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Using muon-tin orbitals and the atomic-sphere approximation, we have studied the band structures of
Chevrel-phase molybdenum chalcogenides, M Mo6X, „.Generally, these compounds exist for a broad
variety of elements, M = Pb, Sn, Ag, Cu and X = S, Se, Te. m may be between 0 and 2, depending on
the element M. We present level schemes, computed for a range of Mo and X potentials, for three

Mo~X&4 clusters appropriate for the crystal structures of Mo~S„Mo6Se„and PbMo6S75 respectively. Self-

consistent Mo and X potentials have been estimated. The cluster levels give the positions of the Mo 4d-like
bands, while the widths and dispersions are estimated analytically in the tight-binding approximation taking

the covalent mixing with the X p states into account. The 30 Mo d bands are grouped into narrow subbands

derived from the levels for an isolated Mo6 octahedron. The Fermi level falls in a doubly degenerate E, band

with Mo wave functions of x —y' character and the E bandwidths vary between 65 and 35 mRy in the

compounds considered. The E, band is probably crossed by a five times wider, singly degenerate A„band of
predominantly 3z ' —r ' character. The Eg and A,g bands are the only ones crossing the Fermi level in the

ternaries but, in the binaries, the octahedra are elongated and a 50-35 mRy wide A„band, split off from a
triply degenerate T,„band, furthermore overlaps the Es band. The susceptibilities measured for SnMo, S, and

PbMo&S6 are in good agreement with our estimates, N(0) = 11 states/(spin Mo-atom Ry) and

I M,
"——40 mRy, of the band density of states and the effective exchange-interaction parameter, From the

measured electronic-specific-heat coefficients we deduce the value X = 2.5 for the electron-phonon

enhancement. In accord with experimental phonon spectra we estimate frequencies of 10 and 15 meV for a

rocking mode of Mo6Ses and Mo6S8 units, respectively. For the average electron-phonos matrix element in

the Gaspari-Gyorffy and atomic-sphere approximations we find (I ') = 3 X 10 ' (Ry/bohr radius)'. The
magnitude and extreme sensitivity to local environment effects of the spin-orbit coupling in the E, band offer
an explanation for the high critical magnetic fields measured in the ternaries.

I. INTRODUCTION

The ternary molybdenum chalcogenides with the
general formula M Mo, X, „, first synthesized by
Chevrel et al. ,

' have recently created great in-
terest owing to their extraordinary superconducting
properties. ' In particular, Pb, »Mo, s, , has a
critical field of the order of 500 kG and a transi-
tion temperature around 13 K.

The crystal structures are trigonal or triclinic
and a characteristic feature, illustrated in Fig. 1,
is the arrangement of the six Mo atoms of the
primitive cell in a nearly perfect octahedron, "
that is, near the face centers of a cube with edge
length b. The X atoms are placed slightly inside
the corners of this cube. The lattices are almost'
cubic with lattice constants a, and the essential
distortion of the crystals from cubic symmetry is
a rotation @ of 24 -26' about the threefold [111]
axis of the b cube with respect to the lattice. The
Mo, octahedra are rather well separated, the
smallest intracluster Mo-Mo distance being nearly
as in Mo metal and the smallest intercluster Mo-
Mo distance being (10-30)lo larger. The smallest
intra- and intercluster Mo-X distances are, how-

ever, quite similar. The element M may be a large
or a small cation. In the first case M stands for
Pb, Sn, Ba, Ag, or a rare-earth ion and rn is al-
ways close to unity. This large cation is placed at
the center of inversion between eight Mo, X, units
and hence at the center of a slightly distorted X
cube and far away from the Mo atoms. In the real,
nonstoichiometric compounds one of the two X
atoms nearest to an M atom, i.e. , one of those on
the threefold axis, may be missing. The crystal
structure of MMo, X, could in the large-cation case
be viewed as a complex CsCl-type structure with
the tilted Mo, X, unit as one component and the
large cation as the other. ' When M is a small
cation, m can take values between zero and 2, and
the ion usually enters the channel between four
Mo, X, units and therefore has Mo atoms among its
nea.r neighbors. Although the presence of the ele-
ment M may have a stabilizing effect on the struc-
ture, the nature of this element appears to be of
secondary importance for superconductivity, e.g. ,
through modifying the distance between the Mo, X,
units. This view is supported by the fact that M
may even be a magnetic ion, provided its position
is far from any Mo atom. Fischer' therefore con-
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eluded that the superconducting properties of these
materials are mainly determined by the Mo, octa-
hedra and their relative positions.

Crystal data for Mo,S„Mo,Se„Mo,Te„
PbMO687 5 and PbMo„Se, may be found in Table I.

We have investigated the band structures of the
above-mentioned compounds as a first step to-
wards an understanding of their superconductivity,

FIG. 1. Primitive cell of MMo6X8 and top layer of
neighboring cell. The coordinate system of the lattice
(Ref. 4) {i')and that of the basis (xyz) have a common
origin at a center of inversion and a common [ill]
axis along a threefold axis. The two systems are turned
by the angle P with respect to each other such that
the primitive translation vector in the k direction has
the xyz coordinates 3 (1 —cosft} -&3sinp, 1 —cosp+&3sinp,
1+2cosp)a. The xyz system is chosen such that the six
Mo atoms have the xyz coordinates + z (b, c,c), + ~ (c, b, c ),
and + ~(c,c,b), where c/b «1. Of the eight X atoms, two
are at the threefold axis and six at general positions.
Their xyz coordinates are approximately z (+b', +b',
+b'), with b'/b =1. For the binary compounds, where
the M sites are not occupied, b' of the two X atoms at
the threefold axis is about 7'j& larger than (the average)
b' of the X atoms at general positions and the Mo octa-
hedron is elongated along the threefold axis. A large
cation M will tend to push its nearest X neighbors away
and, in the Pb compounds, b' of the X atoms at the
threefold axis is 4% smaller than b' of the other six
X atoms; occasionally one of the X atoms at the three-
fold axis may be missing. values of a, b, c, ft}, and a
mean value of b' for all eight X atoms are given in
Table l. The average Mo-No and Mo-X intracluster
distances are approximately b/ 2 and b'/H2. The
ratio between these and the smallest Mo-Mo and Mo-X
intercluster distances R may be found in the table to-
gether with the direction cosines E and m (n = 1-/2- m )
of the intercluster vectors expressed in the xyz system.

and we have therefore concentrated on the Mo 4d-
like bands near the Fermi level. We first try to
answer the question of whether the 30 Mo d bands
are separated into a number of narrow bands, de-
rived from the levels for the isolated Mo, octahe-
dron and broadened by weak intercluster d-d cou-
pling, or the intercluster coupling is strong enough
to create a broad, common d band. In Sec. III we
compute the Mo d bands, neglecting the mixing
with all other bands, and find that the first situa-
tion occurs. Simple, analytical expressions for
the bands are given in the tight-binding approxi-
mation. In Sec. p7 we include the hybridization
with the Mo 5s states and the covalent mixing with
the Xp states. The effect on the 4d-subband posi-
tions is obtained from Mo6Xy4 cluster calculations,
a Mos Xy4 cluster being a Mo, octahedron surround-
ed by its nearest neighbors. The effect on the sub-
band widths is estimated analytically in the tight-
binding approximation and we find that the indirect
(Mo d-X-Mo d) contribution to the intercluster
coupling often exceeds the direct (Mo d-Mo d) con-
tribution. From these studies the positions of the
Fermi levels may be deduced. Finally our cluster
calculations are compared with previous molecu-
lar-orbital calculations for Mo, X, clusters. In
Sec. V we try to relate our band structures to
physical properties such as susceptibilities, elec-
tronic- specific-heat coefficients, rocking modes,
superconducting transition temperatures, and
critical fields. In See. ~ we summarize our prin-
cipal conclusions.

The electronic-structure calculations in the
present paper have been performed with the atomic-
sphere approximation' (ASA) to the Korringa-Kohn-
Rostoker (KKR) and linear combinations of muffin-
tin orbitals methods, and these calculations are
merely of an explorative nature. For a structure
with 15 atoms per cell and open channels, a self-
consistent, non-muffin-tin calculation using the
linearized muffin-tin orbital (LMTO) or augmented-
plane-wave (LAPW) methods6 and a local-density
approximation for exchange and correlation is pos-
sible but expensive, and we judged that several
such calculations for different types of X and M
atoms and varying geometries would be needed.
We therefore prefer, at this initial stage, to use
the LMTQ method in the ASA as an accurate
model and, taking advantage of its simple, analyti-
cal structure, we are able to study entire families
of electronic structures, generated from what we
feel are reasonable one-electron potentials. Often
we illustrate our computational results by simple,
analytical estimates. In the following section we
begin by summarizing the ASA formalism for clus-
ters and for crystals containing many atoms per
primitive cell.
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TABLE I. Crystal data. The experimental results are taken from Ref. 3.

Mo,s, Mo68e8 PbMoeS& 5 PbMosSe8 No6 Tea

b (Bohr radius)

a/b

c/b

y (deg)

~~No-Mo /b

Mo"Mo
inter

b'/b

~g inter /bI

inter
mMo-X

7.43

1.635

0.041

25.3

1.103

-0.503

0.532

0.87

1.01

0.109

0.018

Mo Mo

7.37

1.704

0.042

24.2

1.174

-0.477

0.494

Mo-X

0.92

1.03

0.143

-0.025

7.24

1.713

0.004

25.8

1.211

—0.440

0.564

0.90

1.05

0.142

0.037

7.26

1.773

0.000

25.6

1.288

-0.420

0.549

0.95

1.05

0.162

0.026

7.29

1.820

0.037

24 4

1.329

—0.443

0.482

1.00

1.05

0.144

-0.027

R. Chevrel (private communication).

II. ATOMIC-SPHERE APPROXIMATION

The one-electron potential in the atomic-sphere
approximation (ASA) is spherically symmetric in-
side spheres surrounding the atoms, and it equals
the one-electron energy in the interstitial region.
This choice of vanishing kinetic energy outside the
spheres greatly simplifies the structure constants
of the KKR method for solving Schrodinger's equa-
tion, and the associated errors may be substan-
tially reduced by allowing the spheres a slight
overlap.

The ASA therefore amounts to substituting the
muffin-tin spheres by atomic spheres and to using
muffin-tin orbitals (MTO's) y«with tails decaying
like r ' 'Y, (r). The condition that the linear com-
bination Z» Ua, y„„(E,r —R} is a solution of
Schrodinger's equation at energy F. is then that in
the neighborhood of any atomic site R' the sum of
the orbitals coming from all other sites R should
interfere with the orbitals centered at R' such that
the result is a linear combination of the p~oper'
solutions p, „,(E, ~r —R'()Y.. .((r —R'}/)r —R')) of
Schrodinger's differential equation for the atomic-
sphere potential v, , (~ r —R'~ ) at that site. This condi-
tion gives rise to the set of homogeneous, linear
equations'

Q [Sa.r~, a,~ —P, , (E)5„,„5,, ,5~.~]URI~=O ~ (1)

where the structure constants S are coefficients
for expanding the orbital tails about other sites
and where the potential functions P are defined in

eg(r)= Q Ua r. ~IP~ i (E,}l"'4~ r(E~ I' R'I)-

x Y,.((r -R')/lr-R'I), (3)

where Q Y snouj. d be normalized to unity in the
sphere at R'. The potential functions are never
decreasing functions of energy and the appearance
of the energy derivatives P as normalization fac-
tors in (3) is connected with the fact that, in the
neighborhood of any one-electron energy, we may
write P„(E)=P„(E,)+ (E —E~)P„(E,) an. d then re-
gard (1) as eigenvalue equations. The ratio be-
tween the probabilities that the electron is in a
sphere of type t and has angular momentum l and
that it is in a sphere of type t' and has angular
momentum /' is

terms of the radial wave functions and their radial
derivatives, evaluated at the atomic-sphere radii
s,. Specifically,

2 l+1

P„(E)—= 2(2L+ 1)

where D»(E) =- s,Q,',(E, s,)/p„(E, s,) are the loga
rithmic derivative functions and where s is some
linear dimension of the structure.

The KKR equations (1) may be solved at those
energies E,. for which the determinant of the ma-
trix in the square bracket vanishes. These are
then the one-electron energies and, in the neigh-
borhood of any site R', the corresponding wave
functions are given by
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[+sr(Ey)f cps,]f[+rr(+y)U t'r, &]

where

(4)

A. Canonical theory

In studies like the present, where the choice of
atomic-sphere radii and potentials is not obvious
a Priori, the ASA is a most convenient model be-
cause it completely separates the potential and

h t) 2i+1

UR~, j (5)
St

and the R sum runs over the h(t) sites occupied by
atoms of type t.

The structure constants in the ASA are canonical
in the sense that they depend neither on the energy,
on the atomic-sphere radii, nor on the scale of the
structure. They are tabulated in Table II as func-
tions of the distance 8 and the direction cosines
(l, m, n) of the interatomic vector R —R'.

structure dependences of the one e-lectron energies
and wave functions We may even solve (1) without
specifying the potential functions but regarding
them, rather than the energy, as the independent
variables. The surfaces in P space (see Fig. 10)
for which the determinant of the matrix in the
square bracket of Eq. (1) vanishes depend only on
the structure; they are just another representation
of the structure constants. %e shall now show that,
for a given point P,. on the jth surface, the canoni-
cal probabilities U«j form a vector U j which is
normal to the surface at that point.

%e define the function

r(U, P)=- P P V*,(S„, f,5„-,)V,.
I L'

of the independent vector variables P and U with
the components P~ =-PR, and UI, = UR, . Of these
variables, P is real and U is complex. The total
differential of T is

TABLE II. Canonical structure constants. The notation follows that of Slater and Koster
(Ref. 10). The vector from the first to the second orbital has the length R and the direction
cosines l, m, and n. The distance s, which also enters the definition of the potential functions,
is arbitrary. The entries nest given in the table may be found by cyclically permutimg the coor-
dinates and direction cosines. Moreover, S(l'm', lm) = (-)' "S{lm,l'm'), where lm refers to
the angular momentum. The present real structure constants equal those defined in Ref. 6
[{4.47)] times i' '{s/st.)"'~~(s/sq)"'

s(s, s)

S(s,x)

S{x,x)

S{x,y)

S{s,xy)

S(s, x2 —y')

S(s, 3z' —r')

S(x,xy)

S(x,x' —y')

S(x,yz)

S(z,x' —y')

S{x,3z' —r')
3z2 r2)

S(xy, xy)

S(x2 y2 x2 2)

S{3z'-r', 3z' —r')

S(xy, x —y )

S(zx, x2-y )

S(yz, x -y )

S{yz,zx)

S(x2 -y2 3z~ —r2)

S(xy, 3z2 —r )

-2 (s/R)

l x 2~3(s/R)'

(3l —1) x 6(s/R)

3lm x 6(s/R)'

elm x 2v 5 (s/R)
2 m2)/2 x 2v5 {s/R)3

3n )/2 x 2W5(s/R)~

(1 5l')m x 6&5(s/R)'

[1 5 (l m )]l x 6v5 (s/R)

-5lmn x 6&5(s/R)

5n(l m2)/2 x 6~5{s/R)

( ~ W) (1 —5n )l x 6v 5 {s/R )

(-v3 }{3—5n )n x 6W5(s/R)

(—35l m —5n + 4 ) x 10 (s/R )

[-—", (l'- m')'-5n'+4] x 10(s/R)'

(- -', )(35n'-30 '+ 3) x 10(s/R)'

—35lm(l — )/2 x 10(s/R)

-5[-(l —m ) —1]ln x 10(s/R)5

['(m' l')- ] n 0(

-5{7n —1)lm x 10(s/R)

(—'~3)5{7n~ —1)(l m~)/2 x 10(s/R)&

(--W3)5(7n —1)lm x 10{s/R )
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dT= p g dU~i(Szz' PzBzz'}Us'+ c c
I, L'

- g dP. [U, P

because the structure matrix is Hermitian. For
any point P& on the jth canonical eigenvalue sur-
face and for the corresponding wave function co-
efficient U„ it is true that

Z (Szz -Pz, f~zl:}Uz. '=0

for all values of L Co.nsequently, T(Uf, Pf) =-0

and dT( Uf, P,) = 0 when P,. is displaced arbitrarily
along the surface by dP~. From the expression for
the total differentialof T, therefore, Z~dP~,

~ Uz„, ~'

=0. If we then restrict the components of dp~ cor-
responding to the same type of sphere t and mag-
nitude of angular momentum /' to be equal, we may
sum over R, and m and thus arrive at dPf U j 0;
i.e. , U2& is normal to the canonical eigenvalue sur-
face.

A given potential specifies a path P(E), and a
corresponding one-electron energy E& is the value
of the parameter E along the path at its intersec-
tion with the jth canonical eigenvalue surface,
which we shall now assume is given by

f(P)=o
The probability that the j electron is in a sphere
of type t and has angular momentum l about its
center may then be expressed as

eigenvalue surfaces are substituted by a continuous
and differentiable number-of-states function
n(P }, in terms of which the projected densities
of states are

l)l„(z) = P„(z)n', (P(z)), (Va)

where n«=—Bn/BP„. Equation (Va) may be proved
in the following way: For a crystal, the one-elec-
tron energy for band j and Bloch vector k is
Ef(k), the tl probability is P„(E,(k))U.'„,(k), and
the corresponding projected density of states is
defined as

P P, ,(E)f;;,,(k, P(.)). (8)

The tl probability may be expressed as in (6) and,
as a result, we may write (Vb} as

l)t„(z)=P„(z)g V-,',

E„(E)=Q V ' f d'kd(E — q(Ek)) P(E) 'V((k),
J

(Vb)

where V» = (2w)'/0 is the Brillouin-zone volume.
If the canonical eigenvalue surface for band j and
Bloch vector k is given by f,(k, P) =0, the one-
electron energy is the solution of f,.(k, P (Ef(k))) = 0,
and consequently

5(E —Ef(k})= 5(fgk, P(E)))d ff/dz
= 5(ff(k, P(E)))

(E )U2 Pc)(zf)f ', ) f(P(zf)) (8)tl g t1 $ 2 Prr(zf}ft'r, f(P(zf»
t' E'

where f,', &= Bf~/BP„and w-here, in performing
the normalization, we have neglected the probabil-
ity that the electron is in the interstitial region,
or, in other words, we have "filled space with
spheres. " If the division of space into (slightly
overlapping} spheres is made judiciously, this
approximation is a good one. In any case, the
choice of sphere radii does not influence the
canonical eigenvalue surfaces but only the poten-
tial functions, and the ratio between the tl and t'I, '

probabilities is independent of the probability for
the interstitial region. The canonical eigenvalue
surfaces thus contain all the structural informa-
tion needed to construct the electron density and hence
to perform a self- consistent calculation within the
atomic- sphere and local-density approximations.
Once these surfaces have been determined there
are no further eigenvalue problems to be solved
for that structure.

For crystals, ' also the Brillouin-zone sums can
be done once and for aQ and, in that case, the

x d'k5 ~kP E)) '„kP E

This shows that

(Vc)

d (P)=Q V ' f d'k 5(f,(k, P))df~(k, P)
J

is a total differential with respect to P; Q.E.D.
The total density of states is, of course,

E(E)=RE„(E)=g V-;, fd kk(E E,(k)).

(10)

Qne might summarize the canonical theory by
saying that the atomic positions define a number-
of-states mountain (actually only one face of a moun-
tain) in P space. The potentials and sizes of the
atomic spheres merely specify a path P(E) up this
mountain, with E playing the role of the time along
the path. At a given point of a path, the power
(Bn/BP) ~ (d P/dE) of the force Bn/B P is the total
density of states, while the power of the force
component Bn/BP„ is the tl-projected density of
states. For a finite system the mountain is ter-
raced and for crystals it is smooth.
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8. Potential functions

Useful parametrizations of the potential func-
tions are

(g +~ti« C-ii}~ti l

2(2f+ 1}'(2l+3) 1 s
(1 ii &—)'~i "~

(12)

valid for an energy range of order 0.5 Ry. Here,
C„ is called the center of the tl band, V„ is the
square-well pseudopotential, p, „and ~„are in-
trinsic band masses relative to that of free elec-
trons, and y~, is a distortion parameter. The po-
tential parameters for some 40 elemental metals
have been listed in Ref. 6.

For the molybdenum chalcogenides we choose the
dimension s entering the definition of the structure
constants and the potential functions to be (3/
16v}'~'b, which is the atomic-sphere radius in the
corresponding fcc structure.

In Table III we give values of the~otential para-
meters for Mo and X, appropriate for energies
in the occupied part of the Mo d band. These ap-
proximate values were estimated from atomic-
sphere potentials constructed from renormalized
atomic charge densities aM using the Hedin-
I undqvist approximation' for exchange and corre-
lation. The amount of renormalized charge, and
hence C„,, —C», „was determined self-consistently
using the canonicaI eigenvalue surfaces shown in
Figs. 9 and 10, and the results are explained in
Sec. IV 8. The effect of charge transfer on the
other potential parameters was neglected. For
PbMo6S7

~ 5 the sphere radii s, were chosen to be

14% larger than those of touching spheres, where-
by the Mo radius takes the same value as the Wig-
ner-Seitz radius in bcc Mo metal. This same Mo
radius was then used for all other compounds and

the chalcogen radii were determined by the re-
quirement of 14/p overlap; i.e. , sx=(1.14/W2)b'
—s„,. (See Fig. 1.) The radii thus determined
agree within 10% with those f-dependent atomic
radii for which the logarithmic derivative of the
isolated-atom valence orbital (i.e. , Mo s, Mo d,
and Xp) takes the value (l+-1).

The Mo and S potential functions for PbMo, S, ,
are shown in Fig. 2.

C. Equivalence with the two-center approximation

In an energy range so narrow that the potential
path is a straight line, i.e., that

(13)

the ASA is mathematically equivalent with the two-
center approximation" to the linear combination of
atomic orbitals (LCAO} method. The effective
overlap matrix is the unit matrix, while the effec-
tive-Hamiltonian matrix is

A&/2e Al/2
R'l'm'& Rim tl 0'0, l'l nt'fft 0'/' O'Pm'~ I, lm g j

(14)

Consequently, C„ is the center of gravity of the
unhybridized tl energies and b Sb are the
effective transfer integrals. As seen from Table
II, these integrals are far simpler than those en-
countered in the Lt AQ method. The effective tw'o-

center integrals are in fact

TABLE III. Approximate self-consistent potential parameters. sx =—{1.14/v 2 )b' —sM, . Radii
A

s are in Bohr radii. Energies C, C, and 6 are in Ry. Central energies C and C are relative
to CMp g P CMp g and Cx& for Mo and X potentiaQ, respectively .

Mo potential
(all compounds)

X potential
MosS8 MosSe8 PbMo6S7 5 PbMo&Ses MosTes

Cs
Cp

Cg

Ps
p,p

p.g

Ys

7p

Yg

C, (C~„)
(C

a, (cx,)
(CMp g)

St

s = 0.3908b

-0.11
0.89
0.00
0.66
0.76
4.0
0.42
0.12
0.00

=0.035
2.92

-1.7
—0.35

1.8
0.9
1.4
1.2
0.34
0.08
0.05

-0.42
0.09
0.065

2.29

2.90

-1.9
-0.31

1.7
0.6
1.3
0.9
0.29
0.08
0.06

-0.38
0.12
0.081

2.55

2.88

-1.8
-0.32

1.6
0.7
1.5
1.3
0.30
0.08
0.05

-0.39
0.10
0.069

2.33

2.83

-2.1
-0.29

1.4
0.3
1.4
1.0
0.24
0.08
0.05

-0.36
0.12
0.082

2.64

2.84

-1.7
-0.25

1.3
0.4
1.2
0.8
0.30
0.08
0.06

-0.30
0.15
0.11

2.96

2.85
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2l'+ 1&(2l+ 1 Z /2 t'+ &+j.

(I I ) ( )g ~ y( )
(2I + 1 2l+ 1

(I'+ M)! (l' —M)! (I+M)! (l —M)!

For example,

(ddo) = -6
(dd v) = 4 x 10(s/R)'n, ,

(dd5) = -1
(pdo) =-v3

x 6'(s/R) v'n~n. ~,
(pdv} =1

where p, d stand for l, l'=1, 2 and o, m, 5 for M
=0, 1, 2.

It should be noted that the interaction (15}has
long range for l'+ 1 & 3; the s-s interaction, in
particular, falls off as 1/R. For accurate calcu-
lations on finite systems the interstitial region
must therefore be bound by embedding the cluster
in a Watson sphere, outside which the tails of the
muffin-tin orbitals are then augmented by energy-

p(E)

D. Pure levels and weak hybridization

The average of the (21+ 1)h(t) =-h(tf) eigenvalues
S„,. of the tl diagonal block of the structure con-
stants is zero, because the structure constants
referring to the same site (R= R') vanish, and a
measure of the range covered by the tl eigenval-
ues ls

S~

h( t 1) h!,' t t ) X/2
12'(t!) ' g P Isa'r ', n& I

—= w«,
g'm' Rm

(16}

where the trace of the tl diagonal block squared is
given by (22) below with t= t' and I = l'. If (13}
holds over this range, the extent of the unhybrid-
ized tl energies is Wt t+„.

If we include hybridization, under the assump-
tion that it is weak, i.e. , that

I P, , I

» W, , , for all
t'l'W tl, the tl-like canonical eigenvalue surfaces
are given by

derivative functions in the usual way. ' For cry-
stals the lattice summations must be performed
by the Ewald method. In monatomic crystals
S, ,(k) —-6(ks} ' for k -0 and, using (12}with s = s,
=s», we realize that V, is the bottom of the s
band.

I

f, ( p }=-P~i S.g -ISl'v Ig -Pi'r = 0 (17a)

-0.4 -0.2 0
E(R ) ~l -1

2 tl M tlPt i(&,) U
~ r, = &i r„ , I2+Pi-r „ttl 7lc

(19a}

as obtained by folding down the linear equations
(1}, and with

h{ t'l') h(t l)

I mr. , ai. ai.„I'.
5 7)i

Here, the eigenvector of the tl diagonal block of
the structure constants is assumed to be normal-
ized according to U'„,. = 1, and the terms
Z, ., I

S',,', , I', P,,', , in (17a) h. ave the form of crystal-
field terms.

Using (6) together with (17a), the probability that
the tl-like j electron is in a sphere of type t' and
has angular momentum l' about its center is

FIG. 2. Potential functions for molybdenum and sul-
phur spheres in PbMo6S7 &

as given by Eq. (ll) with the
potential parameters in Table III. The zero of energy
is at CM, ~. The energy where PM„diverges, and
which is at the bottom of the s band in Mo metal, is
VMO~ = —0.53 Ry.

where the prime indicates that the term with t"l"
=tl is absent and where

IStl lzt't'
I J

tt E~
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is the ratio between the t'l' and tl probabilities
(i.e. , pttI, -=1}. In terms of the potential para,
meters (11)

tt t'1'(Ct't') tl( j) )St) 12

(C E)2 I t t!'t'

f'l' tl I St l I2

(C C )2 ( t l')t'I (20)

where, in the last approximation, we have used
E,. = C„and both 6's therefore refer to their re-
spective band centers, i.e. , n=(p, s't) '(s, /s)"".

For a crystal'

f,(k, P) =P„—s„,(k)-+Is', ,', ,(k)I2P, ,',„

with

(17b)

5.'m'

(18b)

and, according to (Vc), the projected densities of
states are given by

IV, , , (E) = P„,.(E)n,', (P(E))

Pt l') M 'v -t

d k' t) f,. k, P E )) S',,',, k (19b)

when t'l' t tl. Moreover,

Iv„(E)=P„(E)nI((p(E))

where, according to (8),

P„(E)6 (f,(k, P(E}))

(19c)

)d —P' dE "1
=!j(E E,(k)) I+ g' '" Is',.',.(k) I;

5 0l)
s, , I;P;, -=Is, ,

J
(21)

where the j sum is given by the simple formula

(19d)

and the total density of states is given by (10}.
The total shift in the P„direction of the tl-like

canonical e'igenvalue surfaces caused by weak hy-
bridization with the t'l' partial waves is

A( S' 1') A( t 7)

I syrr , I'!tm I

5,'m' 5m

4(2l'+ 1)(2l+ 1)(2l'+ 21)!
(2l')! (2l)!

IR- R'I (22)

III. PURE Mo d STATES

In Fig. 3 we show the pure Mo d levels, S„,, „
for an isolated, perfect Mo, octahedron and for an
isolated, real Mo, octahedron, together with the
pure Mo d bands, S„...(k), for a crystal of real
octahedra. These results were obtained by dia-
gonalizing the 30 x 30 submatrix of the structure
constants, thereby neglecting the hybridization
with all other than the Mo d states, and they con-
firm that the Mo d bands consist of narrow,
weakly interacting subbands, each one being re-
lated to a level for the isolated octahedron. "

There are 20, 22, and 23 Mo electrons in Mo, X„
MMo, X„and MMo, X7 5 respectively, provided
that the M p bands lie entirely above, and the XP
and the M s bands lie entirely below, the Fermi
level. That is, M acts as a divalent cation, and
X acts as a divalent anion. The oxydation state
of Mo is therefore q = —", , —", , and —", for the above-
mentioned compounds. In Fig. 3 the Fermi level
is placed between the bonding" E, and T,„basnd
for Mo, X, and in the T,„band for MMo, X, and
MMo, X, , But, as we shall see in Sec. IV, the
covalent mixing with the X p states will change
the order and width of the Mo d subbands such that
the Fermi level for a wide range of potential para-
meters will fall in the E, and A„bands and, for
the distorted Mo, X, compounds (c t(0), possibly
also in the A„-band splitoff from the T,„band. W'e
now give a detailed discussion of the results

For t = t', the double sum over R and R' excludes
R= R'. For a crystal, ' h(t) may be taken as the
number of type-t atoms per primitive cell and, in
the j sums on the left-hand sides of (16) and (21),
we must then include the average over the Brill-
ouin zone. While R runs over all type-t atoms in
the cell, R' must run over all type-f' atoms in the
entire crystal.

If the hybridization is so weak that the denomi-
nators in (19a) and (19d) essentially equal unity
and if, over the range of the tf band, rt«(E)/(C t, t
—E)' is essentially independent of E, then the en-
tire' tl band contributes

at't

hatt

I

s't'r I'/(crr —ct r)'

electrons with a given spin and with angular mo-
mentum l' to the spheres of type t'.
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shown in Fig. 3.
The extent of the Mo d energies is most easily

estimated from (16) and (22}. For an isolated,
perfect octahedron the extent in units of 4„,~ is
W= [12 x 1400 x 4(sing/5) ]' ' = 13.4 because each of
the six equivalent Mo atoms has four nearest
neighbors at the distance 5/v 2 =-ft„",t"„;, and the
interaction with the next nearest neighbor at the
distance b can be neglected. As expected, this
canonical width is approximately ~3 times smaller
than the canonical d-band width' of 23.5 in an fcc
crystal where the number of nearest neighbors is
three times larger. In a bcc crystal like Mo
metal with the same atomic volume, i.e., same s,
the canonical d-band width is 23.8. U'sing the
value of 4„,, given in Table III, we estimate that

Mod

2g 50

5 T1 58
g

sz

E9 42

38

32

2g

20

g

1U
10

29

1g

the extent of the d levels for an isolated Mo, octa-
hedron is 0.5 Ry.

Considering now a crystal of Mo, octahedra,
there will be an extra contribution to (22) from the
intercluster terms and, retaining only the shortest
intercluster bonds, of which there is one per Mo

atom, we obtain BW'/W'= —'(ft"'"'/R"'" )" This
extra contribution goes into band broadening of the
levels for the isolated octahedron and to repulsion
between these subbands such that BW2/W'= (n~/W)'
+2BE/(E —C). Here, u, is an average subband
width and BE/(E —C) is an average repulsion con-
stant. An upper bound on the subband width is
therefore given by

(23)

which, for the compounds listed in Table I in or-
der of increasing a/5, namely, MoeS„Mo,Se„
PbMo, S, „PbMo,Se„and Mo,Te„ takes the re-
spective values 4.1, 2.9, 2.5, 1.9, and 1.6. For
PbMo6S7 5 the full calculation shown in Fig. 3 yields
a=0.7«2.5. The intercluster contribution to (22)
must therefore be dominated by the subband re-
pulsion BE/(E —C), although its value is less than
2% and the corresponding shifts can barely be de-
tected in the figure. Having discussed the gross
features of the Mo d states, we now consider cer-
tain states of particular interest.

A. d states for the isolated octahedron

For the isolated, perfect octahedron the d state
of lowest energy belongs to the irreducible repre-
sentation A„of 0,. It has the symmetry

(3z' —r'), + (3z' —r'), + (3x' —r')„
+ (3x ' —r ') „+(3y' —r ') „+(3y' —r '), ,

where a subscript indicates the position of the
orbital. Retaining the interactions with the near-
est neighbors only and using Table II, its energy
ls

4S(3z' —r ', 3x z —r ', —,
' b, 0, —,

' 5) = -570' 2 (s/B)'

FIG. 3. Mo d levels and bands obtained neglecting hy-
bridization with all other states. On the PMO& scale,
one unit is approximately 35 mHy. First column: levels
for an isolated, perfect (c = 0) octahedron labeled ac-
cording to the irreducible representations of 01, . In
Bouckaert-Smoluchowski-Wigner notation the labeling

~i ~25' ~2' ~15 ~12 ~25 ~25' ~ ~12' ~12
I'25, I'15, and I 2. Second column: levels for an iso-
lated octahedron, distorted as in PbMo6S7 5 (c/b = 0.004).
Third column: bands along the (111]direction for the
octahedra in PbMoeS7 5 @/b= 1.713, c/b= 0.004, P
=25.8'; see text in caption of Fig. 1). The numbers
between the levels in the first column indicate the
electron count.

in units of 4„, ~ and relative to CM, „ i.e. , on

~ scale.
The A,„state is

+ Qz —$z „+zx —zx

and has the energy

4S(-xy, yz; —,
' b, 0, —,

'
B) =-400W2(s/5) =-5.2.

Two sets of doubly degenerate E, states are
(x'- y'). + (x'- y') .

+ exp(v 3')[(y' —z')„+ (y' —z') „]
+ exp(+ —', xi}[(z'—x'), + (z' —x'),]
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(3z' —r'), + (3z' —r'),
+ exp(+ —', zi)[(3x' —r'), + (3x' —r ') „]
+ exp(+ -,'zi}[(3y' r'), + (3y' r') „].

Neglecting the hybridization between them, their
energies are, respectively,

—2S(x' —y', y' —z', b, 0, —,
'

b) = -215' 2 (s/b)'

= -2.8

2@i/3

e2 tt i/3

—2S(3z' —r ' 3x ' —r ' —' b 0, —,
'

b) = 2&5@2 (s/b)'

= 3.7.

Including the hybridization, we find that the two
states mix in the ratio 21i/100 such that the energy
of the bonding E, state, having primarily x' —y'
character, is

e-iak„
E (x'-y')g

—(215+441/20)v 2 (s/b)'= -3.1,
while the energy of the antibonding E, state, with
dominating 3z' —r' character, is

(2&5+ 441/20)v 2 (s/b}' = 4.0 .

One of the E,(x' —y'} states is shown schematically
in Fig. 4.

Two sets of triply degenerate T,„states are

(( ' —y'}.-( '-y')-. (y'- ').-(y'- ').
(z' —x'), —(z' —x'),}

Flo. 4. Symmetry of one of the Ez (x —y ) states.

4S(x' —y' y' —z', —,
'

b, 0, —,
'

b) =430W2(s/b)'= 5.5.
The difference between the highest and low'est d
energies for an isolated, perfect octahedron is
therefore 1000m 2 (s/b)' = 12.9, and this is in accord
with the estimate %=13.4 given above.

In the molybdenum chalcogenides, the binaries

[zy, - zy, - zx, + zx „xz,—xz, —xy, + xy, ,

yx„—yx „-yz, +yz,}
with the respective energies 0 and

2$(- xz, —xy; 0, z b, z b) = 200 W2(s/b) = 2.6.
These states, however, mix in the ratio —,'(vll —v2)
=0.63, whereby the energy of the bonding T,„
state, having primarily x' —y' character, becomes
-100(v 11 —v 2)(s/b)' = —l.V, while that of the anti-
bonding state, with dominating (xz, yz) character,
becomes 100(~11+&2)(s/b)' = 4.3. By transferring
the bonding T,„level, which is occupied, from the
upper to the lower edge of the gap in the middle
of the Mo d spectrum, this mixing is partly re-
sponsible for the stability of the octahedron. One
of the bonding T,„states is shown in Fig. 5.

The d state of highest energy is the A„state
with symmetry

(x'-y'). +(x'-y') .+(y'-z').
+ (y' —z') „+(z' —x'},+ (z' —x'),

and energy

FIG. 5. Symmetry of one of the T2„states. The co-
efficient of an xz or yz orbital is P/~t2 times that of an
x -y orbital, with P= 3 (F11 -V 2) =0.63. That Tp„
state which transforms according to A„of g» is the
state shown plus the two obtained from it by cyclically
permuting x, y, and z . At the (0, 0, z b) site and for
the A „state, the coefficient of the {x—y)z/~2 orbital is
P times that of the x —y orbital.
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in particular, the octahedra are slightly elongated
along the [111]axis such that the Mo atoms are
displaced from the face centers by the amount
c/v 2 along the face diagonals (see Fig. 1 and Ta-
ble I). The elongation lowers the symmetry of an
isolated octahedron from 0„to C„and thereby
splits all threefold, but no other, degeneracies,
i.e. , T„-E„+A„and T, -E,+A,. For the T,„
levels the sum of the three partner functions, de-
fined as in Fig. 5, wi11 belong to the irreducible
representation A„of C„and the remaining two
functions will belong to E„. Vfhereas the interac-
tions of the (x' —y'), orbital with the (y' —z')„
—(y' —z') „(z'—x')„, and -(z' —x') „orbitals
cancel for a perfect octahedron, this is not true
for an elongated octahedron, where we find that
the energy of the bonding A„ level is raised by"
3460c/b(s/5)' such that the splitting between the
bonding A„and E„ levels is 5190c/b(s/5)' Wi.th
the values of c/5 given in Table I this spbtting is
0 and 0.2 in PbMo, Se, and PbMo, S7 5 respectively,
but it is about 2 in the binaries, and this will ex-
ceed the crystalline bandwidth.

8. Band states

The Mo d bands for PbMo, S7 5 shown in the right-
hand panel of Fig. 3 and in the bottom panel of
Fig. 6 were obtained by diagonalizing numerically
the 30 x 30 submatrix' S(k} at points in the simple
cubic Brillouin zone. Some details of these bands
are due to hybridization between Bloch sums of
nondegenerate d states for the isolated octahedron,
and those features are sensitive to the relative
positions of the octahedron d levels and would con-
sequently change if the covalent mixing with the
XP states were included. There is, however, for
each band a characteristic shape and width which,
we believe, would survive in a complete calcula-
tion, and those characteristics derive from the
nature of the d states for the isolated octahedron.
As an example we show in Fig. 6, from the bottom
and up, the Mo d bands in the vicinity of the bond-
ing E, and T,„ levels, the band derived from the
Bloch sums of the two bonding E, states only, and
the band derived from the Bloch functions shown
in Fig. 4 of the two E,(x' -y'} states only, i.e.,

Eg

Mod

Eg— --3

Eg-
Tiu

FIG. 6. Pure d subbands of PbMo&87 5 octahedra.
From the bottom and up, these bands were obtained by
(1) retaining the interactions between all 30 states of the
octehedron and between all octahedra in the
crystal, (2) retaining the interaction between the
two degenerate states of the bonding E~ level only and
retaining the interactions between all octahedra in the
crystal, (3) retaining the interaction between the two E~
(x -y ) states only and retaining the nearest-neighbor
inter- and intracluster interactions only, i.e., using
(26a). The simple cubic Brillouin zone is shown in
Fig. 12.

(24}

where S"'"=-215W2(s/5)', as previously men-
tioned, and we have retained the smallest intra-
and intercluster Mo-Mo bonds only. The inter-
cluster coupling constant S"'"= S(x ' —y', x' —y',
R"'") may be found in Table II as a function of the
Mo-Mo intercluster vector expressed in the xyz
coordinate system (see Fig. 1), i.e. ,

neglecting the mixing with the 3z'- r' states. The
latter band is of particular relevance because the
3z' —r admixture will be strongly suppressed by
the Xp covalent mixing.

This doubly degenerate E, (x' —y') band, which
we believe is the essential conduction band in the
Chevrel-phase molybdenum chalcogenides, has
the analytical form

(E)=(E- C„.,)/z „, =S'""+S"'"G(k)

R'""(I,m, n) = ( 3 (1 —cos P —W3sing) a —c, 3 (1 —cosQ+ v 3 sing) a —c, 3 (1+2 cos@) a —5} (25}

in terms of the lattice constant a the dimensions
b and c of the octahedron, and the turn angle Q.
The dispersion of the band is independent of b, c,
and Q and is given by

G(k) = '(i+j + ks [i(i ——j)+j (j —k)+ k(k —i)]'~'],
(26a)

and the two eigenvectors combining the two E
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states of the octahedron (Fig. 4) to the Bloch states
for the two E, bands are

U(k }= (I/W2) (exp(iu), + I), (I/W2) {exp(iu), —I],
where

cosu(k)=[k —z (i+j)][i(i—j)+j(j —k)+k(k —i)] ~~~.

(26b)

In (26), i c=-os(ak, ), etc. , and k„k, , and k, are
the components of k in the ijk coordinate system.
Although the point group is C,&, the E~(x —y')
band has full cubic symmetry. In (26a) the func-
tion i+ j+k of k changes sign under the translation
(1, 1, 1}w/a such that G(k }has a density of states
symmetric aboutzero(Fig. 7). Moreover, G(k) ex-
tends from -1 to+ 1 and the E (x' —y')~bandwidth is
therefore 2 ~S"'"(,where S"'"=0.53, 0.31, 0.28,
0.18, and 0.14 for MoeS» Mo6Se» PbMoeSv. »
PbMo, Se„and Mo,Te» respectively. This trend
clearly follows the decrease of (R„","~,/R'„.'„',)'
associated with the increase of a/b The.band-
widths in rydbergs may be found in Table V.

TheE, (x -y'}banddepends inaratherinterest-
ing way on the rotation Q of the octahedron with
respect to the lattice (see Figs. 1 and 4). For Q

=0, the intercluster distance is a-b, which is as
small as the intracluster distance, and S'""
=-10(a/5 —1) '(s/b)'=-0. 88, -0.53, —0.49, -0.33,
and -0.25 for the five above-mentioned compounds.
The band is therefore rather broad and k= 0 has
the lowest energy. As Q is increased, the x' —y'
orbitals are shifted away from each other, with
the result that the interaction changes sign at about

P = 15', whereby the band goes through a collapse

33

2

and inverts. The bandwidth hereafter rises to a
maximum near the observed value of Q and it fi-
nally decreases with the strongly increasing inter-
cluster distance. This is shown in Fig. 8.

In Sec. IV we shall demonstrate that the covalent
mixing with the X p states will lift the E, band
above the T,„band and the possibility therefore
exists that, in the binaries, the E, band will be
close to, or overlap, the A„band split off from
the T,„band. %e shall therefore estimate the
width of this A„band. Neglecting the hybridization
with any other d state for the isolated octahedron,
the A„band may be expressed as (24), where
S'""is now the A„ level and where G(k) =

& (i+j+k}
such that the bandwidth is 2~S'""~. The interclus-
ter coupling constant is

S"'"=(1+P') '[S(y' —x' x' —y')

+ 2PS(y' —x', (x- y)z/W2}

+ p'S((y —x)z/v2, (x —y)z/W2)],

which may be evaluated using (25) and Table II.
The admixture P of the (x- y}z orbitals turns out

to be crucial: For P=0, the intercluster coupling
constant would just be the negative of that for the

E, band, and the width of the singly degenerate A„
band would consequently equal that of the doubly
degenerate E, band, which is 2x 0.31 for Mo, Se,.
The intercluster (x —y)z interaction is, however,
several times larger than the x' —y' interaction
and of opposite sign. In Mo,Se, the intercluster
coupling constant in fact vanishes for P= 0.53 and,
with the previously found value of P=0.63, we ob-
tain $ ~te =0.1. This very narrow band will be
broadened by covalent mixing with the Xp states.

Also the A„band may be expressed by (24) with

G(k) = —,
' (i+j+k), and we find that S"'"=0.77,

0.53, 0.49, 0.36, and 0.30 for the respective com-
pounds listed in Table V. In the following section
we shall see that this band is considerably broad-
ened by covalent mixing.

0.6

0.4

P/S'""' +i
0.2

FIG. 7. Density of states in the E~ (g2 —y2) subband

(26). Bandwidths estimated for various compounds are
given in Table V. The number of E~ electrons per cell
is n, We estimate that n = 3.1 and 2.1 for PbMo83& &

and

PbMoeSe, respectively; the corresponding densities
of states at the Fermi level may be found in Table V.

0
15 20 25 30

FIG. 8. Dependence of the x -y direct intercluster
coupling constant on the turn angle ft) defined in Fig. 1.
The observed turn angles are indicated by arrows.
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FIG. 9. Cross sections of the canonical eigenvalue surfaces in (PU„,PM04, J&r&) space for the Mo4XI4 clusters
appropriate for (a) Mo6S8, (b) MoeSe8, and (c), (d) PbMo6S& 5. The planes of cross section are parallel to the P z& axis
and have been chosen in such a way that they lie close to the self-consistently estimated potential paths (e.g. , the full
path in Fig. 10). The equations o'these planes are PMpu 5PMps=-6. 25 for {a)-{c)and PMpg 5PMps —-0 for (d). T e
eigenvalue surfaces are labeled a"cording to their parity and degeneracy at the right-hand side and bottom of each
figure. Hence, g andu denote (singly degenerate) A~ andA„states, while g' andu' denote (doubly degenerate) E~ and
E states. The numbers between the surfaces indicate the Mo-electron count (i.e., the electron count normalized totl

zero at PM, ~
—~, PMpz ——~, and Px& +~). Neglecting the trigonal distortion and labeling the levels according

to the irreducible representations of the full cubic group, the levels, from the bottom and up at the right-hand side of
(d) are A«(I'g), Tg„(I'gs), T2&(F2y), T2„(I'2g), E&(I'g2), A2„(lo. ), T2& {I2y ), Tgz {I']g), E&(Ig2), T2„(E„)(I'2g), Ett(l g2 )

A2q (I'2), T2„(/4„)(I'g~), T«(I'f5, ), and T2„(I25). The heavy curve in each figure is the projection onto the plane of cross
section of the potential path defined in (2) and given by (ll) with-the parameters in Table III. The energy scale is
marked for each 50 may terminating at the Fermi level, and the potential functions for PbMo&SV 5 are shown in. Fig. 2.
In the state defined by the intersection of the potential path, P(E), with a canonical eigenvalue surface, f, (P) = 0, the
(un-normalized) partialprobabilities are (ef&IBP&&) gP~&/dE) (see Sec. IIA). The inset at the bottom of each figure
shows the band broadening of the A «, E~, and A„{orT2 „) levels as estimated in Secs. III 8 and IV C and given in
Table V.

IV. COVALENT MIXING AND HYBRIDIZATION

In order to study the effect on the Mo d
levels of covalent mixing with the X P waves
and hybridization with the Mo s maves me com-
puted the canonical eigenvalue surfaces in

(PI4, „P„,„P»}space for three Mo, X„clusters
using the atomic positions' in, respectively,
MoeSsy MoeSee, and PbMoeS7 5. The Noes clus-
ter is the Mo, octahedron surrounded by its 8+ 6
nearest neighbors and the presence of the divalent
cation M only influences our eigenvalues to the ex-
tent that it modifies the positions of the Mo and X
atoms and contributes tmo electrons to the Fermi
sea.

The eigenvalue surfaces shown in Figs. 9 and 10
mere traced along straight lines in P space by di-
agonalizing the appropriate 'T8 x 78 Hamiltonian
matrix (14) for fixed values of 4&I„, „ IL„, „, and

4L», and varying the values of C~, —C» and

CM, ~- C„,, Once constructed, these canonical
eigenvalue surfaces apply to any potential path,

i.e. , to any set of potential parameters, as ex-
plained in See. GA.

For each compound the potential path shown in
the figure was estimated self-consistently with
the Mo-X electron transfer, keeping the Mo, X,
unit charged by -2 or 0, as it mould be in a solid
containing one or no divalent cation per primitive
cell. In all cases, each Mo sphere turned out to
be neutral within a fem tenths of an electron. The
potential parameters are listed in Table III.

%'e find that the Fermi level falls in the doubly
degenerate E band just below the Mo d gap and, for
the binaries, also in the A„band.

%'e shall nom discuss the covalent mixing and the
hybridization in some detail and, after having con-
sidered the effects on the ordering of the Mo d
subbands (See. IV A) and on the relative band
position C„«-C» via the requirement of self-
consisteney (Sec. IV 8), we shall estimate the
effects on the widths of the Mo d subbands (Sec.
IVC). We conclude that, whereas the E, band is
broadened a few times, the A„and the A„band-
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widths are almost entirely due to intercluster
coupling via the X atoms. The A, band is, in fact,
so wide that it overlaps the E band. These re-
sults are summarized in the bottom panels of
Fig. 9, in Fig. 11, and in Table V. Finally, in
Sec. IVD, we shall compare our results with those
of other investigators.

A. M06X 14&luster states

Neglecting for the moment the Mo s waves, the
levels in Fig. 9 will tend towards the pure Mo d
levels in Fig. 3 when P»-~ ~, and they will tend
towards the pure Xp levels when P« „-+ . The
Mo d asymptotes are thus centered at PM, ~=0 and F /i

(mRy)

M06 S8

have the approximate width 8'„, ,=13.4. The Xp
asymptotes are centered at P»= 0 and their width,
estimated from (16) and (22), is W»=[12 x 72
x 4(s/b')']' '=2.5(b/b')', because each of the 14 X
atoms has four X neighbors at approximately the
same distance O'. Qf the compounds listed in Ta-
ble I, Mo,S, therefore has the largest Xp band-
width, namely, 5.3. In the real crystals each X
atom has more than four nearest X neighbors and
the XP bandwidths are then somewhat larger than
in the Mo, X,4 cluster.

When! P»» W» the Mo d-like levels behave
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FIG. 10. Same as in Figs. 9(c) and 9(d) except that
the plane of cross section is here parallel with the
P Mp g axis and has the equation PM, ~

—5Pz& = —15. The
stippled lines indicate the traces with the planes of
Figs. 9(c) and 9(d). The dot-dashed potential path in-
cludes the effect of weak hybridization with the X s
waves as explained in Sec. IV A. We estimate that the
uncertainty in the positions of the Mo g-like levels,
caused by the finite size of our cluster model, corres-
ponds to an uncertainty in the position of the potential
path bound by the solid and dot-dashed paths.
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FIG. 11. Energy levels in the vicinity of the Fermi
level and superposed densities of states for the E~, A„,
E„, andA«subbands in Mo6S8, Mo&Ses, and PbMo687 &.

The A density-of-states curves and the Fermi levelsig
drawn in solid line correspond to the potential paths
drawn in solid line in Figs. 9 and 10. The dot-dashed

density-of-states curves and Fermi levels (Fz)ig
correspond to the dot-dashed potential path in Fig. 10;
they include the effect of weak hybridization with thy
X s waves. The zero of energy is at CM ~.
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TABLE IV. Average hybridization in the Mo d band.

Mo6S3 Mo6Se8 PbMo6S7 5 PbMo6Se8 Mo6Tes

i ISLp dI2

i ~+Mod~2
30

S M. ,(C„.,)

S»(CMo d)

CM. d

&Xd«Mo d~

—', l&M:Pl'/'&MoP( M d&

—,', /s",'"t'is, (c „)
+o I Sxp 'I'/P„&C„. ,&

—,0 l Sxd "I'/I'xd (CM, d)

Sp I SMo pl'&No p&Mo p(&M p - ~Mo p)

—' l&X,
' "I'&Mo d&Xs«&o d- &Xs~

'
30

I~Xp I +Mo d+Xp(~Mo d CXp~

—', Is„"s'I'&ModnXd{CMod cXd)

6.3

24

2.7

4.5

0.5

—0.9

0.003

0.43

0.04

0.9

15

43

2.7

3.2

-42

0.4

—1.0

0.04

0, 003

0.43

0.04

6.3

53

18

2.7

-0.4
0.4

—0.8

0.04

0.002

0.40

0.04

0.8

-18

2.9

—30

0.3

3.8
1.0
0.04

0.003

0.38

0.04

0.6

19

2.1

2.0

—17

0.3

3.5

-1.2
0.04

0.002

0.42

0,07

according to (17a); that is, P„, ,=S„,, ,

the hybridization is strong and (17a) does not ap-
ply. For the average hybridization constant de-
fined in (21) we obtain

~
i

S"' P i' = 180[4(s/R""„')'+(s/R"'")']

—1 87[4+ (~gRinter/br)-8](bs/b)-8

since each of the six Mo atoms has four nearest
X neighbors at the approximate distance b'/W2

plus one neighbor at the distance RM,"X. For the
compounds in Table 1, —,', IS„"p ')=24, 15, 17, 11,
and 7, which reflect the trend in b'/b These val.-
ues are quoted in Table IV.

The differences between the canonical eigenvalue
surfaces shown in Figs. 9(a)-9(c) therefore have
two major causes: The Mo d-X p mixing is stron-
ger in Mo6S, than in Mo,Se, and pbMo~S, „be-
cause the Mo-X distances are relatively smaller,

and the splittings of the levels of the perfect octa-
hedron are larger in the binaries than in PbMo, S7 5

because the distortions c/b are larger.
Although (17a) only holds at the extreme right-

hand sides of Fig. 9 and we neglect the influence
of the Mo s waves, we may understand the changes
in ordering of the Mo d-like levels found from the
full calculations and shown in the figure by consid-
ering how the hybridization constant

~

SrMp
'

~',. differs
for various Mo d states j. For simplicity we shall
assume that the six Mo atoms and the eight X
atoms of the same cell are placed at, respectively,
the face centers and the corners of the b' cube,
and that the six X atoms in the neighboring cells
are placed at thepositions(0, 0, R„",'x+ —,

' b'), etc. ,

i.e. , that nMi;ix = 1. (See text to Fig. 1 and Table
1.) Moreover, we shall use the values of b' and

RM","x appropriate for PbMo, S, , and consider Fig.
9(d).

For the A, state we find from (18a) that

~

S"' P
~

= ~~[
~

S(s 3s ' —r' ——,
' b', —,

' b.', 0)

+S(s, »-'—r', o, —.'b', -'b')+S(s, 3y' —r', --', b', 0, —.'b') )+~S(y, . . .). . . ~'+~S(x, . . . ). . . ~']

+—[ (
S(z, 3z' —r', 0, 0, R„",'") )'+

~

S( v, . . .). . . ('+
)
S(», . . . ) " I'1

= ' (3
(
0+ v —'+ —' P)180(s/Rin'"')'+ —'(( v 3 ('+ 0+ G)180(s/RMi""r)'= 22+ 7 = 29.
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The factors 8 and 6 are the respective numbers of

X atoms and the factor —', derives from the nor-
malization of the A„wave function. The value of
this hybridization constant is larger than the aver-
age value of 1V listed in Table IV.

The mixing of the x' —y' and xy Mo orbitals with

the p orbitals at the X site in the neighbor cell is
very small, and it vanishes for n„","~=1because
the d orbitals considered have im i

=2 about the

8„","x axis. For the A,„state,

iS„ i, =—;[3iS(z, - xy; —.
' b, —.

' b, O)

+ S(z, zy; 0, —,
' b', —,

'- b')

+ S(z, -zx; —,
' b', 0, —,

" b') i'].

= —,' (3
i
0 —3/~8 —3/~8 i') 180(s/A„",'")' = 65 .

This pure intracluster mixing, which is three
times that of the A„state, shifts the A,„ level far
above the Fermi level and thereby contributes to
the binding of the Mo, X, cluster.

Most crucial is the inversion of the lower E, and

T,„levels. From the full calculations for PbMo, S, ,
it appeared that the probabilities in an E state of
the Mo x' —y', Mo 3z' —r', Mo s, and intracell
XP waves were 0.85, 0.005, 0.005, and 0.14 re-
spectively. This confirms that, for the E, level,
the interce11 Xp mixing is vanishingly small and
that the Mo 3z'- r ' content is even smaller than
the value 0.21' =0.04 found in Sec. III for the pure
Mo d state. Neglecting therefore the 3z'- r' con-
tent, we find for the hybridization constant of the
E state, shown in Fig. 4,

iSxMp
' ('/=~8[3 iS(x, x' —y'y -z b'y ——,

' b', 0)

+ exp(-', w i)S(x, y' —z', 0, --,' b', --', b ')

+ exp(--', wi)s(x, z' —x', —z b', 0, -z b') i']

=~8[3
i
(-1/~2+ 0+ exp(--'.w i)(1/v 2) i']

x 180(s/R"'")' = 22 .

For the T,„state shown in Fig. 5 we find, neglect-
ing for the moment the (xz, yz) content,

lsx, 'I',.=+[IS(x,x' y', -', b', —,'b', O

+iS(y, x y', ,'b, ,'b, O—)i-

+
i
S(z, x ' —y', ——' b', ——' b', 0) i']

=+[(-1/u 2 )'+ (1/W2)'+ 0]180(s/8"'")'=15

which is two-thirds the hybridization of the E,
state. Including the mixing with the xz and yz or-
bitals, we find

iS„""i'=—'(1+ p') '2 iS(x, x' —y' --,' b' —
&

b', 0)

+ ( P/W2) S(x, —zx;0, ——', b', --,' b')

+( p/Wa) S(x, zy;=,' b', O, =,' b') i'

+ P'(1+ P') 'is(z, zy;0, -A„","x,o) i'

8 (1 p/~g)2(1+ p2)-a180(s/R~n ~~}'

+ p (1+ p ) ~180(s/ft " e )8 = 3.2+ 0.7 = 4,

using the value P=0.63 which applies to the pure
Mo d state and corresponds to the occupancy
p'(1+ p') '=0.29. This strong mixing with the xz
and yz orbitals therefore reduces the X P covalent
mixing of the T,„state to a value which is only

about one-fifth of the value in the E, state.
In Pb MOQS7 5 the E, leve 1 wil 1 therefore 1ie above

the T,„ level when P» is smaller than the value
determined by —3.1+22P~'~= -1.V+ 4P~'~, that is,
when P»&13. This is in accord with the calcula-
tions illustrated in Figs. 9(c}and (d). For the
series Mo S„Mo,Se„PbMo,S, „PbMo,Se„and
Mo,Te„we estimate that the E, level will lie above
the T,„level, i.e. , the center of gravity of the E„
and A„ levels, when P» is less than, respectively,
17, 11, 13, 8, and 6, because isxM~

~ i' is propor-
tional to (b'/b) '. At the estimated potential paths
and including now the E„-A„splitting, we conclude
that: In Mo,S, and Mo,Se, the A„and E, levels are
nearly degenerate, in Mo,Te, the E, level lies be-
tween the E„and A„ levels, and in PbMo, S7 5

PbMo, Se„where the E„-A„splitting is small, the

E, level lies above both levels.
For the A„state,

Isxp'll= s [3IS(»X' —y'-z b' --'b' 0}

+ S(x, y' —z2; 0, -z b', -z b')

+ S(x, z' —x', ,' b', 0, --,'-b--') i'] = 0.

This is clearly seen in Fig. 9.
The Mo s-like levels which transform according

to A„, T,„(-A„+E„), and E, may be identified by
comparison of Fig, 9(c) for PbMo88, , with Fig.
9(d), in which the plane of cross section with the
eigenvalue surfaces has been shifted from P„, ,

5 PM 6 25 to PMp g 5PM~ 0 The fact that
the levels labeled T,„(s) and E,(s} shift upwards
by about 6.25 (=220 mRy) indicates that these
eigenvalue surfaces are almost perpendicular to
the P„, , axis and, according to (6}, they are
therefore Mo s-like. In Fig. 10 we show for
PbMo, S, , the cross sections with the plane P„, ,
—5P»= -15, which is parallel with the P„, , axis
and cuts the planes of Figs. 9(c) and 9(d) along
lines rather close to our estimated potential path.
The path is seen to be almost parallel to the

T,„(s) and E (s) levels and the corresponding engr-
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gies will therefore presumably lie well above the
Mo d energies in all the molybdenum chalcogenides.
When P„, , and P»-~ the T,„(s) and E,(s) states
will tend towards the pure Mo s states for the iso-
lated octahedron. These are, respectively,

se s-e& sx —s x& sy —s

(s +s }+exp(v3 vf)(s„+s,)+ exp(sr' vi)(s, + s,)

and have the respective energies

—S(s, s;0, 0, b}= 2(s/b) =0.782

range of the Mo s orbitals (see Sec. IIC}, only

applies to levels with some Mo s character and,
as seen from Fig. 10, these include the A, levels
[and the empty E,(s} and T,„(s) levels] only. Had

we increased the size of our model by including the
s waves in the 14 X spheres, this would, in the
region of interest well above the X s levels, have
had the effect of moving the constant energy sur-
faces in the positive P„, , direction or, equiva-
lently, of moving the potential path to the left in

Fig. 10. An upper bound on this shift is

3'
~
S»; ' ~'/)P», (CM, „)-S»,]= 2.1/(2. 72 —2.22)

-2S(s, s; 2 b, ~ b, 0) + S(s, s; 0, 0, b) = 2(2v 2 —I)(s /b)

= 1.428

for a perfect octahedron.
Figure 10 shows that, whereas the states labeled

T,„(s}and E (s} do not hybridize significantly with
the d-like E and T,„states in the range of inte-
rest (but rather with some p-like levels lying be-
low the range shown in the figure), the previously
considered A, state hybridizes strongly with a
lower-lying A„state, labeled A,',. At the potential
path, the Mo d, Mo s, and Xp probabilities of the
A, state are, respectively, 0.46, 0.09, and 0.45,
and the corresponding values for the lower-lying
A,', states are 0.14, 0.33, and 0.53. %hen P„,„
and P»- ~ the A„state tends towards the pure
Mo s state s„+s „+s„+s,+s,+s, with the energy

4S(s, s; —,
'

b, ,' b, 0)+ S(—s,s; 0, 0, b) = -2(4'+ l)(s/b)

= -5.20,

and when PM, , -~ this A„ level tends towards
a dp-like level. The A,', level tends towards the
same dp-like level when P„, ,—-~ and towards
a pd-like level when P„, ,-~. Finally, below
the range of the figure, there are two further A„
levels of which the lowest tends towards the pure
s level at -5.20 when P„, , and P»- -~.

Since only five of the six Mo s-like levels are
above the Fermi level, the latter will be placed
between the E„and E, levels in the binaries, which
have 20 Mo electrons per cell, between the A„and
E, levels in PbMo, Se„having 22 Mo electrons per
cell, and in the E, level in PbMo, S, „which has
23 Mo electrons per cell. It may, however, well
be beyond the accuracy of a cluste~ model to de-
cide whether the position of the uppermost A„
band in the costa/ is above or below that of the
E» band. If the A„band is empty, the Fermi level
will. be placed in the E, band for all the compounds
considered.

This uncertainty, which stems from the long

—5

where we have used the average Mo s-X s hybridi-
zation constant (22) and the structure constant
2.22, valid for the uppermost X s level. [On en-
ergy scale and for PbMo, S7 5, the top of the X s
band is 0.73 Ry below CM, ~; i.e. , P»,(-0.73)
=2.22.] With the maximum shift of the potential
path, as indicated in Fig. 10, all six Mo s-like
levels would be well above the Mo d bahd. If we
then increased the size of the cluster by adding
more Mo atoms, the position of the Mo s bands
would again drop a bit, and it is obvious that a
satisfactory description of the Mo s-like bands
can only be obtained in a full band calculation,
employing the Ewald summation for the structure
constants of low /+ l'.

In the neighborhood of the estimated potential
paths, and near the Fermi levels, the Mo d states
may hybridize strongly only with the X p and the
Mo s states because all other bands lie far outside
the range of the Mo d band. This can be seen from
the values of the potential parameters listed in
Table III. The influence on the Mo d levels of the
so far neglected Mo p, X s, and X d partial waves
has been estimated in Table IV, where we list the
average hybridization constants (22), the values of
the potential functions at the center of the Mo d
band, (11), the average hybridization shifts (21),
and the corresponding partial probabilities (20}.
The hybridization shifts neglected in Figs. 9 and
10 are thus seen to be less than

~
bPu, , ~= 1 on the

average, and @re expect the shifts between the in-
dividual Mo d-like levels, which are the only
shifts of significance, to be somewhat smaller.
/he neglected partial probabilities are seen to be
less than 0.1. In view of the approximate charac-
ter of the present calculations we conclude that the
effect of these partial waves on the Mo d-subband
positions is negligible. In Sec. IVC we shall see
that the effect of the X d waves on the Mo d-sub-
band seidths may nevertheless be significant.



1226 0. K. ANDKBSKN, %. KLOSE, AND H. NOHL 17

B. Self-consistency

Average quantities referring to the covalent
mixing with the Xp band have been listed in Ta-
ble IV too, and although the weak-hybridization
expressions (20) and (21) are not strictly applica-
ble in this case, they yield reasonable estimates
because the pure X p and Mo d bands do not over-
lap. Vfe shall now use the partial probabilities
(20} to explain the self-consistent values of the
Mo d-X p band separation C =- C„, d

—C» found
from the full cluster calculations and given in Ta-
ble III.

For simplicity we shall assume that the conduc-
tion-electron density in a Mo sphere arises solely
from the Mo d waves and that the valence-electron
density in an X sphere arises solely from the XP
waves. Since all Xp bands are full, these contri-
bute

electrons to the h = 6 Mo spheres. A neutral Mo
atom has six conduction electrons, and if q is the
oxydation state of Mo in the compound, there are
—,'(6 —q)h = 10, 11, and 11.5 occupied Mo d bands in

Mo, X„MMo, X„and MMO, X, „respectively.
These subbands contribute (6- q)h[1 —h(Mo d) 'H'/
C'] electrons to the Mo spheres, in the approxima-
tion that we substitute~

~
S»M~

'
~,
' in (20) by its average,

h(Mo d} '
~S»~ '~'. The charge per Mo sphere is

therefore Q=q 2h '(I f)H'/C', -where f ,', (6- q=-)—
is the fractional occupancy of the Mo d band. If
there were no charge transfer, the band separa-
tion would be

C —CM d
—C~P

b

gMO d 2g

raised by -Q„,u„, , (-Q»u»P, where it turns out
that u„, „=u»= 0.8 Ry. Charge neutrality requires
6QMo + 8Qx + Qz 0 where QMO = Q and Q~ = 0 or 2,
and the Coulomb repulsion, reduced by exchange-
correlation and including the Madelung shifts,
therefore gives the relation

C =O' —Qu, (29)

where u= 1 Ry and O'= C~ „—Cx~- 8 Q„ux~= 0.15,
0.20, 0.05, 0.10, and 0.25 Ry.

The band separation C and the charge transfer
Q may now be obtained from (28) and (29). When
~(C' —C')/2uq ~«1, we find Q=(C'- C')/u and
hence ~Q/q ~«1. In this case,

~Cb 1 (30)

so that the band separation is determined by the
hybridization rather than by the Coulomb interac-
tion or, in other words, covalency dominates over
ionicity. For the compounds considered, (C' —C')/
2uq =-0.04, -0.02, -0.06, -0.04, and 0. 'The

charge transfer is therefore small, -0.3 ~ Q ~ 0,
and the band separation is only a few percent
smaller than that, C~, determined from the band
structure alone. Specifically, C =0.35, 0.32, 0.30,
0.28, and 0.26 Ry, and our estimates of C' and u
need only be approximate.

The values of C thus determined, neglecting the
Mo s waves and assuming the Mo d-X p mixing
to be weak, agree fortuitously well with those ob-
tained from the full cluster calculations and given
in Table IG. The reason is that the weak-hybridi-
zation expression (20) overestimates the Mo d-X P
covalent mixing and thereby effectively accounts
for the strong Mo s-X p mixing.

and the relation between Q and C provided by the
band structure may conveniently be written as

c/c =(1 —Q/q) '~'=1+ —'Q/q (28)

where the approximation is valid if
~
Q/q

~

«1.
From Tables III and IV, and for the usual se-

quence of compounds, we find H=1.38, 1.13, 1.07,
0.9V, and 0.90 Ry and hence C'=0.37, 0.33, 0.32,
0.29, and 0.26 Ry. (For the nonstoichiometric
compound PbMo, S, , we have multiplied ~S»~ "~' by
7.5/8. )

The band positions OM, „and O~~ obtained from
the neutral, renormalized Mo and X atom poten-
tials yield CM, ,—Ox~=0. 15, 0.20, 0.25, 0.30, and
0.25 Ry. If we bring the extra electronic charge
-Q„, (-Q») into the Mo (X) sphere, C„, , (C»~) is

C. Band states

The cluster levels in Fig. 9 give the positions
of the Mo d-like bands in M No+8, crystals be-
cause all the nearest neighbors of a given octa-
hedron are included in the Mo+„cluster and, for
d-like bands, only the near-neighbor interactions
are important. The band broadening was studied
in Sec. GI B, where we estimated the direct term
S~ d' of the intercluster coupling. For a given
translation vector T, e.g. , the one in the negative
h direction (see Fig. 1), this is the dd interaction
between the Mo atoms at the sites (0,0, -', b)+ T and
(0, 0, --', b). Using the approximation of weak hy-
bridization, (17b) and (18b), we now calculate the
indirect interactions (S»~i" S»,' „)iP„', and
(S»', yS„,'~ ~)&P»', . Of these equivalent interactions
the first corresponds to a bond from the Mo atom
at (0, 0, ~ b)+ T, via the X atom at —,

' (1, -1,-1)b',
and to the three Mo atoms at, respectively,
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(0, 0, ——,'b), (0, ——,'b, 0} and (-,'b, 0, 0}. The sum of
these interactions may be interpreted as the X 1 con-
tribution to the three-center integral for the Mo d
Bloch state j. Since, at the X site considered,
there is no overlap from any third octahedron,
the Mo d-like bands are still expressed by (24)
with G(k) unchanged, with S"'"equal to the re-
spective cluster level in Fig. 9, and with

Sinter Sinter+ ~ 2Re(SMo 4, VS t t ) D I -(3l)
Mo d tl Mo d j tl'

tlCMo d

In this expression also the intercluster hybridiza-
tion with the Mo s and p waves has been included.

Qf the corresponding two equivalent bonds one goes
from the Mo d orbital at (0,0, —,

' b)+ T, via the Mo s
and p waves at (0, 0, --,'b}, and to the four Mo d or-
bitals at (+nb, 0, 0) and (0, +,'b, -0).

If it were exactly true that IM","x= tttM",
t
x = 0 (see

text to Fig. I and Table I), the X s and X p inter-
cluster contribution to the E, states would vanish
as mentioned in Sec. I&A. For the actual values
of l„",'" and m„",'" given in Table I, the X s mixing
may still be neglected, but owing to the proximity
of the XP band and the correspondingly small
value of P» (Table IV), the broadening of the E,
band caused by Xp intercluster mixing is signifi-
cant. To first order in 1M","~, we specifically find

2Re(SMs 4, TSxp }
= 2Re S(x ' —y 4, x; RM "x)[S(x,z' —x ', ——,

' b', 0, —,
'

b ') exP(- n v i) + S(x, x ' —y', —n b', n b', 0}]

—3(itntsr/V2 )I30(s/Itinter)4(s/ftintra)4

—3 32iftner( br/b)-8( V2 Iittner /bz)-4

=1.06, 0.82, 0.90, 0.67, and 0.39.
Using the values of Pxp given in Table IV, we obtain the values for the Xp contribution to the intercluster
coupling in the E~ band shown in Table V. As may be seen from Table 7, the Xd intercluster mixing also
contributes significantly to the E bandwidth. " For this interaction we may neglect lM","~ and mM","x, and

find

TABLE V. Mo d-subband widths.

Mo688 Mo6Ses PbMo&S7 5 PbMoeSes Mo6Te8

2 y2)

~inter
Mo d

2Re{S~,"'S~P d)/Sx,
w

2Re(sxd "'s'Mo d)/sxd

ginter (t

Bandwidth (mRy)

N(0) [states/(spin Mo-atom Ry)]

0.53

0.23

0.14

0.90

0.31

0.26

0.15

0.72

50

0.28

0.23

0.11

0.62

45

0.18

0.23

0.14

0.55

40

0.14

0.20

0.15

0.49

~inter
Mo d

2Re(Sxp d' TS„~„)/I'xp

2Re(S~~ 'TS„,d)/I xd

S""'(total)

0.5

0.1

0.4

=0.1

0.7 0.6

A„[x2 —y'+ P(z —y)z/W2)

-0.1 = Q.l
0.3

=0.1
0.5

Bandwidth (mRy) 50 40

Ai (3z —~ )

gi t
Mo d

2Re(~xp "'
~Mo d)/&xp

S~ter (total)

Bandwidth (mRy)

0.77

5.1

360

0.53

3.6

4.1

290

0.49

3.2

3.7
260

0.36

3.0

230

0.30

2 ' 6

2.9

200
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2Re(S»' S 3), =2S(x' —y' x' —y'O, O, R"'")[S(x' —y' z'-x' ——'b' 0 -', b') exp(--3, wi)

+S(x'- y', x' —y'; ——,
' b', —,

' b', 0)

+ S(x ' —y', y' —z', 0, —,
' b', —', b'} exp(3 wi)]

120P(s/Riater)5(s/Rlatra)5

= -3.19(b'/b) "(r2R'""/b') '

=-12.2, -6.3, -7.2, -4.2, and -2.5.

The Mo s intercluster hybridization may be shown
to vanish and the Mo p contribution is negligible.
The total values of $'"' and the E bandwidths,
2h„, ,~S"'"

~, given in Table V are thus enhanced
over the direct Mo d-Mo d values by factors vary-
ing from 1.7 in Mo,8, to 3.5 in Mo,Te,. The &,
bandwidth in Mo,S, is therefore only 128 times the

width in Mo,Te„although the direct Mo-Mo inter-
cluster distances differ by a factor of 1.2.

From Fig. 9 it is seen that the A„ level in the
binaries is nearly degenerate with the E level.
The direct contribution to the A„band width was
previously found to be extremely small and, for
the indirect contribution, we now find

2SM»23'~S»Man=2(1+ P'} 'S(P(x —y)z/&2, (x —y}/v2 0 0 R""')

x [S((x—y)/W2, x ' —z'+ p (x- z)y/v 2; --,' b', 0, -', b')

+ S((x —y)/~2, y
2 —z'+ P ( y —z)x/v 2; 0, 2 b', ab')]

= 2 P(1 —P/&2)(1+ P') '180(s/Rtnte»r)'(s/R'atra)'

=2.2, 1.4, and 0.6

in MO, S8, MOSSe„and MoeTe„respectively.
Therefore, the indirect contribution dominates
the intercluster interaction and the band widths of
this singly degenerate band are nearly equal to
those of the doubly degenerate E, band (Table V).

For the A„state, and with the usual approxima-
tions,

Xp Mo d

=2S(3z' —r', z; O, O, R"'")
x [S(z, 3y' —r', =', b', 0, -', b')

+ S(z, 3x ' —r ', 0, —,
' b', —,

' b'}]

= 2W3 W 1 30(S/R ater)e(s/R'3 rn)e

=19, 12, 13, 8, and 5.
The width of the A„band is therefore completely
dominated by the X p intercluster mixing. The
X s and X d contributions turn out to be negligible
and so is the intercluster Mo s hybridization. For
the latter interaction we specifically find

2$Mo d3 V'$ Mo s
Mo s Ma d

2S(3Z2 —r 2, S' Rtnter )

x [4S(s, 3x' —r', ,' b, p, —,
' b)—

+ S(s, 3z' —r', 0, 0, b}]
—2 ~]P(~PQ+ ~5)(s/R inter )3(s/Rintra )3 0 22

for PbMo, S, , With P„, ,=0.5 (s'ee Fig. 10) and
the previously found value SM, ,= -5.2 for the pure
A„Mo s level, we find the contribution to (31)

2(S~,'f'S„";;)/(P„, , S„,,) = 0.04,

which is clearly negligible.
At the bottom of Fig. 9 we have sketched the ex-

tents of the Mo d-like A„, E„and A.„subbands
as just estimated and listed in Table V. The re-
sults on energy scale, that is, along the estimated
potential paths, may be found in Fig. 11, where
we specifically show the Mo, X„levels in the
vicinity of the respective Fermi levels together
with the densities of states for the Mo d-like A, ~,
E„and A„(T2„), and E, subbands, neglecting their
interactions.

As explained in Sec. IVA, the uncertainty of the
band positions, obtained with our finite-size clus-
ter model, can be expressed as an uncertainty in
the position of the potential path and, for
PbMo, S, „it is given by the two limiting paths
indicated in Fig. 10 by the solid and the dot-dashed
curves. Qnly the positions of the A„bands are
uncertain, and the two limiting A, densities of
states are shown in Fig. 11. Going from one limit
to the other, we realize that the uppermost A„
band starts off Mo d-like, occupied with 1.4 elec-
trons per cell. It then rises, empties its elec-
trons into the E (E„or A„) bands, and becomes
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Mo s-like. Its role as the Mo d-like A, ~ band is
taken over by the A,', band, which eventually rises
to about the point when its top peaches the Fermi
level. The associated uncertainties in the Fermi
levels are also indicated in Fig. 11. %e now sum-
marize the conclusions which may be read from
this figure.

In PbMo687 5 and PbMo, Se„where the distortion
of the octahedra is small, a broad, singly degen-
erate A„band is presumably the only band over-
lapping the E band. The strong hybridization
between a broad and a narrow band is local in k
space and the density of states for the ternaries
is therefore essentially that of the pure E band
shown in Fig. 7. For a stoichiometric compound
like PbMo, Se, the number of electrons in the E,
band equals the number of holes in the A„bands,
which is between 0.6 and 2.2. For PbMo, S7
where on the average one-half X state per cell is
missing, there are between 1.6 and 3.2 electrons
in the E, band.

There is experimental evidence (see Sec. V) that
the Fermi level in Pbo»Mo, S, , lies near a Van
Hove singularity and that the Fermi surface has
some Mo s character. %e now fix the positions of
the A„bands accordingly. Hence we assume that
there are 2.9 E electrons in Pbo»Mo687 5 and,
consequently, 3.1 and 2.1 E, electrons in, re-
spectively, PbMo, S, , and PbMo, Se,. The density
of states iv(0) per spin snd per Mo atom at the re-
spective Fermi levels and for the respective E»
bandwidths are given in Table V.

In Mo, Se, and Mo,S, the narrow, singly degene-
rate A„band is raised sufficiently above the posi-
tion of the T,„ level by the distortion of the octahe-
dra that the A„band overlaps the E, band. The hy-
bridization between the A„and E, bands must be
fairly strong and will create additional band broad-
ening and structure in the sum of the density-of-
states curves shown in Fig. 11. For Mo, Se, we
have given a crude estimate of N(0) in Table V,
but for Mo,S„where also the E„band seems to
overlap the E band, even a crude estimate is not
possible. The octahedra in Mo,Te, are nearly
as distorted as in Mo,S, and in Mo,Se„but the
covalent Mo d-X p mixing is smaller owing to the
larger size of the Te atom (5' is larger). This
may be seen from the valises of —,',

~

Su» ' ~'/P»
listed in Table IV. In Mo,Te, the E band there-
fore lies closer to the T,„ level such that it over-
laps the A„as well as the E„band and a common
fivefold-degenerate band is formed.

D. Comparison with previous cluster calculations

Using molecular-orbital LCAO methods, Cotton
and Haas, "and later Quggenberger and Sleight ie

studied the bonding in cubic (i.e. , b = b' and c = 0)
molybdenum halogen clusters with the formula
MoeX8 '.

Cotton and Haas calculated the pure Mo d states
for an isolated octahedron using Slater-type or-
bitals with varying orbital exponent and they included
the mixing with the Xp states only to the extent that
they excluded the Mo xy orbitals from their basis set.
This is not abad approximation, because, with the in-
clusion of any reasonable amount of Xp intraclus-
ter mixing, all the xy-like A, „, E„, and T„levels
will appear above the Fermi level. This may be
seen by comparison of Figs. 3 and 9(d). Excluding
therefore these levels, our Mo d-level scheme in
Fig. 3 is qualitatively similar to that of Cotton and
Haas for a wide range of orbital exponents and, be-
low 'the gap, the only difference between the two
unhybridized schemes is an inversion of the T„
and T,„ levels. Our final results including the
covalent mixing are, however, significantly dif-
ferent.

Quggenberger and Sleight specifically studied
Mo,Br,", which is nearly cubic, and used the ex-
tended Huckel molecular-orbital procedure includ-
ing all the Mo (Ss, 5p, 4d) and Br (4s, 4p) atomic
orbitals. The Mo 4d-orbital exponent was first
optimized, to a value consistent with the decay
of our muffin-tin orbital, ' and the Mo valence-
state ionization energies, which are analogous to
but not equivalent with the negative of our C's were
then determined self-consistently with the charge
transfer within the Mo,Br,'+ cluster.

As regards the Mo d-like levels below the gap,
the results of Quggenberger and Sleight are similar
to our cluster results when we neglect the split-
tings due to trigonal distortion. Contrary to Cotton
and Haas, Quggenberger and Sleight found the T,„
level below the E, level and they ascribed this to
ligand effects. This is in accord with our descrip-
tion, where, specifically for cubic clusters, we
found the E,-T,„ level crossing to take place at
P» 6(estimate —-for Mo,Te, in Sec. IVA).

As regards the Mo s-like levels, Quggenberger
and Sleight found all six levels wg11 above the Mo d
band. This is to be expected from our discussion
in Sec. IV A. Moreover, owing to the net positive
charge of Mo,Br,", the energies of the Br 4p and
Mo 5s states, relative to those of the more local-
ized Mo 4d states, are higher than in neutral or
slightly negatively charged clusters like the ones
we have considered. In particular, we judge that
C„,,—C, ~=0.25 Ry and C .,—C„, ,=-0.1 Ry in
the Quggenberger-Sleight halogen calculation and,
compared with our values in Table III, their po-
tential path lies slightly to the left of ours in Figs.
9 and 10.

Concerning further differences between the
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Mo,Br," results and our results, it should be
noted that our Figs. 9 and 10 apply to noncubic
clusters (b'/b =0.87-0.92) and that they include
six extra X atoms. These X atoms give rise to
the E, and A, levels at the very top of the Xp band
and, in the Mo d band above the gap, the 3z' —r'
derived T,„and E, levels are pushed upwards,
while the xy and x' —y' derived A,„, T, , E„, and

A„ levels are unaffected by hybridization from
these atoms.

Most recently Mattheiss and Fong" presented
a cluster model for the electronic structure of
PbMo, S, obtained by means of a tight-binding cal-
culation for a cubic Mo,S, cluster. In this calcu-
lation the Mo 5s and 4d and S 3s and 3p orbitals
were included. The interaction parameters, an-
alogous with our C's and two-center integrals (15),
were derived in a rather indirect way, namely,
from a tight-binding fit to the results of a non-
self-consistent augmented-plane-wave. (APW} en-
ergy-band calculation for a hypothetical Mo, S
crystal. In this crystal Mo is at the face centers
and S is at the corners of a fcc lattice with lattice
parameter b.

The Mattheiss-Fong model for PbMo, S, and our
result (Figs. 10 and 11) for the properly distorted
Mo, S,4 cluster are similar in general but differ in
the important detail that Mattheiss and Fong find
the T,„ level slightly above the E~ level. These
authors therefore predict that, if band broadening
and trigonal splittings were included, the Fermi
level would lie near the top of a fairly narrow
(= 50 mRy) complex of five d x'- y' subbands. We
now try to understand this discrepancy.

The strong influence of the Mo d-XP covalent
mixing on the relative positions of the T,„and E~
levels was demonstrated in Sec. IVA, and was re-
ferred to in the discussion of the Cotton-Haas and
the Quggenberger-Sleight calculations. First of
all, in cubic Mo, X, clusters, such as those con-
sidered by Mattheiss and Fong and (correctly) by
Quggenberger and Sleight, we believe that the XP-
Mo d two-center integrals are reduced by (b'/b)'
= 0.73 relative to those in PbMo, S, , and not by
b'/b =0.90 as supposed by Mattheiss and Fong.
A consequence of this structure-constant effect is
that, in a cubic cluster, the E, level will lie above
the T,„ level only if P»- 6. This seems to be the
case for the Quggenberger-Sleight potential path.
In the Mattheiss-Fong calculation, there must be a
second effect causing their potential path to be
shifted in the positive P» direction. This is con-
sistent with the fact that Quggenberger and Sleight
find the A, level below the A,„level [see Fig.
9(d)], whereas the reverse is true in the Mattheiss-
Fong level scheme. A direct comparison of our
potential parameters with the two-center para-

meters listed in Table I of Mattheiss and Fong,
using our Eq. (15) with b'/b = 1, reveals that C„, ,
—C»= 0.3 Ry in both calculations and that the Mo d-
Mo d interactions are nearly equal, but that the
Mattheiss-Fong values for the S p-S P and the S P-
Mo d two center integrals are, respectively, five
times smaller than and slightly smaller than our
values. This is probably connected with the cur-
vature of the potential path: At the center of the
SP levels our value of 4» is only 0.7 times its
value at the center of the Mo d levels but, in a
first-principles linear combination of orthogonal-
ized atomic orbitals (LCOAO) calculation, which
neglects the three-center integrals, the potential
path must be a straight line, whereas, in an
I CQAQ fit, the curvature is taken approximately
into account by using different values of b in the
direct and hybridization two-center integrals. In
conclusion, we believe that the Mo d-X p covalent
mixing is somewhat underestimated in the Mat-
theiss-Fong model and that this causes an incor-
rect ordering of the T,„and E, levels.

Concerning the Mo s-like levels, the Mattheiss-
Fong model, which includes the s orbitals at the
eight X sites, corresponds to the dot;dashed po-
tential path in Fig. 10; i.e. , all six Mo s-like
levels are above the Mo d band.

We originally believed that the turn angle ~t),

characteristic of the Mo chalcogenides, was de-
termined by the contribution to the total energy
from the electrons in the partially filled E, band.
This contribution will have a minimum when the
E, bandwidth is at its maximum and, as seen in
Fig. 8, the correlation between S„","„'and the ob-
served turn angles is quite good. The Q depen-
dence of the indirect (Mo d-X p-Mo d} contribution
to S"'"is, however, non-negligible. Moreover,
in the following section, VB, we shall estimate the
frequency of the (Ii) torisonal mode and therefore
calculate the (t) dependence of the total energy. We
find that this is dominated by the sum of the inter-
cluster Mo d-X p interactions over all occupied
bands, and our original belief concerning the fac-
tor determining the equilibrium value of f was
therefore an oversimplification. Mattheiss and
Fong have come to a similar conclusion, and they
furthermore propose that the turn angle Q is such
as to optimize the intercluster Mo (3z' —r') Xp-
interactions, i.e. , that Q is such as to maximize

inter
Mo-X

V. PHYSICAL PROPERTIES

We shall now discuss our band-structure model
in the light of known physical properties of Chev-
rel-phase compounds and, as a first step, we shall
try to use experimental evidence to eliminate the
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uncertainty in the position of the Mo s-like bands
obtained with our model. The fact" that the pres-
sure dependence of the superconducting transition
temperature is abnormally large in Pb», Mo,S»
leads us to place the Fermi level in this compound
at a pronounced Van Hove singularity. Qsiag Fig.
11, we therefore choose the singularity in the
upper half of the E, band and hence assume that
the number of E electrons is 2.9 in Pbo ~Mo, S, ,
(Fig. 7) and, consequently, 2.1+2(m - 1+x) in
M~Mo, X, „. This leaves 0.1 holes in the A,', band
and thus places the potential path near the dot-
dashed curve in Fig. 10. NMR studies" in
Eu, ,Sn,Mo, S, have shown a (negative) s polari-
zation at the Mo site and hence indicate some Mo s
character at the Fermi surface. This is consistent
with the presence of an A,',-hole sheet. [It would,
however, have been even more consistent with the
presence of an A, -electron sheet which, according
to Fig. 10, would have a much higher Mo-s proba-
bility. We can therefore not entirely rule out the
possibility that the potential path lies near the
full curve in Fig. 10, that the Fermi level in
Pb, »Mo, S, , lies at the Van Hove singularity in
the lower half of the E, band, and that the number
of E, electrons in I Mo, X, „ is 0.3+ 2(m —1+x).]

A. Paramagnetic susceptibility and electronic-specific-heat

coefficient

The paramagnetic susceptibilities of Mo,S„
PbMo»S„and SnMo, S„as measured by Chevrel
et al. ,' Bader et aL. ,"and Morton et al. ,"yieM
N„(0)=15, 21, and 19 states/(spin Mo-atom Ry)
for the density of states at the Fermi level when
the expression for the unenhanced Pauli spin sus-
ceptibility is used. For the above-mentioned Pb
and Sn compounds the experimental electronic-
specific-heat coefficients" yield N„(0) = 40 and 35
states/(spin Mo-atom Ry) when the effect of elec-
tron-phonon enhancement is neglected.

From self-consistent, spin-polarized band-
structure calculations, "employing the local-spin-
density approximation for exchange and correla-
tion, we have found the value I„,= 40 mRy for the
effective exchange-interaction parameter in Mo
metal. Since this interaction is essentially intra-
atomic, its value must be nearly the same in the
Mo chalcogenides and, for the bare band density
of states in Mo,S„PbMo, ,S„and SnMo, S„we
therefore derive N(0) =[Nz(0) '+I„,] ' = 9.4, 11.4,
and 10.8 states/(spin Mo-atom Ry}, assuming that
the measured susceptibilities arise from spin only.
The susceptibility enhancements are therefore
around 1.7 and the electron-phonon enhancements
in the ternaries are 1+ X= 3.5.

In MoeSS the substantial overlap between the

E, A„, and E„subbands prevented us from esti-
mating N(0) theoretically, but the above-men-
tioned value of 9.4 has the order of magnitude to
be expected from Fig. 11. In the nonstoichmetric
compounds PbMo, ,S, and SnMo, S, the Mo, octahe-
dra are probably not intact and it is therefore dif-
ficult to make comparisons with our model for a
quantity as sensitive as N(0}. The above-mentioned
values of 11.4 and 10.8 nevertheless equal our
theoretical value of 11 for PbMoeS7 5.

B. Torsional mode of Mo6X8 units

Heat-capacity and inelastic-neutron- scattering
studies' of thephonon spectraof Mo,Se„PbMO ySg,
and SnMo, S, are claimed to indicate that the Mo, X,
clusters can be regarded as quasirigid units for
which the frequencies of the three torsional modes
are about 12 meV=140 K.

%e shall estimate the frequency of the f mode
(see Fig. 1}at zero wave vector by calculating the

Q dependence of the sum of the one-electrcv ener-
gies for fixed potential parameters C«and ~„,.
The hard-core repulsion, which in a self-consis-
tent calculation ' employing a local approximation
for exchange and correlation' would mainly enter
through P-dependent band positions C«, will be
treated empirically. At equilibrium the interclus-
ter Mo-Mo distance RM,"~is more than 10% larger
than the intracluster (and the metallic) Mo-Mo
distance, whereas the intercluster Mo-X distance
R„","~ is only a few percent larger than the intra-
cluster Mo-X distance (see Table I}. Moreover,
the P dependence of R„""xis much stronger than
that of RM Mp %e shall therefore represent the
repulsion by the Lennard- Jones form A(s/R~ «)",
where A is an adjustable parameter.

Upon increasing (IF) and hence decreasing R„","~
the Xp band energies will fall owing to the in-
creased mixing with the Mo d band and, summing
over the entire X p band by means of (21) and (22),
we obtain the attractive term B»(s/R-M', "r)',
where

B»= 2n.»P„, ,(C»} '-x 900 x 6

= 2n~gn„, ~(C„, ~-Cxp) ' x 5400.

The factor of 2 arises from the spindegeneracy, the
potential parameters refer to the center of the Xp
band, and the factor of 6 arises because each of the
six X atoms at general positions carries one inter-
cluster Mo-X bond. This attraction is counter-
balanced by the corresponding increase of the Mo
d energies to the extent that these are occupied.
For each of the 9 or 10.5 occupied Mo d subbands
we therefore compute the shift given by (17a).
The sum of these terms, however, differs insig-
nificantly from the result B„,~(s/R„",'.x)', obtained
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by using (22} instead of (18a). The p dependences
not included in R~,"~ consequently even up. The
constant B„,, equals 9/30 or 10.5/30 times the
formal expression for 8» with potential parame-
ters referring to the occupied part of the Mo d
band. The resulting attraction arising from the
Mo d-X p intercluster hybridization is therefore
-B(s/R„'",''r')', and we find that B= Br~- B„.,= 40
Ry for both Mo,Se, and PbMo, S, ,

Also the Mo d-Mo d interactions contribute to
the intercluster attraction through broadening of
the Mo d band; more specifically, through broad-
ening of, and repulsion between, the Mo d sub-
bands as discussed at the beginning of Sec. IG.
Taking again the average over all subbands, the
attractive contribution is seen to be

-2n, ~(1 -+~nM, „)4 (sW /W )W&M, ~

= -0.4 Ry (R„".'"„',/It'„"„;)",
where nM, „ is the number of occupied Mo d bands,
i.e. , 9 or 10.5. For the equilibrium distances
given in Table I, the Mo d-X p intercluster attrac-
tion considered above is -0.5 Ry, while the Mo d-
Mo d attraction considered here is only -0.06 Ry,
and it may therefore be neglected. Also interac-
tions involving Mo s states may be neglected.

With the total energy in the form

II=~(s/&ence~)i2 —B(s/R'n'~~)8

we now adjust A such that the minimum occurs at
the observed 8'„',"~ and then find the force constant
d'II/dg' = 10 Ry for both compounds. Finally, a
calculation of the moments of inertia J about the
threefold axis for the Mo,Se, and Mo,S, units yields
the respective frequencies

av =[(d'II/dp')J ']'~'=10 and 15 me&.

This is in excellent agreement with the experi-
ments.

It may be noted that changing the power in the
repulsive term between 10 and 15 will change the
frequencies by only +25/0. Moreover, we have
neglected interactions with the Pb and Sn atoms.

C. Average electron-phonon matrix element

The experimental superconducting transition
temperatures for the compounds listed in Table
V are T,= 1.6, 6.3, 13, 3.9, and 0 K, respectively.
One usually assumes that T, depends primarily on
the magnitude of the electron-phonon mass en-
hancement, which in McMillan's approximation"
is X=X(0) (I'}/M(&o'}. Here, (I') is the square of
the electron-phonon matrix element averaged over
the Fermi surface, M is the atomic mass, and
(uP} is an appropriate average of the squared pho-
non frequency.

For the Mo chalcogenides of high T, we have
seen that N(0) essentially derives from the Mo d-
like E, band and that it depends sensitively on the
geometry, through the intercluster coupling con-
stant (Table V), and on the stoichiometry, through
the position of the Fermi level within the E,-band
density-of-states curve shown in Fig. V. For
PbMo, S, , we estimated that N(0} =11 states/(spin
Mo-atom Ry) and this may be compared with the
value of 4 for bcc Mo metaP'" where T, =0.9 K
and X=0.4. We shall now estimate (I'}.

Using the Gaspari-Qyorffy approximation" with
rigid atomic spheres, it may be shown" that

s', N'(I') = g 2 &(2l+ 1}'(2l+ 1}'(Sn/SD„)(&n/&Dpi)

x [(D« l)(D«+ l+ 1)+(Ez- v,)s',]',
(32)

where N-=N(0) =N(E~) a—nd we have considered the
contribution from the transition atoms only (t = Mo).
Moreover, l -=l+1, the value of the one-electron
potential at the transition-atom sphere is v, (s,)
=—v„and the value of the logarithmic derivative
function [see (2)] at the Fermi energy is D«(E~)

D
g 7 The derivatives of the canonic al numbe r of

states function [see (7a) and (9)] with respect to
the logarithmic derivative may be related to the
projected density of states and the normalized par-
tial wave, evaluated at the sphere, through

tl tl( F}/Dtl( F} t~tl( E t+tl( F}'

However, we prefer the canonical formulation in
which the atomic and structural dependences are
separated, and therefore write

sn/BD„= (dP, (/dD„)n, ',( P )

= -2(2l+ l)2(s/s&)2"'(D« —1) 'n'«

= —~ (s,/s)'"'(D„+ l+ 1) 'P'„n'„. (33)
For transition atoms only the pd and the df terms

contribute significantly to (32) because the ex
pression in the square brackets vanishes if both
the l and the l electrons at the Fermi energy are
free-electron-like with respect to v, [Eq. (2.30) in
Ref. 8] and because the d projected density of
states usually dominates the total density of states.
Retaining the pd and df contributions only, using
(33), and dropping the subscripts t, the electron-
phonon matrix element may be written

( 2) (N~/N)I

20 s, 8 P', n~ (Dq- 1}(D,+ 3)+ (Er —v)s',
3 s n,' (D~+ 2)(D, —2}

30 s
g Pg l1g (Ep, —v)sg

7 s n,' {D,+ 4)(D, —2)
(34)
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If. at the Fermi level, we use the approximation
of weak hybridization (Sec. IID), which, loosely
speaking, amounts to describing the Mo p and Mo

f waves by the tails of the Mo d orbitals, we realize
from (19b}and (19c) that the structural quantities
P', ,n', ./n,' with I' = 1 or 3, are the average of the
hybridization structure constants over the Fermi
surface, i.e. ,

2 I / IP;n;/ n~

—(ls"' '(k) I'&

Z,.v, fd'k 6(f,.(k, p(E,))) I s"„,,(k) P,.

Zd V s'z fd' k 6(f,(k, P(Ez)}}
(35)

These are the quantities which make (I2} for the
Chevrel-phase differ significantly from that of Mo
metal.

Let us first consider the average of the hybridi-
zation structure constants over the entire d band.
From (22},

his":21'

I

SMod I2

6.7 Chevrel
=180 g = 20 fcc, (36)

20 bcc

where, in the fcc and bcc structures with one atom
per primitive cell, there are 5 rather than 30 d
bands. Moreover,

2'2
I SM. il

1ISModi2

20 Chevrel
= 5880 P — = 58 fcc

R~' 6I bcc .
(37)

Hence, the constants are nearly identical in the
closely packed structures, provided that s is the
Wigner-Seitz radius, but the constants in the Chev-
rel phase are about three times smaller than in
the fcc phase because the Chevrel phase has 4 ra-
ther than 12 nearest neighbors.

For the Fermi-surface averages in bcc Mo, it
has been found2d "that P22ngnd= 20 and Pzn&/nd
= 120, which are, respectively, the same as and
twice as large as the averages given above. In
the Chevrel phase we shall now use (35) and should
therefore calculate

I
S„",.(k) iz for the two E, bands

from (18b}. When expanding the d orbitals from
the neighbors in p and f waves about a given site
it is reasonable to neglect all but the nearest-
neighbor orbitals and hence to retain the intraclus-
ter contributions only. With this approximation,
the average of IS„";d,(k) Iz over the three k points
on the Fermi surface which are related by the
threefold axis [i.e. , those obtained from a given
k = (k, , k, , k,) by cyclically permuting k „k,, and

k,] is independent of k and the band index, and
equals IS"„,.Iz as given by (18a) for an E, state
of the octahedron (Fig. 4). We therefore obtain

&IS"„,(k)i',, &

sM:tlz, =+[12s(z,y', —,
' b, o, —,

'
b) e~(--'. «)

+ 2S(z, z' «', 0, ,' b,—,'
b)—exp(-,'vi I'

+I2S(y " & "I'+l2S(z, &" I']
=

I
2S(z, y' —z2; —,

'
b, 0, 2 b)(-iv3) I'+ 0+0

=(12x 2 }(s/R~o'» }2=0.6.
This Fermi-surface average only amounts to —,', of
the average (36) over the entire d band, and the
neglect of the intercluster contributions may there-
fore lead to a large relative error in the pd term
which, however, is insignificant compared with the
d f term. For the df contribution,

(I s""(k)12, )
I

S"„"I'
=

I
2S((5z' —3y')z, y' —z', —,

'
b, 0, b)

x [exp(--,' vi) —exp(-', 7n)] I-'

+ I2S((«'- y')z, y' z', ,' -b, O, ,'—b}—
x [exp(--,'zi ) + exp(-', vi)] I'

= 16 264(s/R"'" )"= 13 .
This amounts to 0.7 times the average (37}over
the entire d band.

As a result, the values of the structural quan-
tities P'dnt /nd and P~&nI/nd are smaller in the
Chevrel phase than in the bcc phase by factors of
30 and 9, respectively.

Returning now to the remaining quantities in
(34), the ratio of the d to the total density of states,
Nd/N, takes the value 0.79 in bcc Mo,""and 0.85
in the Chevrel phase (Sec. IV A). The values of p, d

and s, (Table III) are the same in the Chevrel and

the bcc phases, and so are the values of the quan-
tities entering the square brackets of (34). Specif-
ically: From Fig. 11, Table III, and Eq. (2) we
find D, = -3.5 and D2= 0.2. Moreover, (Ez —v)s2,

=7.4. [This is twice the value (—,'v)2~2 which is
appropriate for the Fermi energy corresponding
to one free sp electron per Mo atom and which

nearly equals (Ez —V,)s', = (Ez —Vd)s22, the V's

being the square-well pseudopotentials defined
in (12). As pointed out by Pettifor, 2d it is the large
effective core of the Mo ion which pushes the sP
pseudopotential far above the value v of the one-
electron potential at the sphere and thereby en-
hances the (small) pd contribution to (I'&.] As a
result,

[(D,—1)(D,+ 3)+ (Ez —v)s', ]'
[(Dd+ 2)(D, —2)]'

The f-potential parameters are (Vd- v)s', = -0.9,
Td=1, and y&=+» (thiS iS the free-eleCtrOn Valued)
and the logarithmic derivative at the Fermi level
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is therefore a&=2.0. As a result,

[1+(Ez —v)s', /(D&+ 4)(D, —2)]' = 0.60 .

We can finally evaluate (34). For bcc Mo metal

(I') = 0.79'/(4. 0 x 2.92')'

x ( —", x 20 x 0.40+ —", x 120 x 0.60)

=6.3 x10 '(53+310)

= 23 x 10 ' (Ry/Bohr radius)',

which equals the value of Butler. " For PbMo, S7 5

(I2) = 0 852/(4. 0 x 2.92 )

x( —"x 1.03 x 0.6 x 0.40+ ' x 1 03' x 13 x 0.60)

= 'l. 3 x 10 '(2+ 48)

= 3.6 x 10 ' (Ry/Bohr radius)',

and for Mo,Se, and PbMo, Se, (I') = 2.9 x 10 ' and
3.5 x 10 ' (Ry/Bohr radius)'. For the Mo chalco-
genides the differences in (I') are due to the fac-
tor (s,/s)" ~5 ", which is a measure for how
closely packed the Mo octahedron is in the various
compounds.

For the electronic contribution g =-A'(0)(I') to the
electron-phonon mass enhancement we find, using
the values of N(0) given in Table V, q=1.0, 1.9,
and 1.4 eV/A' in Mo, Se„PbMo,S, „and PbMo, Se„
respectively. For the two latter materials, in
which we believe that there is no overlap with the
A„band at the Fermi level, these q values corre-
late reasonably with the superconducting transi-
tion temperatures.

A somewhat surprising result of Sec. PA was
that the electron-phonon enhancement X in the
typical, high- T, Mo chalcogenide PbMo, S, , seemed
to be as large as 2.5. By contrast, for bcc Mo
metal, "T,=0.9 K and X=0.40. With N(0) =4.0
states/(spin Mo-atom Ry) we find q = 4.5 eV/A' in
bcc Mo. Using these values of A. and q in McMil-
lan's expression, the ratio between the average
phonon frequencies should be

(((g'),„~,/(u)') „„)'~'= [(0.4/2. 5)(1.9/4. 5)]'~' = 0.26.

Since the effective Debye temperatures, or rather
their high-temperature limits, are about 500 and
400 K in the Mo chalcogenide' and in Mo metal, "
the above-mentioned ratio is only reasonable if
low-frequency modes, like the rocking mode with
hp= 140 K considered in Sec. VB, are of particular
importance for the electron-phonon interaction
in the Mo chalcogenides.

More realistic calculations, avoiding the approx-
imations of McMillan and of Gaspari and Gyorffy
should soon be possible. ""

D. Critical fields

An understanding of the very high critical mag-
netic fields may be obtained from our band struc-
ture. Pair breaking in a strong magnetic field
should limit superconductivity within the Clogston-
limit: IIqo ——&0(&2gs) ' =18 4T,.kG/K, which is
only 240 kG for T, =13 K. Here p, ~ is the Bohr
magneton and 4, the gap parameter at OK and zero
magnetic field. Fischer' suggested that strong
spin-orbit coupling would change the pairing con-
ditions and the Clogston limit could not be valid.
Some evidence to support this can be found from
estimating v„ from a band-structure point of view.

The &, band is shown in the upper panel of Fig.
6, and in Fig. 12 we have sketched the E, sheet of
the Fermi surface estimated in PbMo6875 In the
first-order approximation, where the Bloch states
in the E, band have g' —y' character exclusively,
i.e., where there are only [ m) =2 partial-wave
components at each Mo-site, the spin-orbit coup-
ling and the trigonal distortion are both ineffective,
so that the electron and hole sheets touch at all the
body diagonals of the Brillouin zone. The interband
mixing responsible for the subband repulsion found in
Sec. GI and that arising from the X p covalent mix-
ing and the distortion of the octahedra will, how-
ever, reduce the symmetry of the E, band from

FIG. 12. Sketch of the E~ constant-energy surface
which holds 1.1 E~ electrons per cell (see Fig. 7). The
hole surface is open along the (100) directions and the
electron surface is closed. The surface which holds
2.9 E~ electrons and which we believe forms the heavy
part of the Fermi surface in Pbo 92MoGS& &

is topologi-
cally equivalent with the surface shown. The open sur-
face will, however, be centered at R and will be an
electron surface, while the closed surface wiQ be cen-
tered at I' and will be a hole surface.
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cubic to trigonal, and they will produce gaps at all
other than the [111]diagonal. They will, further-
more, introduce d components with ) m( = 1 whereby
the spin-orbit coupling becomes effective in the
small regions near the remaining [111]degener-
acy. Being a second-order effect, the resulting
splitting E is a sensitive function of the local en-
vironment in nonperfect crystals and its value is
only a fraction of the spin-orbit parameter $ ~~
=8mRy. For PbMo, S, , we find E =1.5 mRy in the
central part of the band. It may be noted that the
overlap of the AM band alone has no effect on the
spin-orbit splitting, because the d components
from that band have rn =0.

Introducing the definition 7„-=-2'„' into the the-
ory of Maki" for 0„, we obtain the coupling con-
stant X = (4/3w)(E„/kaI;). For Pb, ~Mo,S„and
Sn, »Mo, S, „which have T, =1.3 and 12 K, respec-
tively, "we find A. =8 in both cases and this ex-
ceeds the usual values considerably. Using the ex-
perimental" slopes (-dH„/dT)r, we find the
Maki parameters + =3.25 and 2.40, and with our
values of a„we then obtain the critical fie1ds H„(0)
= 420 and 320 kG for Pbo ~Mo, S7 5 and Sn„»Mo S, „
respectively. The experimental values of a are
consistent with our density-of-states curve in Fig.
'7 if, as is usually assumed, z is proportional to
the density of states squared and if there are about
2.9 and 3.4 E, electrons in Pb, ~Mo, S75 and
Sn, »Mo, S, „respectively.

We have to remember that Maki's theory applies
to weak-coupling superconductors, whereas the
specific-heat measurements" mentioned in Sec.
VA indicate a strong-coupling behavior of the
Chevrel phases. Rainer and Bergmann" have
solved the problem of connecting weak- and strong-
coupling theories by calculating an enhancement
factor q(T) such that

H„(r)=q(r}H„""""''"
(Z) .

This enhancement factor can be estimated from
the ratio T,/(ur), where (u) is an average phonon
frequency. If we choose' "(+) = +D = 74 K for both
compounds, we find r)(0) = 1.26, which finaIIy yields
H„=530 and 400 kG, in good correspondence with
the experimental values" of 540 and 325 kG.

In single crystals we would, however, expect
strong anisotropy effects because the spin-orbit
splitting is effective only in the [111]direction. On
purely geometrical reasoning, one could expect a
maximum factor of 3, and this seems to have been
observed. "

We finally would like to point out that, owing to
the strong admixture of ) m( =1 components in the

T,„(x' —y'} states (Fig. 6), the spin-orbit splitting
in the T,„bands is of order 10 mRy, and the crit-
ical fields estimated as above should exceed the ex-

perimentally observed fields by more than 100 kG.
On the other hand, for these bands the spin-orbit
coupling is not a sensitive second-order effect and
the identification of v with E is not justified. We
believe that this confirms our conclusion that the

E~ band rather than the T,„band, or an admiXture
of these five bands, is the conduction band in the
high-critical-field Mo chalcongenides.

VI. CONCLUSION

We have investigated the band structures of the
Chevrel-phase molybdenum chalco genides
M Mo~, „, with M being a large, divalent cation,
using as a model the atomic-sphere approximation
to the KKR and I MTO methods. The canonical
properties of this model have allowed us to obtain
simple analytical estimates as well as numerical
solutions for a continuous range of Mo and X po-
tentials and for the geometries of Mo,S„Mo,Se„
and PbMo, S, , (Figs. 9-11). From the numerical
calculations we have obtained approximate, self-
consistent Mo and X potentials.

We have assumed that the M s bands are well be-
low, and the M p bands well above, the region of
interest around the Fermi level. The 24 X p bands
have a total width of about 0.3 Ry and are placed
about 0.4 Ry below the center of the 30 Mo 4d
bands. The total width of the Mo d bands is 0.5 Ry
and this is approximately 1/&3 times the d-band
width in pure Mo metal. Five of the six Mo s bands
are well above the top of the Mo d bands, but
whether or not the same is true for the lowest Mo
s-like band, which is strongly repelled by the X s
and X p bands, cannot be predicted from our clus-
ter model (Fig. 10).

The Mo d bands are grouped into singly (A. ),
doubly (E), and triply (T) degenerate subbands de-
rived from the individual states of the Mo, octa-
hedron (Fig. 3). In the binaries, the elongation of
the octahedra is sufficiently large that the splitting
of the triply degenerate subbands exceeds the sub-
band widths. The relative positions and widths of
the Mo d subbands are strongly influenced by the
covalent mixing with the X p states (Fig. 9 and Ta-
ble V}. This mixing decreases in the sequence
Mo,S„Mo,Se„PbMo,S, „PbMo,Se„and Mo,Te,
(Table IV). The 12 lowest Mo d bands are separ-
ated from the 18 highest Mo d bands by a gap of
about 0.15 Ry.

The Fermi level lies in the E, band below the
gap. This band has wave functions of type x' -y'
(Fig. 4), its dispersion is given approximately by
(26a) and Fig. 6, its state density is shown in Fig.
7, and its bandwidth is given in Table V for the
various compounds. The E~ bandwidth decreases
in the above-mentioned sequence of compounds.
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The Z, states have 8+ Mo d and 14% intracluster
X p character. The important difference between
the band structures in the ternaries and the bina-
ries, which me believe. is reflected in. their phys-
ical properties, seems to be that the E, band is
distinct in the ternaries but is overlapped with and
hybridizes with one or both of the T,„subbands in
the binaries (Fig. 11). A reason for this difference
is that the splitting of the T,„band into E„and A„
subbands is small in the ternaries, where the Mo,
octahedra are nearly perfect, and large in the bina-
ries, where the octahedra are elongated by about
4% (c/5 in Fig. 1 and Table I). The position of the

E, band above the center of gravity of the T,„bands
depends on the covalent mixing (Fig. 9) and hence
on the Mo-X nearest-neighbor distance (b'/5 in
Fig. 1 and Table I). The symmetry of the T,„wave
functions is shown in Fig. 5.

We believe that the E, band is overlapped by a
wide Mo d (Mo s,X P)-like A~ band with wave func-
tions of type Ss' -r', with dispersion —', (I +j +0) in
the notation of (26), and of bandwidth as given in
Table V. Qwing to the uncertainty in the positions
of the Mo s-like bands obtained with our cluster
model, we cannot decide whether this is the A~ or
the A(, band (Figs. 10 and 11); nor can we deter-
mine the occupancy of this band. Experiments
seem to indicate that the broad band is the A,', band
and that there are about 0.1 holes in this band. As
a consequence, there are about 2.1 F~ electrons in

MMoeXs and about 2.1 +2(m —1 +x) electrons in the

E, band of M Mo, X, , provided that m=1 and x=0.
The estimated Fermi surface of PbMo, S, , is
sketched in Fig. 12.

Our density of states at the Fermi level of 11
states/(spin Mo-atom Ry) for PbMo, S, , and our
theoretical effective exchange-interaction param-
eter for Mo are in good agreement with the mea-
sured paramagnetic susceptibility, yielding an ex-
change enhancement of 1.8. The measured elec-
tronic-specific-heat coefficient is 3.5 times larger
than that obtained from our band density of states
and this large enhancement may be due to the elec-
tron-phonon interaction. The attraction between
the Mo, X, units is dominated by the Mo d-X p co-

valency and a calculation of the frequency in one of
the rocking modes of these units is in accord with
experimental phonon spectra. We find that the av-
erage electron-phonon matrix element for the E,
subband is only half the average over the entire Mo
d band and depends primarily on the properties of
a single octahedron. Its value is seven times
smaller than in bcc Mo metal and the electronic
contribution to the electron-phonon mass enhance-
ment in PbMo, S, , is only half the value calculated
for Mo metal under the game approximations. The
high values observed for the superconducting tran-
sition temperature and the electronic-specific-heat
coefficient in PbMo, S, , might therefore be as-
cribed to low-frequency phonons, such as the rock-
ing modes. We suggest that the high values of the
critical fields observed in the ternaries be under-
stood by considering the spin-orbit splitting in the

E, band. In this particular band the spin-orbit
coupling is a second-order effect which depends
sensitively on the symmetry at the Mo sites and
therefore has large spatial fluctuations in non-per-
fect crystals. We have applied a strong-coupling
version of Maki's dirty-limit spin-orbit coupling
theory and find good agreement with the measured
critical fields.

The model presented here has a number of spec-
ulative aspects but, to our knowledge, it does not
contradict present experiments and our calcula-
tions have been sufficiently explicit and extensive
that it should be straightforward to choose alterna-
tive routes or add further sophistications. We thus
hope to have established a language for future dis-
cussions of this most interesting class of materi-
als.
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