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The parallel critical field of a stack of superconducting and insulating layers is calculated as a

function of the superconducting layer's coherence length g and thickness d, interlayer coherence
length (z, and insulating thickness s. It is shown that the critical field shows an upturn when the

stack crosses over from the strongly coupled or three-dimensional regime {(z) s + d) to the

weakly coupled or two-dimensional regime {(z( s +d ). This upturn is a general property of such

slacks, though it is more pronounced when s ) d .

I. INTRODUCTION

The properties of arrays of weakly coupled super-
conductors, such as stacks of thin layers or bundles of
fibers weakly coupled through thin insulating junc-
tions, have been recently the subject of several investi-
gations. ' ' These geometries usually result in strongly
anisotropic superconducting properties (critical fields,
critical currents), as found, for instance, in intercalat-
ed compounds" and the polymeric superconductor
(SN)„.'

The critical field of layered superconductors where
the thickness of the superconductor layer can be
neglected (intercalated compounds) was calculated by
Klemm et al. 4

This calculation predicts a remarkable behavior for
the parallel critical field: It should diverge (within
limitations imposed by the paramagnetic limit) at
some temperature belo~ T, where the interlayer
coherence length (&(T) is of the order of the inter-
layer spacing.

We show here that this upturn in Hll(T) is in fact a

general property of layered systems, i.e., it is not lim-

ited to the case where the superconducting layer thick-
ness d can be neglected compared to the interlayer
spacing s. We find that the upturn always occurs at
the temperature where (&(T) is of the order of the
periodicity d +s. It is already weakly present when
d/s )) 1 and is increasingly pronounced for smaller
values of d/s.

Anisotropic superconductors can be considered as
bulk as long as the coherence length is larger than the
period of the system in all directions. In that case,
one finds for a layered superconductor'

@0/2 rC11 ~ HII @0/2~(III'

H = (40/2n)(I2(22(32[(gI ' sin'$+ (2 ' cos'$)

x (sin'9 + g3
' cos't)) ] ' "

where 8, P are the polar and azimuthal angles, respec-
tively. Note that the anisotropy ratios are temperature
independent.

In the opposite limit ~here the coherence length is
smaller than the period in at least one direction, one
deals, in fact, with isolated {or quasi-isolated) layers
or fibers for which quite diA'erent results are to be ex-
pected; in particular, the anisotropy ratio should then
be strongly temperature dependent. ' We now apply
the method of Klemm et al. to calculate the crossover
behavior of a layered superconductor.

II. PARALLEL UPPER CRITICAL FIELD OF
A LAYERED SUPERCONDUCTOR

We consider a stack of superconducting slabs of
thickness d coupled through Josephson junctions in an
array of period D. The layers are perpendicular to the
z direction, and the external field 0 is in the y direc-
tion, with the gauge

A =(0, 0,0x) (3)

For thin slabs (d &((, where ( is the temperature
dependent intrinsic coherence length), the order
parameter is

Assuming that the amplitude f is the same in neigh-
boring layers, ' the phase in each layer depends linearly
on z, x, and the phase difference h4 between two
succesive layers is'

where 4&0 is the flux quantum hc/2e.
In the more general case where the anisotropic ten-

sor is described by three different coherence lengths

(~, (2, and (3, one obtains from similar considerations

54& = (2eHD/tc)x, D =d +s

The Ginzburg-Landau equation for one layer taking
into account the coupling energy for one period is

(5)
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The smallest eigenvalue for q' & 1 yje]ds

+2qdf 1 —cos
2eHDx

=Lp,
kc

(6) 1 6I' 1
I —h' —2 +

h' t
t i

where rt is the coupling energy, and 114/Bx -2eHz/gc
inside one slab. Note that the phase in each layer is
2eHx(z —z)/iLc, where z is the center of the layer.
Carrying out the integration, (6) becomes

1 I 4 l t

+O(h s)
3D~

'I

d' 2 I
2eHD»f +—1 —cos f ~

d2 t2 kc (2

(7)

This approximation is vali& for q' & 1, i.e. ,

h J3D/d & g/t

(15)

(16)
Here we have introduced

t' = h'/2m rt, (g)

(10)

h =H/Hii

This approximation is valid as long as the range of f is
much smaller than 2eHD/gc, i.e., when

h J12D/d ( g/t

We see that in that case, to lowest order, the upper
critical field is that of an anisotropic superconductor as
given in Eq. (I)', with g~ fD/t, pit=(.

b. 8 eak coupling, strong geld. Here we transform
(7) into the usual form of Mathieu equations

(12)

with

d2f + (a —2qcos2x) f -0
dx

(13)

1 d 1

t 3 D h2

(14}

a d 1 I —h —2 +
D 3h t

and H]1 is the parallel critical field for a single layer, '

H„= (irc/2e) 412/d(

Equation (7) is the Mathieu equation, whose gen-
eral solution is quite complicated. Ho~ever, a simple
solution can be found in two extreme cases.

a. Strong coupiing, weak geld Here, .the cosine term
can be expanded, so that (7) becomes a harmonic os-
cillator equation, with a quadratic perturbative poten-
tial. The lowest energy level yields

h - (d/~12D) (t/() [I —h'+ (Dld) 'h'1 +—0 (h')

We see that as g/t tends to zero, h 1. The upper
critical field approaches that of a single layer.

The crossover point between the two cases occurs at
g/t —1, independent of d/D In the stron. g coupling
case, putting h (d/J12D)(t/() from Eq. (10) into
Eq. (12) give, s

I « (g/t)' .

In the weak coupling case, Eq. (15) yields, to lowest
order, h' 1 —2(g/t)', which implies

(g/t)' & —,
'

for this result to be physical. Hence, the crossover
point occurs for g/t —1. Noting that (,= gD/t, we

see that this condition gives, for the coherence length
perpendicular to the layers, (&

—D.
In Fig. I, we have plotted h as a function of t/( for

D = d, D =2d, and D =4d. In each case we plotted
the solutions of (10) and (15), and indicated by dot-
ted lines the regions of validity of the two approxima-
tions [using (12) and (16)]. The crossover between
the two curves (the crosses) was calculated from nu-
merical solutions of the Mathieu equation. '

For temperatures not too far from T, , we can take
(= ((T =0) [T, /(T, —T)]'", where ((T =0)
=0.74((of)'" in the dirty limit and l is the in-

tralayer mean-free path. Hence, Fig. 1 has essentially
the shape of the H(T, . —T) plot, which can be ob-
tained from Fig. 1 by multiplying both coordinates by

H~, [as given by Eq. (9)] and then the (t/() H„xisaby

the appropriate constant, i.e., T, [('+(T=G)d t]/2n /

v 1240.
If we choose to define the crossover point from

weak to strong coupling as that where h(t/() shows
an inAexion point, we observe from Fig. 1 that this
occurs for t/g =D/g& —1.4, independent of D/d
This choice for crossover is consistent with the
behavior for d/s (( I, where H was shown4 to
diverge for gq(T) =s/J2.
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FIG. 1. Critical fields of layered superconductors. D is the
period of the stack and d the thickness of the superconduct-
ing layers. The field is measured in units of the critical field
of the isolated layer. The variable t/( characterizes the inter-
layer coupling strength (t/g && 1 weak coupling; t/g &( 1

strong coupling. The interrupted lines mark the transition re-
gion. ) In practice, this h(t/g) representation is very similar
to H(T, —T) (see text). (a) Upturn of the critical field is al-

ready present for the case of negligible interlayer spacing. (b)
and (c) Increasing interlayer spacings, approaching the diver-
gent behavior predicted for intercalated compounds (Ref. 4).

III. DISCUSSION

Although an upward curvature of H(T) was ob-
tained in some intercalated compounds, ' the evidence
in that case is not very clear cut and the quantitative
analysis is complicated by the Pauli paramagnetism
and the strength of the spin-orbit coupling, generally
not known a priori with sufficient accuracy.

A more convincing evidence for crossover behavior
may be found in granular Al-A1203 films produced by
evaporation in an atmosphere of oxygen. These films
were recently shown to have an anisotropic structure.
The coupling, being weaker between superimposed
grains than between collateral grains, produces a sort
of "layered" structure on the scale of -100 A. The
oxide content can be adjusted so that superimposed
"layers" are strongly coupled close to T, and weakly
coupled far from T, . The resulting behavior of H(T)
(Fig. 2) is seen to be strikingly similar to that predict-
ed by theory (Fig. 1).

FIG. 2. Upturn in the parallel critical field observed in a

granular aluminium film {after Ref. 9). The normal-state

resistivity is p„.

The same approach may be useful for the under-
standing of the critical fields of other systems. (SN)„
crystals have critical fields that may be interpreted as
resulting from a fibrous structure, the fibers being ap-
parently always in the weak coupling limit in a parallel
field. ' We note also that the perpendicular critical
field of granular films sho~s a definite tendency to an

upward curvature, ' which may be interpreted as a

progressive decoupling of the grains in the lateral

directions.
Finally, it has been noted" that the low-temperature

critical fields of granular NbN and similar films are
practically independent of the normal-state resistivity
of the films, i.e., they seem to be characteristic of the
grains themselves, which is the result that one would
obtain in the weak coupling limit. If this argument is

correct, a region of upward curvature of H(T) should
exist near T, . We suggest that this would be worth
checking experimentally.
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