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Temperature dependence of quasiparticle sound velocity in a Bose gas
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The low-temperature dependence of quasiparticle sound velocity in a nonideal Bose gas is inves-

tigated. Besides a T4 lnT ' increase with temperature —formally identical to that obtained by

Khalatnikov and Andreyev for He II by the kinetic-equation approach —a T4 decrease of the

sound velocity is found. Assuming the theoretical expressions to remain formally valid for

superfluid helium, comparison is made with experimental results on the variation of sound veloci-

ty with temperature.

I. INTRODUCTION

Near the absolute zero of temperature, collisions
between elementary excitations in superfluid helium
become too infrequent for hydrodynamics to provide a
valid description of kinetic phenomena. Khalatnikov
and Andreyev' {KA) have consequently used a colli-
sionless kinetic equation for the excitations together
with an equation for the superfluid velocity V, to cal-

culate the eA'ect of temperature on the velocity of
sound in liquid helium. They found a T4lnT ' in-

crease in sound velocity with temperature, the predic-
tion being in semiquantitative agreement with experi-
ment. '

The question we wish to consider is whether the
result obtained by KA can be shown to exist in the
microscopic theory of a Bose fluid. It has been known
for some time'4 that, at zero temperature, the ma-

croscopic sound velocity in a Bose fluid is identical to
the quasiparticle sound velocity defined through the
long-wavelength poles of the single-particle Green's
function. Although at finite temperatures no such ex-
act result is known, approximations such as the Bogo-
lubov weak-interaction approximation' or the
Bogolubov-Hartree-Fock pair approximation predict a

decrease in the phonon sound velocity with tempera-
ture. The purpose of this paper is to show that while

an exact calculation of the Green's functions of a Bose
liquid at nonzero temperatures is not possible, a con-
sistent weak-interaction calculation of the long-
~avelength quasiparticles of a Bose gas gives formally
the result derived by KA. In addition, one obtains a
T4 decrease in the sound velocity with temperature.

An outlie of the paper is as follows: In Sec. II a
few basic results concerning the temperature-
dependent Green's functions are recalled. The incon-
sistency of the Bogolubov approximation as regards
the temperature-dependent terms is pointed out in

Sec. III, and a consistent approximation for the self-

energy parts is introduced. Section IV contains the
calculation of the temperature-dependent part of the
quasiparticle sound velocity. Although the results are
derived explicitly for a weakly interacting Bose gas, we

assume them to remain formally valid for liquid heli-

um and compare them with the experimental results
in Sec. V.

II. TEMPERATURE GREEN'S FUNCTIONS

+—$ [v(Kt'—lC3) + v(it'2 —)t~)]
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where a~, aJ denote the creation and annihilation
operators for the single-particle state of momentum E
and v(K) is the Fourier transform of v(r}.

The thermodynamic potential of the system at tem-
perature T is given by

0 -—{1/P) ln(Tr e ] 0) (2)

0'= 0 —pN

N Z, aKaK
K

(4)

where p denotes the chemical potential and
P-(k&T) ', k& denoting the Boltzmann constant.

For studying states of the system characterized by
the presence of a condensate in the zero-momentum
single-particle state, one can, following Bogolubov, '
replace (ao/V)' ' and its conjugate by no~', where no

For an assembly of bosons of mass m, enclosed in a
volume Vand interacting through a two-body potential
v(r), the Harniltonian (in units such that t-m -1) is

0 Z,
—K aKaK

1

K

1253



K. K. SINGH AND j. PRAKASH

denotes the density of condensed particles. The Ham-
iltonian H' can then be written

H'
2 np Vp V pnpV+ H2+ H3+ H4 —

I/I,
N'

X [ 2
K + novo+ nov (K)]a»t a»

K

+ —Xnov(K)(a(a t» +a»a»)1

K

' 1/2
npH3- ——, x lv(K&) + v(K2)I2, Vi

1' 2

x(aJ a»t a» +» +aJ „a» a» );
I 2 1 2 1 2 2 1

H4 is the same as the second term in {i)except that
none of the K's can be zero; N' denotes the number
operator for particles not in the zero-momentum state.
In (6) and (7) each K summation excludes the point
K =0.

At a given temperature, np is determined by the re-
quirement that 0/ v be minimum with respect to vari-
atiOnS in np, i.e.,

an
0

Qnp

The single-particle imaginary-time Green's functions
of the system are defined by

D(K, Z) - IZ —
2 [X11(K,Z) —X11(—K, —Z)])

—
(2 K —P +

2 fX]](KZ) + X[[(—K, —Z)]
1

—X02(K,Z) I

x (—,
' K'-~+-,' [x„(K,Z) + x„(-K,-z)]

+ XP2(K, Z) I

~here X„and Xp, denote, respectively, the normal
and anomalous self-energy parts.

The analytic continuation of G(K, Z) onto the real
axis gives the Fourier transform G(K. cu) of the retard-
ed real-time Green's function. ' The poles of 6(K, ~)
by definition, represent the quasiparticle excitations at
a given temperature.

III. %EAK-INTERACTION APPROXIMATION FOR
SELF-ENERGY PARTS

Our aim is to make a consistent weak-interaction
cakulation of the self-energy parts X„and X» so as to
be able to work out the long-wavelength quasiparticle
spectrum. %e start by considering the first-order
(Bogolubov-approximation) graphs of X„and Xo,
shown in Fig. 1. Their contributions are

G(K, r) —(Ta»(v)ag(0))

G(K, r) = —{TaK(r)a K(0))

(9)

(10)

X,',"(K,Z) = 2nvp,

X02 {K,Z) = npvp = (n —n') vp

{is)

(19)

~here —p ~ ~ ~p, aK(~) denotes the imaginary-time
Heisenberg operator

where n denotes the total particle density and n' is the
density of excited particles given by

(~) erH'a e
—rH' n' — dp e'z'G(p Z)

I

(20)

G(K, v) =—ge ' 'G(K, Z)1

p
{12)

T is the time-ordering operator, and the symbol

( ) denotes thermodynamic average calculated
with Hamiltonian (5).

The Green's functions (9) and (10}can be expand-
ed as a Fourier series in the interval —p ~ ~ ~p, viz. ,

Here as well as in what follows we use the notation

dp = d'p/{2n)' . (21)

The interaction v(K) is assumed to be a positive con-
stant vp. The approximations (18) and (19) for the
self-energy parts yield

6"'(K,Z) [Z+-,' K'+(n —n') va)/[Z' —E'(K)1,
G (K, r) —X e 'z'G (K,Z)

P I

Z 2mil/P, I 0, ~1, ~2....

(i3}

(i4) (KZ) (n —n'}—va/[Z2 —E~{K)1

(22)

(23)

Using perturbation theory' one can derive the follow-
ing equations for G(K, Z) and g(K,Z):

Z+ 2K —P. +X11(—K, —Z)
I

G(K,Z)-
D(K, Z) (is)

G(K.Z) - Xa (K.Z)/D(K, Z)— FIG. 1. First-order diagrams of X11 and X02.
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where the quasiparticle energy E(K) is given by

E'(K) = —K' + K'nv o
—K' n'vo (24)

For small K, we have

E'(K) (n —n') vpK' (25) FIG. 3. Second-order two-line graphs of X~~.

Since n' increases with increase in temperature, {25)
implies that the quasiparticle sound velocity decreases
with temperature, The above approximation, howev-
er, is inconsistent as regards the last (temperature-
dependent) term in (24). To see this we substitute
(22} into (20) and use the relation

and treat the temperature-dependent parts Y& and Y2

as small compared to 2nvp and nvp, respectively.
Equation (25) for the chemical potential is written in
the form

& = X„(0,0) -X„(0,0)

to obtain

(26)
p, ~nvp+ p,

p,
' '= Y({0,0) —Yp(0, 0)

{33)

(34)

1—p +novo —p + novo —E
n' dp +

&
E(e~~ —1} 2E

(27)

Substituting from (30) and (31) into (17), and ignor-
ing products of small quantities, one obtains for
D(K, Z) the approximate expression

On the other hand, the contribution of the "pair" di-
agram shown in Fig. 2 to Xp& is

Xotf' = ——J)d p QG(p, Z)
I

D(K, Z) = Z2 —{c2K'+—K ) —D, {K,Z)

D, (K,Z) =Z[Y, {K,Z} —Y {—K, —Z)l

+ (2c K ) Y3{KZ) + K Y2(K z)

(35)

J E{&P& I)

At low temperatures specified by

Pnvp)P 1

(28)

(29)

»(KZ) =
2

(Yi(K Z) + Y~(—K, —Z)]

—Y,(K,Z) —&(»

c =nvp2

{36)

{37)

(38)

X„(K,Z) 2nvo+ Y~(K,Z)

Xo2(K, Z) = nvo+ Ys(K Z)

Yt(K, Z) = n'v .—o——Jtd pgG(p, Z)
P

(30)

{31)

the main contribution to the temperature-dependent
terms in (26) and (27} comes from moments
p —(P nvp) ' . Consequently, n'vp is of the same
order of magnitude as Xotf'. Contributions of the
same order arise from certain higher-order graphs as
well ~ It is, in fact, known that the contribution of all
two-line graphs' to X~ ~

{0,0) —Xp2(0, 0) is exactly twice
the value of Xzf'. One must collect all contributions
of the same order in order to arrive at a consistent
result.

To carry out the calculation in a systematic fashion,
we write

The "unperturbed" Green's functions to be used in

calculating Y~ and Y2 are obtained from (21) and (22)
on setting n' equal to zero.

A consistent weak-interaction approximation for Y~

and Y2' is now represented by the second-order graphs
shown in Figs. 3 and 4. The characteristic feature of
these graphs is that they are built from vertices in the
Hamiltonian representing scattering of an excited par-
ticle by a particle of the condensate and the conjugate
process. At low temperatures, the density of excited
particles in a weakly interacting Bose gas is small com-
pared to the condensate density. It is, therefore, rea-
sonable to ignore all graphs of Y~ and Y2' having ver-
tices corresponding to the scattering of one excited
particle by another excited particle.

+ Y2'(K, Z) (32)

FIG. 2. Pair diagram of Xp& ~

FIG. 4. Second-order two-line graphs of Xp .
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The contributions of the graphs in Figs. 3 and 4 to Y1 and Y2' are

Y, (K,Z) -— d-p G(K+p, Z+Z') G(p, Z') +2G{p,Z') + —,G(—p, —Z')
I

+ 6 {K+p, Z + Z') G(p, Z') I, (39)

Y2'(K, Z) -— d p G{K+p,Z+Z') G(p, Z') +G(p, Z') +G(K+p, Z+Z') —G{p,Z') +G(p, Z')]
I'

(4O)

On performing the frequency summations, we obtain for the temperature-dependent parts of Y1 and Y2' the expres-
sions

f

d p c41n1 —C1n2 B1n1 —D[n2 &1n1+D[n2 B[n[+C[n2
Y, (K,Z) = npvp2 +

2E) E2 E1 —E2+ Z E1 —E2 —Z E1+E2+ Z E[+E2 —Z
(41)

d p + 2n1 —C2n2 82n1 —D2n2 A 2n1 +D2n2 82n1 + C2n2
Y2 (K,Z)= npvp +

E[E2 E1 —E2+ Z E1 —E2 —Z E1+E2+ Z E1+E2 —Z
(42)

3 1
=

2
E1 +E[f

2 f1 2c + -, (Z +f2)]1 3 1

+(Z+f,)(—', f, -2c'), (43)

+f2{—,f1 —2 ')
~ (44)

C, - , E, +E2[—,—f,—2c ——,(z —f2)) —, zf2—1 2 3 I 1

IV. TEMPERATURE DEPENDENCE OF THK
LONG-%A VKLKNGTH SPECTRUM

The quasiparticle excitations are given by the zeros
of the analytic continuation D(K. cu) of D(K,Z). In
view of (3S), we have

D(K, a)) =a)' —(c K + —K ) —D, (K, o)), (S2)
32= Ei +Ei(fi+f2+Z —2c') +fi(Z+ f2)

+ —'r —c'(f1 +f2+ Z)

C2 - E22 + Ey (fi +f2
—Z —2 c ) +f2 (fi

—Z )

+ —,c' —c'(f1 +f2 —Z)

(c2 2+ ~4)1/2

E2 E(P +K)

n, =(e ' —1), i =1 2,
PE,

fi =f(p) =
2 p +c1

f2=f (p +K)

(4s)

(46)

{47)

(48)

(50)

(s1)

D, (K, ~) =D, (K,Z-~+ia) . (s3}

Y2'(K, a)) = Y2'{K,Z o)+i8)

Y3(K, ru) = Y,(K,Z -cu+i5)
%'e outline below the calculation of Y3(K, eo);

Yi'(K, ru) and Y2'(K, a&) are calculated in a similar
fashion. %'e write

(ss)

(s6)

To obtain D(K, co} we thus need to calculate the three
quantities

Yi'(K, ) = [ Yi(K, Z) Yi { K, Z)lz

(s4)

81 and 82 are obtained, respectively, from A1 and A2

by replacing E1 by —E1, while D1 and D2 are obtained
from C1 and C2 by replacing E2 by —E2.

Y3{K,ao) -L3(K, co} +iL3'(K, co) (s7)

and calculate first the real part L3. It is given by the
sum of two terms, viz. ,

I., =M, (K, )+M, '(K, ),
d p A 3n1 + D3n2 83n 1 + C3n2M3{K,cu)- npvp +

E1+E2+ ag E1+E2 —co

(ss)

(s9)

d p C3n2 A 3n1

4E1E2 E1 —E2 + cu

D3n2 —B3n 1

E1 —E2 —~ (6o)
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~ 3 2(f )' + ~E) —f)f2)

C3 = 2(f2 —~E2 —f)f))

(61)

(62)

B3 and D3 are obtained, respectively, from A3 and C3 by replacing cu by —~. In (59) and (60) the principal value of
the integrals is implied.

The dominant contribution to L3 arises from M3'(K, co) since the integrand in (60) has a pole for any value of the
momentum p. For small values of ~K ~, one can write

np=n) +5n

Qn)
Sn — (E2 —E))

8E)

The eXpreSSiOn fOr M3'(K, co) then SimplifieS tO

T

, ( ), d p (
C3(p cv) D3(p cv)

4E) E2 E) —Ep + eo E) —E2 —co

(63)

(64)

(65)

~here we have made use of the relations

W3- C3=2(E) +E,)(E, -E,+~),
B,-D, =2(E, +E,)(E, -E,-~),

(66)

(67)

and the fact that Y3(0, 0) is zero.
AS M3'(K, co) iS an eVen funCtiOn Of K and co, We replaCed it by the aVerage Of M3'(K, cv) and M3'{—K, —co) tO Ob-

tain

d p {f2—f))' —a](E2 —E)) (fp —f + 0'(E E —2(E —E )M, (K, ~)=n.v.'
4E) E2 E) —E2+ cg E) —E2 —o)

(68)

To first order in K,

f2 —f) = Kpx, E2 —E) = vKx

where

(69)
In writing (71) we have replaced ao by cK as we are in-

terested in the poles of D(K, ~) only. Similarly by

writing

(70)v = = ~, x =cos(p, K)QE fo

Bp x

Using {69) in {68) and performing integration over
the angles, we get

a) Y)'(K, o)) = L)(K, cv) +jI )'(K, w)

K Y2'(K, ) = L2(K, ~) +iL2'(K, ~)

(72)

M3'(K, co)

1

pdp K ~ c p2f2 9n)
2m' E2 6 2f 6E2 8E,

L) =M){K,Cd) +M, '(K, ~)

L, =M, (K, ~)+M, (K, ~),
(74)

I' p dp K c' ~n) c+v
8 ' E,'f'„ tiE, c —v

(71)
the dominant paris M)'(K, ~) and M2'{K, co) can be
calculated. The result is

T

p'dp cK' c 2 ~n) 2 p dp cK' 3 c~ c}n) 1 c+v
m E) f, 8E) 2m E, f QE, v c —v

{76)

M (K co) K novo 2E)n)+ E) + +— —nov K
I p2dp 1

E)2 4 2 BE)

T 7

p dp 1 E g c ~ ) c
1

c+v
4 2 QE) v c —v (77)
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As regards the "nonsingular" terms Mi, M2, and M3
in (74}, (75), and {5S), the integrands of these terms
fsee Eq. (S9)] possess a pole in the extremely narro~
range (p) ( [K[ 0. A little manipulation shows that
the numerators of these terms are proportional to K~.
In the limit of small ~K ~, their contributions are
found to be

L3 (%co) novo Jf
1 2

x[(—Aqn~ + C3nt)8(Ec —E2+ co)

+ (B3n ~

—D3n2) 8(E, —~2 —co)]

c

2d c2K2 ~2

pdp K
Mp(K, cv) —npvp

n2 Ei3

c

4 4
x Ei + +—ni

4 2

2d KM(K eo) n v2

(78)

(79)

A4=(E, +2c')(f, —f,) +co(f, —2c')

C4 = (E2+ 2c )(fi
—f2) + ~(f 2

—2c )

(S4)

(8S)

(86)

8& is obtained from A4 by replacing Ei by —Ei, and

D4 is obtained from C4 by replacing E2 by —E2.
Using (63) and relations such as (66) and (67), we

get the following expression for the imaginary part of
D, (K, ~):

(—p —c )ni p2 2

2E, 6E~ BE,

ImD~ {K,co) = novo — [Cq8(E& —Ez+ co)p dp

2m EiE2

+ D58(Ec Et —co) i S—n,

(80} (87)

Collecting the above results, we obtain after some
simplification the following expression for the real part
of D, (K, ~):

R D (K ) —9c2K p"dp Bni c + v

4n 4m' BEi c —v

(88)Cg = coC4+ c'C3+ K2C2

Dg - coD4+ c2D3+ K2D2 (89)

E2(xp-, p)-Ei ~co . (90)

For a given value of ~p (, the 8 functions in (S7)
have singularities at x -xp- determined by

c

p'dp n

m 2Ei
t

11S 1

96 Ei2

(81)

On solving these equations one finds
c c

xo* = ~ I — — I —~ +O(K') .3p 3Kp
8c' 4c c

(91)

One can also calculate without difhculty the imaginary
part of D~(K, co). For small ~K~ the dominant contri-
butions to Li', L, 2', and L3' are

L)'(K co)-novo Jt
i 2

x[(—Acn~+Ccn2)8(E~ —Et+co)

+ (Bcn )
—Dcn2}8(Ec —E2 —ccc)]

On carrying out the x integration, we find at the end
of a somewhat laborious algebraic calculation the
result

ImD[(K, o)}= npvpK
c

p2dp Bn i 9 y~
4~E2 BE, 4

c

{92)

The integrals in (81}and (92) can be easily evaluated
in the low-temperature limit Pc2 && 1. One obtains

L, 2'(K, o)} n pvp2
p2dp K

i 2

x [( 42nc + C—2n2) 8(Ec —E2+ co)

+ {82n i
—D2n2) 5(Ei —E2 —~) l

(83)

Di(K, ao} 2cK (c& +cq+ il )
I c

9 ~' 2P'c'
ln

4 30nP4c4 S3.7y

co - 127n 2/720n P—ccc

I' 3cr2/40n Pccc

(93)

(94)

(9S)

(96)



TEMPERATU RE DEPENDENCE 0 F QUASIP ARTICLE SOU N P. . . . l259

y =1/Sc'

Substituting (93) into (52) we find that c„+c~gives
the temperature shift in the phonon sound velocity
while (Kl ) ' gives the life of a phonon of momen-
tum K.

E 3-
IJ

tP

V. DISCUSSION

In view of (38), we have

9 n 9c +1
4 c 9n

(98)

.3 .4
T'K~

FIG. 5. Increase in sound velocity of He II with tempera-

ture. Curve I represents c„+c&given by Eqs. (94) and (95)
while curve II represents the (corrected) KA result. The cir-

cles ar the experimental results of Whitney and Chase (Ref.
2).

p/~ (Bc/r) p) =1.8 . (99)

The T'ln T ' increase in quasiparticle sound velocity
given by (94) is, therefore, formally identical with the
result derived by KA for He II by the phenomenologi-
cal approach, It should, however, be noted that the
argument of the logarithm in (94) is smaiier by a fac-
tor of about 2 as compared with the result of KA.
This discrepancy is due to the fact that, rather than
evaluating the integral in the first term in (81) exactly,
KA made only an approximate estimate.

The additional T' decrease in sound velocity
represented by (95) was not found by KA. As seen
above, it is a consequence of taking into account the
"nonsingular" terms of the self-energy parts. Its effect
is to lo~er the value of the argument of the logarithm
in (94) by a factor of about 10. Assuming that this
result for the Bose gas remains formally valid for He
II, we have plotted in Fig. 5 the increase in sound
velocity as a function of temperature using the same
value of y as used by KA (y =3X10 '

g
' erg '). The

values of the other parameters used are

c =238 msec ', p=nm =0.145 gcm

The result of KA (corrected for the factor 2 referred

to above) and the experimental results of Whitney
and Chase' are also shown in Fig. 5. It will be seen
that taking into account the correction (95) gives
much better agreement with experiment. The agree-
ment, however, should be viewed with some caution
on account of the uncertainty in the experimental
value of y. '

We note that the T' damping of phonons given by

(96) is in agreement with a result of Hohenberg and

Martin. 4

Finally, we remark that had we carried out an ex-

pansion of the self-energy parts

X~t(K, ~) and Xo,{K,~) around co=K =0 as done by

Gavoret and Nozieres' in the T -0 case, we should

have missed the logarithmic term (94) and obtained

simply the T' decrease given by (95). The reason as

to why the expansion procedure gives correct results

at T =0 can be traced to relations such as {66) and

(67) which eliminate the singularities at T =0.
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