout' who com-
bined their measurements of the low-temperature

-k, 'S = 2 tr, p'"( j)»p"'( j)

j&k

—tr, pl "(j) lnp"'( j)
-tr, p"'(k) lnp"'(k)]. (3.1)

The density matrices in Eq. (3.1) satisfy the ex-
plicit reducibility conditions

(3.3)

(3.3)

An approximately equivalent set of reducibility
conditions may be used. " They are

tr;S~, [tr, p~'~( jk) —
p,
l'l( j)]=0,

tr,,p"'( j, k} = 1.
(3 4}

(3.5)

Equation (3.4) is a consistency condition on the
first moment of magnetization, i.e. , we are only
requiring that the first moment be the same wheth-
er p ' or p is used to calculate it. In the pre-
sence of external x and z component fields, varia-
tions of the free energy with respect to p'"( j) and
p "(j, k) readily yield the required one- and two-
spin reduced-density matrices. The reduced-
density matrices contain the Lagrange undeter-
mined parameters X,„, 1,8, and &8 (p, ,
and p 8) which are readily interpreted physically
as z(x) components of the local fields. For ex-

III. CLUSTER-VARIATION METHOD AND REDUCFD
EFFECTIVE-DENSITY MATRICES

In earlier papers"-" the cluster-variation meth-
od was presented in considerable detail. We shall
therefore omit detailed development of the theory
here. In the treatment of MnF, we shall ignore
all contributions to the entropy beyond that due to
two-spin correlation. Thus we may write the en-
tropy'- as
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ample, ~& is the ~ component of local field at a
dipole located at an e site. The source of this
field is a dipole on the same sublattice positioned
at r&. These local fields may be determined ap-
proximately from the consistency conditions for
the first moment of the magnetization. The expec-
tation value of the magnetization must be the same
whether one averages using a one- spin or two-
spin density matrix.

W. THE PARAMAGNETIC SUSCEPTIBILITIES

Above the Noel temperature, in the paramagnetic
phase, the local fields may be expanded in a power
series in a small externally applied field. This
results in a separation of the local fields into spon-
taneous and induced parts, thus

f „=ZIof(T) +H, X,',(T) + ~ ~ ~,

PIN =HzNNIN(~) + ' ' '
~

Of course above the Noel temperature the spon-
taneous local fields A~. ) vanish for all tempera-
tures. For a very small external field, the in-
duced portion of the local field is approximately
linearly dependent on the external field. %'e can
then write

A» (H„T) =H, X'» (T),

NN»(H„T) =H„P,» (T),

(4.1a)

(4.1b)

for the ~ and x components of the induced local
fields. Furthermore, above T„ the two magnetic
sublattices are indistinguishable and we have

~«»(~) i(8)&(8) ~~(8) J(8) &

f(o()&(8) i(8)&(n) ~k(a) g(8) ~

(4.2)

With the aid of these relations, we can eliminate
the local-field parameters from the magnetization
expressions. In this manner the longitudinal para-
magnetic susceptibility, or the paramagnetic sus-
ceptibility parallel to the & axis, is found to be

I„(9)= —,
'

Q I) ,9g"I"
9

- Is(s ))f-' P z„ Q z. - i)
n n'

(4.3)

where, for example, we have introduced the function
2S S

Q„(J„,8) = — Q Q M'(1+8K„N'„'(8M(SN(~f e»e» Ss( f (SM))
8=0

2$

x exp[8L, 3(3+1)j g g (1+8K„N „'(AMIS, („f ~ e»e,, ~ Saf f I~M))
g=p N=-8

xxxI[91.„8(I ~ 1)f) io =1, I, I, I, I, I, ... .
(4.4)

y„(J„., 8) is a simiiar function for an intersublattice pair. In these equations the abbreviated quantity L„
appears which is defined by

=2J -K (3N'„') ' for m =n or rN' ~ (4.5)

It is merely the effective coefficient of S& S~.
turbation expansion which was discussed in an
netic susceptibility, i.e., perpendicular to the

The quantities (t)„(J„8)and P„(J„8)are derived from aper-
earlier report. " Similarly, for the transverse paramag-
c axis, we obtain

Y „:ZZ p„(9„, I) „'(I„,I) . „(I, , I) 8,' (4, , Il)

—[S(S 1)] '(Q(Z„+Z')+g (Z„Z„')—1) (4.6)

where now we have introduced the functions
$„(J'„, 8), g(J„, 8), g„.(J„., 8), a,nd if)„'.(J„,8). These
four functions correspond to the tyro in Eq. (4.3).
The additional relations arise from the difference
between the X and Y directions. The anisotropy
in the susceptibility is given by the difference be-

tween Eqs. (4.3) and (4.6). The quantities K„and
are now determined by comparing at T =295.6

'K the experimental high-temperature anisotropy
data of Griffel and Stout with our results. These
are fitted into agreement with the data by choosing
the proper values for the dipole-dipole constants.
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FIG. 2. Anisotropy in the susceptibility.

V. CONCLUSIONS

The cluster-variation theory in the two-spin
correlation approximation predicts rather precise-

Figure 2 displays the calculated and measured
temperature dependences of the anisotropy in the
high-temperature region. The measured aniso-
tropy shown is that of Griffel and Stout. ' We show
in Fig. 2 a family of curves for the anisotropy
generated by successively increasing the number
of interacting dipoles included in the calculation.
For example, the curve labeled "3 subshells" in-
corporates the effect of 60 dipoles in the first
three subshells, interacting pairwise. The corre-
sponding dipole-dipole range of interaction extends
toandincludesthe ninth nearest neighbor. As the
number of interacting dipoles increases the aniso-
tropy appears to increase only slightly for temp-
eratures above but in the neighborhood of the
phase-transition temperature. It is interesting to
note that if one just formally extends the paramag-
netic calculation down into the ordered phase a
maximum does seem to appear in the anisotropy
in the susceptibility. Nevertheless, it should be
kept in mind that below T~ the spontaneous local-
field contributions must be taken into account in
order to obtain the proper temperature dependence
of X I( and X, ~ up to TN. In the paramagnetic regime
we find that the anisotropy in the susceptibility
remains positive and increases as the temperature
is decreased.

TABLE I. Effective paramagnetic MnF2 g factor.
Variation of this parameter with sign of the small near-
est-neighbor exchange interaction and with range of the
dipole-dipole interaction is shown.

Neighbor
Total included Total no. Dipoles in

number g factor in the coupling outermost
subshells J, &0 J, &0 subshells dipoles subshell

3.86 3.86
2.86 2.90
2.71 2.73
2.31 2.34
2.09 2.12
2.03 2.07
2.02 2.05

1 2
1—5
1 9
1 12
1 17
1 20
1 ~22

10
30
60
92

122
154
178

10
20
30
16
30
32
24

ly the temperature dependence of the anisotropy
in the susceptibility at temperature T & 160'K.
As shown in Fig. 2, if we require consistency for
only the first moment of the magnetization, we

obtain considerably better agreement with experi-
ment then one obtains from Weiss molecular-field
theory for all temperatures T & T„. Recalling that

g, ~
-g, is several orders of magnitude smaller

than either X ~t or X~ in the paramagnetic neighbor-
hood of T„, we conclude that the cluster-variation
theory is consistent with Heller's finding' that the
anisotropy goes negative below T&. It would appear
that the Griffel and Stout' results (Fig. 2) indicat-
ing that this sign change occurs at a point signifi-
cantly higher than T„requires more extensive
measurement of the rather small anisotropy in the
neighborhood of the phase-transition temperature.
Only in this manner can the question concerning
this prominent feature of the Griffel and Stout data
be resolved once and for all. We again emphasize
that Heller' found the anisotropy changing sign be-
low but very nearly at T&. He also found a maxi-
mum above T~ but quite close to it. This second
prominent feature agrees only qualitatively with

the earlier Griffel and Stout data. The latter
(Fig. 2} found the maximum lying far out in the
vicinity of T =2T„. It would again seem that more
extensive measurement is called for to resolve
this substantial discrepancy.

Unfortunately Weiss field theory leaves little
room for improving its predicted values for MnF, .
However the cluster-variation method can still be
made more accurate. Merely by requiring consis-
tency of the second moment of the magnetization
in the two-spin approximation we can obtain im-
proved temperature dependence of anisotropy for
T ~ T„. Hunter, Libelo, and Tanaka" have shown

that including the requirement of consistency of
the second moment does not affect T„but does re-
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suit in small changes in the magnetization. Such
an extension of the theory very likely may be cru-
cial for resolving analytically the location of the
maximum in the rather small anisotropy. This
study is to be made and the results shall be re-
ported on later. In summary then we note that the
earlier measurements of the paramagnetic aniso-
tropy in the MnF, susceptibility are not consistent
with Inore recent independent measurements. Pre-
sent theory yields results in closer agreement with

the newer data but still requires further improve-
ment.

Finally we show in Table I the effective g factor
for MnF, as a function of the explicit range of di-
pole-dipole interaction taken into account as well.
as the effect of the sign of the small first-neighbor
exchange interaction. It is clear in the Table that
the g factor has pretty much converged to its ef-
fective value after 7 or 8 subshells are included.
This is true for both J, & 0 and Jy ~ 0.
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