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Effect of Anderson magnetic impurities on superconductivity
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For the purpose of clarifying the Kondo effect in superconductors, in particular, at lower temperatures
than a characteristic temperature T», a perturbation calculation is performed within the Anderson model. In
a microscopic Fermi-liquid theory which accurately describes the low-energy excitations, we consider the
transition temperature T, and the jump in the specific heat hC of the alloys. The energy dependence of the
magnetic scattering generally leads to a finite tail in the concentration dependence of T„which suggests the
existence of the third transition back to a superconducting state at a low temperature in superconducting alloys
showing a "reentrance" phenomenon. Alloys with high Kondo temperatures are found to be well described by
a nonmagnetic Hartree-Fock solution with renormalized parameters. In addition, expansion formulas for the
four-vertex parts of the electron scattering are derived near the Fermi surface.

I. INTRODUCTION

Dilute magnetic impurities which can be generally
described by the Anderson model are known to sup-
press the superconductivity through their resonance
nature as well as through the repulsive interaction
acting on them. Early works based on the Hartree-
Fock (HF) theory clarified their effect in the "non-
magnetic" case, ' ' while in the "magnetic" case'
the spins carried by the impurities have been trea-
ted classically' without taking the Kondo effect into
account.

The critical boundary in the HF theory between
the magnetic and the nonmagnetic states is a con-
sequence of the approximation that completely ne-
glects all fluctuations. By contrast, studies of the
Kondo effect have shown gradual disappearance of
the local moment of magnetic impurities at low
temperatures. Therefore, one can expect a con-
tinuous change from the nonmagnetic resonant state
to the collective singlet state of the s-d exchange
system' as the repulsive interaction increases be-
yond the HF boundary', the antiferromagnetic s-d
exchange system is nothing but the strong coupling
limit of the Anderson Hamiltonian system'. This
picture has become much clearer in a recent mi-
croscopic theory developed by Yamada and Yosida
whose general considerations are based on a per-
turbation calculation in the Anderson model. "'
Moreover an accurate numerical analysis carried
out in wilson's renormalization-group theory" has
also confirmed the smooth magnetic transition.
Experimentally, worth mentioning is a typical su-
perconducting alloy, (La, gh); Ce which continuously
changes the magnetic character according to the
constituents of the matrix. "

Theoretical investigations of the Kondo effect in
superconductors have been mainly approached from
the magnetic side, i.e. , by discussing the s-d Ham-

iltonian. A remarkable success was a prediction
by Miiller-Hartmann and Zittartz (MZ)" as well as
Ludwig and Zuckerm~" of the so called reen-
trance phenomenon from the superconducting state
back into the normal state with decreasing temper-
ature. The origin of the phenomenon, which is ac-
tually observed in certain alloys, '"' can be un-
derstood as the increase of magnetic scattering of
conduction electrons around the Kondo temperature

However, the effect of the nonmagnetic state at
sufficiently lower temperatures than T~ has so far
remained unclear, because of the difficulty in de-
scribing the low-energy excitations. " Although the
magnetic scattering vanishes at T = 0 and on the
Fermi surface, the scattering off the Fermi sur-
face has always nonzero values, and is enhanced
by the Kondo effect around &o" T» (e: energy mea-
sured from the Fermi surface). Therefore the en-
ergy dependence of the scattering is indispensable
in describing the superconductivity whose proper-
ties are determined by the electronic states within
the momentum shell ~&o

~
«oD (&u~: the Debye fre-

quency). If one replaces the energy-dependent
magnetic scattering by the value at +=0, then the
effect of impurities on the superconductors at T = 0
disappears. ' ~'s This is the reason why the the- f

ories in Refs. 12 and 13 could not yield any critical
impurity concentration above which T, = 0. In their
theories the prediction of the third transition at
low temperature is a direct consequence of the ap-
proximation. Recent attempts to take the energy
dependence into account have not yet been success-
ful for the T «T~ region, because of the unsatis-
factory description of the low-frequency, low-tem-
perature region'"" and/or the way of performing
the frequency integration invoking an extra unknown
parameter. "

These difficulties will be naturally overcome in
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this paper by approaching the problem from the
nonmagnetic side of the Anderson Hamiltonian. "We
apply the Yamada- Yosida theory developed in the
normal state' s' to discuss the impurity effect on
superconductors. This theory which takes the re-
pulsive interaction as a perturbation has been for-
mulated quite generally and is free from the HF
singularity. It can be regarded as a microscopic
version of the phenomenological Fermi-liquid the-
ory proposed by Nozieres for the s-d system. " As
the theory is exact for low-lying excitations, we
can best describe the high-T~ supercondueting al-
loys where discrepancies between experiments and

existing theories have long been pointed out."'
In this paper we concentrate on the nonmagnetic

temperature region lower than a characteristic
temperature (T», in the s-d limit) determined by
the interaction strength. Our results are expected
to be correct if T ~ 3 T~. In our treatment the in-
itial transition temperature T~ can be comparable
to or even higher than the characteristic temper-
ature, say T~; in this case we can reach the re-
gion T,(c)«T» by increasing the impurity concen-
trations e. We try to clarify how the "nonmagnetic"
state of magnetic impurities generally suppresses
the superconductivity. Several controversial points
will be discussed, in particular, the critical con-
centration at which the superconducting state ter-
minates, the third transition of the "reentrant" al-
loys (again back to the superconducting state at a
very low temperature), the BCS law of correspond-
ing states and applicability of the nonmagnetic HF
theory.

We will find that the reyulsive interaction at the
impurities strongly influences superconductivity
through two essential effects; firstly, iteausesnar-
rowing of the impurity level related to the Kondo
effect, and secondly, it scatters a pair of conduc-
tion electrons inelastically. In the language of the
s-d system the latter may be called an effective in-
teraction mediated by the virtual polarization of the
singlet impurities. " In a simple modification of the
Abrikosov-Gorkov (AG) theory" or in a conven-
tional spin fluctuation model" the latter process is
missing, while from the HF theory of the Anderson
model no narrowing effect is expected. On the
other hand, both effects have been taken into ac-
count in the Yamada- Yosida, theory. 's'

In the s-d limit, Matsuura, Ichinose and Naga-
oka recently proposed an interpolation theory to
discuss the magnetic and nonmagnetic regions. "
Since they used the same Fermi-liquid description
for the low-energy excitations their results mainly
agree with ours taken in the limit. In the present
paper treating the Anderson model we do not con-
sider the crossover into the magnetic region, T
& T~, because a quantitatively reliable theory

seems extremely difficult to construct. Quali-
tatively, the results of many authors in the s-d
system agree in the magnetic region and even in
the crossover region, and indeed some of
them"~'"" have provided reasonable explanations
for the experimental data" "within these regions.

After some preliminaries in the following section
we consider in Sec. IIIthe dilute case, calculating
the initial decrease in the transition temperature
and the jump in the specific heat. The concen-
tration dependence of the transition temperature
T,(c) is discussed in Sec. IV. Existence of the cri-
tical concentration and the third transition assoc-
iated with a finite tail of the T,(c) curve will be
found. In the final section we show that our results
can answer several problems posed by experimen-
talists. "s" For example, we will point out the
similarity in the functional form of our results to
the nonmagnetic HF ones. In this connection, ex-
pressions for some other physical quantities of
high- T~ superconducting alloys are presented.
Useful formulas for the vertex parts in the Fermi-
liquid expansion are given in Appendix A.

II. PRELIMINARIES

We consider a BCS superconductor containing di-
lute magnetic impurities characterized by the An-
derson model without orbital degeneracy. The
Hamiltonian is

E(E) = g f,a„a„—& pa &a, &
~ H. c)

kfy k

+Q (Ve-i~Ref~ d„+H.c.)
Sf'

CZ. le Z
where a~ and a~~, are, respectively, annihilation and
creation operators for a conduction electron with
momentum k, spin o, and kinetic energy e~(= e),
and & is the order parameter of the superconduc-
ting state. The magnetic impurities are assumed
randomly distributed at sites R„where a repulsive
interaction U works between impurity electrons
with opposite spins. The inpurity e}eetrons are rep-
resented by operators d„,dt„(n„=dt„d„) and are
coupled with the conduction electrons through the
mixing matrix V. We will choose the impurity le-
vel E~ to be ——,'U so as to treat the symmetric
case, in which the impurity system in the strong
coupling limit, U- ~, becomes equivalent to the
s-d exchange system with an antiferromagnetic
coupling constant,

We treat the repulsive interaction U perturbation-
ally, by choosing as unperturbed state the nonmag-
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n'=gQ (a'„a'„),=gQ Tg 6:,(i(o„), (2.3)

where g is the effective attractive interaction be-

netic resonant state at the Fermi level with width
I'= vp V' (p: the density of states of the conduction
electrons at the Fermi level). Since we are not
making any HF-type approximation on the impurity
site, anomalous averages such as (d~&d ~&) used in
the Ratto-Blandin theory' are not invoked in (2.1)
from the beginning.

Neglecting the spatial dependence, the order
parameter is determined self- consistently through

0,(iu&„) = dv (Ta~~& (w)a~
&
(0)),e'" i') (2 4)

with a(r) =e"'ae "', &()„= (2n+ l)vT, n integer. The
summations over k in (2.3) are taken within a mo-
mentum shell, le, l«do (Debye frequency}. The
self-consistent equation (2.3) is expanded near the
transition temperature in terms of & up to third
order

tween the conduction electrons in the pure system,
(a~»a~»), is the average taken in the superconduc-
ting state and &,(i(()„) is the anomalous Green's
function defined by

L~=((g dr(t, a(&(0)a),&(0)a &(r,)a, &(,))+g J d,dade, (T,a(&(0)a~, &(0)a, &(|;)g, &(r,)

xa,' &(r,) 'a„&(~,) a»( r) aa) (~s)) ln'I'+" ()' (")

where X(n) =Q, ,(2l+1) "and T~=(2y/v)(doe ' ",
with y=1.781 and A, =gp.

For alloys the transition temperature T, and the
jump in the specific heat &C at the phase boundary
are given by

In(T~/T, ) =A (c, T,) (2.7)

&C T, 1 sA(c, T,)

with a(&) = e"(t'ae "n' and H„=H(a = 0). Hereafter,
the average is taken in the normal state of the al-
loy.

After extracting terms referring to the pure su-
perconductor we can represent the impurity effect
by two quantities A (c,T) and B(c, T) in the following
equation,

ln ~ =A(c, T)+X(3) [1+B(c,T)], (2.6)T~ I &(T}I

(ii} the thermal GF of the Perturbed d electron,

(2.10)

where Z (i(()„) is the self-energy due to the repul-
sive interaction U. In the symmetric case of the
Anderson model, it is known that G, (i(d„) is a pure-
imaginary odd function on the imaginary axis [cf.
Eq. (2.11)].

(iii} the vertex part I'& I(i(o„,i(() ), which repre-
sents the inelastic scattering of a pair of d elec-
trons with opposite spins from one energy state
(i(L)„,-i(o„) to another (i((), -i(d ) (see Fig. 1). It is
defined including the reduciblb parts. %e will
choose the sign of the vertex function so that
P&

&
(i(d„, i(d ) = U+ ~ holds in the lowest approxi-

mation. The exact expressions for the self-energy
and the vertex part have been obtained by Yamada
and Yosida"' near the Fermi surface in frequency

G~(i((()„)= (i(()„—&~) ', (2.9)

respectively'. Here T~ and +Cp are the initial
values of the pure system, where ~Cp=1.42y„T~,
y„= (2v /3)k p, holds according to the BCS theory
(k is the Boltzmann constant, p, = p/N, N is th-e to-
tal number of the atomic sites).

The quantities A(c, T) and B(c, T) are obtained in
this paper through a perturbational analysis of
(2.5) with respect to the s-d mixing V and the re
pulsive interaction U as well as the impurity con-
centration c (~N, /N; N, is the number of the im-
purities}. At this point it is convenient to introduce
some functions needed in the perturbational treat-
ment': (i) The thermal Green's function (GE) of
the unperhcrbed conduction elect on, FIG. 1. Vertex part I'

~ ~ (i(d„,ice~) representing the
inelastic scattering of a d-electron pair with different
spins.
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expansions:

2: (i~„)= - (X ) ) —1)i~„

2T
"

Xi i [(i(o„)'+(»T)']+, (2.11)

I'Ii(i(u„, i(o„)=vt'&~i 1- "~ ' ju„+ u ~+. ~ ~ (2.12)

The ~-linear term in (2.12) is new and the deri-
vation is given in Appendix A. The coefficients

X, ~ are generalized susceptibilities defined by the
following correlation functions between two elec-
trons with spins o and o' (= ao),

X„,=+»I'
lI d~([n,(~)- (ng] [n, (0) —(n~}]). (2.13}
+0

They have been perturbationally calculated up to
the fourth order in u =- fJ/»I' in the symmetric case
of the Anderson model. '

X&i(X~&) starts from 1(u)
and increases with e smoothly but rapidly ap-
proaching vt'/4T», that is half of the normalized
susceptibility (X& &+X& &} of the s-d interacting sys-

tern. Here, T~ the Kondo temperature is, by defi-
nition, the inverse of the susceptibility at T=0,
in the units of g= 2, p, ~= k, and coincides with the
binding energy of the singlet ground state in the
Yosida-Yoshimori theory. ' T~ is proportional to
exp(--,'v'u) for large u if we take the result, T»
~ exp(-1/~ Jp )), which is known in the s-d model
as the leading approximation.

III. INITIAL DECREASE IN THE TRANSITION

TEMPERATURE AND THE SPECIFIC-HEAT JUMP

Let us first look at the dilute limit keeping only
linear terms with respect to impurity concentra-
tion.

A. Transition temperature T,

As shown in (2.7), T, is determined by A(c, T),
which is given by the two-particle Green's func-
tion of a pair of electrons in (2.5). The effect of
a single impurity is perturbationally analyzed as

2
= —V' 2TQ Q E,(i&a„)G,(iv)„)G~(iu)„)+ &'TQ Q E,(i(u„) G„(i(o„)G„(-iv)„)

A

—V T'P g E„(i&a„} g» (i&g„) G2(iur„)G~(im )P&(i&a„,i&a )
mn

(3 1)

where

E,(i (u„) = G,(i(o„)G,(-i(o„)= ((u'„+ &', ) '. (3.2)

Then

= T Q —,G,(m„)[I— G, (ia)„)]

The first two terms of the right-hand side (rhs) of
(S.l) represent the mixing of a conduction electron
with a d electron which is perturbed by another d
electron. The third term indicates a process in
which both of the paired conduction electrons jump
into a d-level and repulsively interact with each
other. The former scatterings are elastic, while
the latter is generally inelastic.

These processes are shown diagrammatically in

Figs. 2(a}-2(c},where the thin (thick) lines repre
sent unperturbed conduction- (perturbed d-) elec-
tron Green's functions and the hatched square re-
presents the vertex part of the d-electron scatter-
ing. The summations over k within (e„~—&u~ yield

»,~ 6', (i(o„)G~~(ko )

x I ) ) (i(o i(o„) (3.5)

G, (ie„)= G„(i&a„)/G~(i0 sgn+„) (3.6)

Pf &(i&a„,i~ ) = P&
&
(iv„,iv )/(»I'), (S.V)

with the frequency summations taken within the De-
bye cut off, ~&u„~ s &u~. Here we have introduced
normalized functions Gg and ~~&

&
by

Eg, Ad~ G~ 140~ -$ — 2, Qpg~ co„

(3.4)

respectively.
Because of the singular nature of the summand,

the major contribution to A(c, T) at low tempera-
tures comes from the low-frequency region.
Therefore we substitute the expansions for the
self-energy and the vertex part near the Fermi
surface, (2.11), (2.12) into (3.5). Then one of
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from the Debye cut off, i.e. , ~« I & U in usual
situation, we can neglect them at low temperatures
T~ &1', where low frequencies dominate the in-
tegration. By taking into account just the central
peak we can replace the Debye cutoff by 1 if
I' &~~. Then we are led to a result for T~ « I',

X» 1„22r[~n I'l,
l 2r[~n I']

QT~ 7P~F '

X )) 1TT~ 5'T~

Y/rr

rr~
rlr where

Xt4 (3.10)

[&n, r ]-=(&n'+ f' ') ' = min[su „I ] . (3.11)

(b) (c)
FIG. 2. Diagrammatic representations of the terms in

Eq. {3.1), which contribute to the initial decrease in T, .
The processes @), {a'), and {5)contain mixing effect
and elastic scatterings while {c)does inelastic one.

the singularities in (3.5) is ca.ncelled by

n (i a ) =G,(i (g)[1 —G, (i (g)]

- ((o„)/r+. ~ ~, (co„/ & r, (3.8)

where f' =I'/X tt. The result for bT, = T, —T~ is-

In the following the numerical constants within the
argument of the logarithm should only be considered
to be approximately correct. The initial decrease
of T given by (3.10) is plotted in Fig. 3 as a func-
tion of the interaction strength u or the effective
width 1. In obtaining this result we have related
u to X~& using the perturbation result' if u «3 and

putting X~~=coshu if N&3. %e have also approxi-
mated for simplicity, X&&/X&&

——tanhl everywhere. ~

One observes a rapid increase in (d.T, ( with u

which is in strong contrast to the nonmagnetic HF
result. ~ 3

If we take the s-d limit, (3.10) becomes

l». ( 1 (x», 2r& D 2 xi' h~D
cT~ np, i' EXii L vT Xii J I'—

x~i
'

~~

PENT~ 2 X)) I

4p T ' Z' (3.12)

Xt) ~co (3.9) '00
("( K)

where we assume I'»~~, T~; and @=1.78. . . .
This is exact up to the linear term of ~~/I' and
T~/I'. The first and the second terms in (3.9)
represent the inelastic and elastic scattering,
respectively, while the last one comes from the
explicit temperature dependence of the self-energy
(2.11), which gives a small contribution unless

With increasing u, X ~~ and X~~ become large;
then, if &vo

- I'/X the expansions up to the first few
terms in (2.11) and (2.12) are insufficient for mak-
ing precise calculations. In this case, however,
we can estimate the integration in (3.5) from a
general consideration on the shape of G(i~). It
has a peak at the Fermi surface ~ =0, and as
shown by Yamada, ' this peak narrows rapidly
with interaction strength U. The effective width
of C(i~) is estimated as I". When u~ 3, two side
peaks corresponding to the local moment begin
to appear at ~=-,'U; however, since they are far

O

IJ

a
Ill

Dl

l o.oi

E)

a
UI

cu

—O.DO

FIG. 3. Initial decrease in T, [Eq. {3.10)] as a func-
tion of the interaction strength I [=U/{v I )] or the effec-
tive width I' of the d-electron state density. The initial
values are chosen T Go

——1 "K, I'=10 000 K with cd
= 500 K. Dash-dot curve shows the contribution from
the elastic scattering. Dotted curve shows a result
of the nonmagnetic HF theory. Different scales are
used for u 4.
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for T~ && T» &II)~. The T»/T~ dependence in(3.12),
which we think is exact, is in contrast to the ex-
pression obtained within the Suhl-Nagoaka approxi-
mation. '4 The latter is inversely proportional to
ln'(T»/T~) for high T-» superconducting alloys.
Essentially the same result as (3.12}was recently
obtained by Matsuura, Ichinose and Nagaoka. '

R. Specific-heat jump b,C

The jump in the specific heat 4C at the phase
transition is given relative to T, through the rela-
tion (2.8). We calculate the relative ratio (b C/
n, C,)/(T, /T„) up to leading terms neglecting
higher order ones which vanish when T, -O. %e
assume the dilute limit and T,« I". One of the
factors in (2.8} is easily calculated from the ob-
tained result (3.9):

A c, T,
C

x G»(i&a„)G~(i(d„) (3.14)

4c XH I 2y(dD Xt 4 ~(d 1

gpss

x&& L ~&~ x)) z'-

(3.13)

The other factor in (2.8) contains B(c,T,) defined
by (2.6}, which is examined by means of a pertur-
bation expansion of the four-particle Green's func-
tion in (2.5). For convenience we describe per-
turbed Green's functions of conduction electrons
in the presence of a single impurity by

8I~(ie„)=GI(iv)„}5)~+V GI(i(O„)

(c)

FIG. 4. Diagrammatic representations of the terms
considered in the initial decrease in 4C: (a) and (b)
corresponding to Eqs. (3.15) and (3.16), respectively,
make relevant contributions. (c) and (d) give higher-
order corrections. Double lines are the perturbed
Green's functions of conduction electrons, thin lines
are for unperturbed conduction electrons and thick
lines are for perturbed 4 electrons.

Among many terms in —(T,a~a~aaa~a~aa} the follow-
ing ones are found to give the dominant contribu-
tions:

(a) Terms including self-energy correction only:

Tl Q ()~~(( )9@,(-i )I, (' )9, , (- )-I,)"*,(' ))Qk4 A4ki

= —TQ —,G~(z(d)[1 —C~(i&a)][6',(z(d} —G~(i(d}+ —,']=, — + O(T) . (3.15}

(b) Terms including self-energy corrections and one vertex correction between a pair of electrons with
opposite spins:

-4V'T' g g F&(i&a)G2~(i(d}F~&&(i(I),i~')G~(i&@')G+(i(u')8&+( fry')8» -(i(d')G, (-i~')
gs la 3 4

= ——T2 " ', 3 G~(i(o) G2(i(d'}[G2(i(o) —G~(i(d') + ~ ]

2 " M+0(TlnT) ]" (3.16)
(»T) wpf XH vT

Diagram representations of these terms are shown
in Fig. 4(a) and 4(b). The. terms in the parentheses
in (3.15) and (3.16) give B (c, T) Other terms in.
the expansion contain either more than toro inde-

pendent frequencies like TZ(d, ((d, '(I),' [Fig. 4(c)]
or vertices of parallel-spin electron scattering,
I'~&i(i&o, i(d') like TQ (d, '(d~ I' H(z(d„ i(d~) [Fig. 4(d)].
Since this vertex vanishes on the Fermi surfacee
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(see also Appendix A} both terms make higher-
order corrections to B(c,T) and are at most of
the order of T' lnT. From (3.15}and (3.16) we ob-
tain

7Tps~ X $$ - s Tco

(3.1V)

After partical cancellation with the similar term
in (3.13) we finally get cutoff independent re-
sults, which is valid also for 1"& ~D,

well-defined magnetic moments are known to give
rise to a negative curvature in T,(c)., non-
magnetic impurities a positive one.

In this section we treat primitively the many-
impurity problem neglecting possible interactions
or interferences between impurities which are
randomly distributed in the matrix. By taking an
average over the impurity distribution we recover
the momentum conservation for conduction elec-
trons after repeated scattering.

First, let us introduce another Green's function
associated with the conduction electrons

C T,
&

c 1+
4C, T spy p,

(3.18) L(i(d„) = lim g 5'~(i&v„}/d, , (4.1)

where p, =(vt") ' is the density of states of d elec-
trons at the Fermi level. As the vertex correc-
tions have cancelled, the ratio, C C/T„ is ex-
pressed exclusively by the self-energy correction
at low frequencies, namely, the enhancement fac-
tor of the specific heat, X&&.

' We can rewrite the
result (3.18) in a familiar form in the BCS theory,

A C = 1.42 C„(T,) = 1.42 y „„„T,, (3.19)

&ai v(a= ~v& (ps+ Xttpu} (3.20)

In this respect the law of the corresponding states
holds in the alloy with I » T~.

The initial slope of the ratio is given by

where C„ is the electronic specific heat of the alloy
in the normal state with an enhanced coefficient,

in terms of which A(c, T) given in (2.6) is ex-
pressed by

A(c, T) =-p 'T 2 [L(i&u„) —Lao(i(d„}], (4.2)
~D &l~„l

where Lao(ie„) refers to the Green's function of the
pure system. Following the Abrikosov-Gorkov
treatment'"" we sef up an integral equation for
L(z(d} to describe the successive scattering of
paired electrons by many impurities:

t(4)=t.,(4)(1~ N, TQK( , (L((w ') )', '(4'. 8)
~t

where &; is the number of impurities and Lo(i&a)

is defined including the self-energy correction due
to d electron as

Lo(z&o) =+[i(c—e(, —N;V'G~(i(d)] '

X [-l(d - E,—cV, V'G~( i(((}].
(4.4)

2y[+n, F] 1 X&& I 2y[uD, F]
wT~p X )$ HATT p

(3.21)

The value C~ is known to be 1.436 for a well-de-
fined magnetic moment (AG theory20) and 1 for
BCS-like superconducting alloys. The present re-
sult shows the nonmagnetic nature of the high-T~
impurities which is again in contrast to the MZ the-
ory. " Ichinose found the approximately same re-
sult for C* in the s-d limit. '

On the other hand, the integral kernel K(i&u, i&@') is
given by

K(i(d, i(d') = V~G~(iru)[T -'6

+ F{'~(i(d, i&@'}G~(i(d')],

(4.5)

in which both the elastic and inelastic scattering of
a pair of electrons at one impurity site are taken
into consideration. To make the mathematical
treatment easier we approximate the frequency-
dependent vertex part by

IV. CONCENTRATION DEPENDENCE OF THE CRITICAL
TEMPERATURE

I~~(im, iv)'} = F&~(i0, i0) = vI"X~~, (4 6)

For finite concentrations the nature of the de-
viation from the linear concentration dependence
reflects the magnetic properties of impurities:

since we expect the major contribution to come
from the vicinity of the Fermi surface. Then a
formal solution of (4.3) is
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(vP} 'L(i(2)) =(vrP) 'J.(i)(df}
-1

=H(i(v} — H "(i(v)T QH "(i(v') 1+ TQ H'"(i(d')
p, I' p,I

(4.7)

where

H(i(2)} = H(i)(v~)

and

H (" )(i(2)) =— H(i(2))[("„(i(a))]". (4.10)

=(vp) [&() (i(d) —4 I IGH('(v)l ]

(@+CD Z (d

o'(iI~1) =(vp.) 'Ail~I)

=—(vp, ) 2("H(i(v) [1 —GH(i(v)]

(4.8)

(4.9)

Due to the partial cancellation between the self-
energy part in (4.4) and the first term of the inte-
gral kernel (4.5), H(i(2)) is inversely proportional
to ((2)~ near the Fermi surface. This fact turns out

important in determining low-temperature pheno-
mena. The transition temperature T, is then cal-
culated from (2.'I), (4.2), and (4.7) as

QP@

ln ' =-2vT,
Tc

QJ )p

(aug)
2

11( „)— ~'2 T, I H 1'1(( „) 1 ~ x 2 T, P H ' (( „)). (4.11)
psI' ) p

r.

After carrying out the summations over the frequencies as shown in Appendix B, we obtain in the region

T, « f", irresPective of the ratio of T/T~,

T,o c 2y[(2)D, Wg)] g)) (In(2y[(dv, f']/vT, ))'" 1. 1 ~ 2 '" T. ')(H 1 ~ 2()'(Tx/2~&))2(21(tx„rli». )) )' (4.12)

where

c = c/(vp, i) (4.13)

(c+2) ' = o, (i(d)F/(vl~=)H(H-l . (4.14)

and a cutoff frequency, W(P), is introduced by a
condition

dent one, fixes the critical concentration &p

[T,(c ) = 0],"while the following term which is
inversely proportional to lnT, determines the con-
centration dependence of the transition tempera-
ture.

The situation might be compared with the corre-
sponding expansion in the AG theory, '

The frequency dependence of the impurity scatter-
ing at higher frequencies I & ~(v~ has been pheno-
menologically taken into account. %ith the help
of the Hamann's result" for the t matrix at high
frequencies in the s-d system, ~ a reasonable ap-
proximation for the rhs of (4.14) is

where

Tcp 2P 7T

C CT

I/r, = Hcp, vS(S+1)(ZlV)'.

(4.15)

(4.15)

a(i(2)) I"/(2) = 1/(1+ x)', x & 1

= I/4x[(4/3v') ln'x+I], x~ 1, (4.14')

with x= (2)/I'. The rhs of (4.14) and the concentra-
tion dependence of the cutoff W(c) is plotted in

Figs. 5 and 6, respectively. As long as T„-f',
c is less than 10 (as seen later in Fig. I), then
W(c) remains of the order of I'. lf T„» I', cbe-
comes extremely large and much higher frequen-
cies region ((v» &) are involved. In the classical
limit of the s-d system I 0, we can show that
W(&} becomes O(c(JN)'p, ), which turns out to be
O(T,D) at the critical concentration.

At low temperatures the leading term in Eq.
(4.12), lnT„cancels out from both sides. Then
the next leading term, the temperature-indepen-

04-

0.2

0 1 2 3 4 5 u/I

FIG. 5. Right-hand side of Eq. (4.14) as a function of
the normalized frequencies co/f'.



EFFECT OF ANDERSON MAGNETIC IMPURITIES ON. . . 1203

w{cj

3

2-

—c)' ' near co. On the other hand, our formula
(4.12), which is rewritten more explicitly as

vT,(c) c x ii
2y[~D Tl I+c

2y[(u~, I']
77Tcp

2y[~, W(c)]
$TTcp

(4.17)

't0 c™

gives, as shown later, a monotonically decreasing
function T,(c) with positive curvature as long as
T,(c}« I'.

The critical concentration cp is obtained from
the zero of the parentheses in the rhs of (4.17).
of (4.17).

In the limiting cases, (i) I'» T„

FIG. 6. Cutoff frequencies W {i-") determined by the
condition (4.14) as a function of the normalized con-
centration c [=c/(x p, F)].

vq,I', 2y[(on, f']
AT p

and (ii) T-0 (the AG limit

(4.18)

20

1.5-

0
o

05-

O
O
ljo

00
0.1 10

0
100

f /Tco

Normalized critical concentration ep {solid
a function of I'/Tc p(= TI, /Tc p). Dashed curve
the same critical concentration normalized
long as c p remains small, low-frequency

dominant in the integration (4.11). Tc =1 K,
K and coD= 500'K.

FIG. 7.
curve) as
shOwS Cps

by I'. As
region is
I =10000

Equation (4.12) reduces to this result, in the clas-
sical limit Tr -0, by fixing W(c) as 1/7„" and by
including the higher-order temperature-dependent
terms. In the AG theory T, is proportional to (c,

ca T«/[ ypg JN)'S(S +1)]. (4.19)

A' =ln '(2y[mD, I']/rr T,o) . (4.21)

A numerical result for p is plotted in Fig. 7 as a
function of I'/T„. The critical concentration c,
has its minimum value around T/T« =2, while the

normalized one ca (=c,/(vp, l) is a decreasing func-

tion of I'/T«except when u becomes small enough.

Equation (4.17) describes quite generally how the
"nonmagnetic" state of the magnetic impurities
suppr esses the superconductivity. In particular,
(i) for T««+D& I', Eq. (4.17}is valid in the
whole range of the concentration, 0 c& cp. We

can rewrite it in a simpler form as

T, -(A +B)c= exp (4.20)
CP

with A = X t t p~/p„B =X ~ip~/(Xp, ), and X =gN p, (the

coupling constant of the superconductor). If one

puts X &i
= 1 and X }}= Uqq p~ [where U.e = U/(1 + Up„)]

(4.20) reduces to Kaiser's HF result, "' while the

replacement, Xi&=l and Xi&=Utt p, exp(Up, ), cor-
responds to Schlottmann's recent result" ob-
tained by a renormalization-group method, in

which the self-energy correction has beep ne-
glected. The pair weakening effect caused by the in-
elastic repulsive interaction is the main rpechan-
ism suppressing the superconductivity an/ deter-
mines the critical concentration, at which the ef-
fective electron interaction changes its sign. '

(ii) For T«& I'«o~ as long as 1nf'=lnW(c), "
we can proceed parallel to case (i). Equation
(4.20} approximately holds if one replaces X by
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in a certain range of concentration (~ c —c,
~

&»p, T»
«1). As seen from (4.22) and also from Fig. 8 the
tailbecomes shorter and steeper for small I'/X

~ &

-T~, but if the concentration is scaled by
»p, I"

/y&& then it is approximated by a universal
function which is plotted in Fig. 9.

0.0
0.0

c=c/(4a q T~)

FIG. 8. Concentration dependence of the critical
temperature for several values of 1 /T~0. Solid curves
are results of our theory while dotted curves are their
natural extension. In particular for f'/T«-—0.3 an ex-
pected T~ {e}curve showing three transitions is sche-
matically illustrated. The same parameters are used
as in Fig. 3 and 7.

2y - u mp I'
T,(c)= —[(o~, I']exp-r c- co

(4.22)

with constant a of the order of 1 except when I'
«T~. Therefore once a superconducting alloy
happens to show a reentrance phenomenon at T,- T„, by cooling, it shouM show the third transi-
tion from the normal to the superconducting state

0.2 .

cf

3
0 )

C C0

0.2

FIG. 9. Finite tail in the T~ {c}curve near the critical
concentration. The concentrations are normalized by
~~~/x», i'., ~ ={x&&/x»}~-

(iii) For f'& T~«&o»„Eq. (4.1V} is applicable
only in a limited concentration range satisfying
T,(c)« I'. In this case, c becomes larger with de-
creasing I' and the c dependence of the cut-off
W(&) cannot be neglected. [InW(c) p lnI'].

Figure 8 shows some numerical results of T,(c)
given by (4.1V) for various parameters of I'/T
In all cases T,(c) has a finite tail decreasing ex-
ponentially near the critical concentration as

V. DISCUSSION

[A] The finite tail in T,(c) shown in the Sec. IV
is a general feature of superconducting alloys con-
taining magnetic impurities in the nonmagnetic
state and occurs irrespective of the interaction
strength U/(»I'}. It is a consequence of the fre-
quency dependence of the elastic impurity scatter-
ing o.(ur), which is linear in &u near the Fermi sur-
face. Even in the case T~&T~, where the scatter-
ing in a wider range of frequency contributes to the
determination of the critical concentration c„ the
temperature variation of the transition concentra-
tion c(T,}near c, [equivalent to T,( }c] is dominated
by the low-energy excitations.

In practice, interaction between impurities would
have an influence in hindering the Kondo effect and
preventing the impurity from falling down into the
non-magnetic state. Probably, compared to the
noninteracting case, the magnetic scattering would
be (a) relatively reduced at

~
&o

~

= I', but (b) enhanced
at

~
&o~

«I' and would remain finite at &@=0 and T=O.
Consequently the interaction has a tendency to
shorten the finite tail [it may increase the absolute
value of c, but even if so, the T,(c) curve near c,
would be steeper reflecting the magnetic character
of the impurities].

Because of the shortness of the tail, precise
measurements in a narrow concentration range
are required to find out the third transition. "Al-
though the third transition has so far not been re-
ported in the literature, a recent experiment by
Winzer on (La, Y):Ce supports the existence. " It
would be desirable to invest more effort to reex-
amine other candidate alloys [such as (La, Th): Ce,
(LaA/, ):Ce] systematically.

[B] In Fig. 8 we plot the T,(c) curves within the
part for which our calculation is meaningful. Al-
though the results are limited it would be natural
to conclude the following from the figure:

(i} The maximum of the initial decrease in T,
occurs at a higher value of T»/T~ (= 5} compared
to (T»/T~) (=2}, the value which gives the mini-
mum critical concentration c,.

(ii} The reentrant phenomenon (as well as the
third transition) could be observed in superconduct-
ing alloys with relatively smaller value of T»/T~
(s0.5} compared to (T»/T~) . Similar tendencies
have been theoretically obtained by 3chlottmann. '
Conclusion (ii) is in accord with the experimental
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observation on (La, Th): Ce.
[( ] Besides the third transition this calculation

can answer several questions which have been
raised by experimentalists. " Firstly, on Al-Mn,
in the arxaj.ysis of the early experiments Aoki and
Ohtsuka" needed an unusually small width of the
impurity level to explain the specific-heat coeffi-
cient and the rapid decrease in T,. Their result
is now understood in terms of the narrowing effect,I'- I' = I'/y&&. If we take u= 3, then a reasonable
reduction of 1 from 1 to 0.1 eP is expected.

Another point concerns the T,(c) curves observed
by the Maple et al."group on ThU and" (La, Th.):Ce
alloys. They found the applicability of the HF
formula given by Kaiser' in a wider range than
expected (not only purely nonmagnetic but includ-
ing the high-T» case)." The fact can be clarified
by our general result, (4.20) and (4.21) for I'& T~,
which has the same functional form as Kaiser's.

Moreover, as for the thermodynamic properties
we can understand why the BCS law of correspond-
ing states holds in high-(T»/T ) alloys like ThU
(Ref. 37) and (La, ,Th„):Ce (x a 0.7)." In our theory,
the initial slope d(nC/nC, )/d(n, T/a T~) approaches
the BCS value instead of the AG value in the high-
T~ limit. It should be noted that the resistance
minimum, a typical, Kondo effect of magnetic im-
purities observed at T a T~, is compatible with the
BCS law at T, «T~.

[D] As shown in the text our results for T, and
nC, (3.10), (3.18), and (4.20) have the same func-
tional forms as those obtained in the nonmagnetic
HF theory. That is because, as long as we are in
the low-temperature and the low-frequency region,
we can start with a simple approximation of taking
the term in the self-energy which is linear in +
and the constant term of the vertex part near the
Fermi surface. Then, after a frequency renormal-
ization in the Green's function, G, =(ig&&&a

+ iTsgnio) ', most of the calculation can be carried
out parallel to the HF theory. Therefore, just the
following replacement of the parameters in the HF
results leads us to valid expressions for physical
quantities in high-T» alloys: (a) The repulsive in-
teraction:

Ueff ~d Xf$ t (5 1)

(b) the effective width of the d level at the Fermi
level.

T=(&p ) ' T/Xi&=&-' (5.2)

(c) the density of states of d electrons at the Fermi
level:

p~- p, (unchanged). (5.3)

It is noted here that the effective interaction (a)
which was reduced in the HF theory is now, by
contrast, much enhanced and 1/p, (c} should be

or equivalently written as

H ',(0) = 5.95 T,C„(T,) . (5.5)

This is the BCS law of corresponding states ob-
served in A/Mn (Ref. 41) and ThU (Ref. 42) alloys.
Near the critical temperature T- T„we have

d(H, (T)/H, (0))
d(T/T, )

(5.6)

The initial decrease at low concentrations is ob-
tained as

h*=—dH~H~ 1
1 1

1
1 pic

'
(57)

d(T,/T~), 0 2

with X' defined in (4.21).
(ii) The lowest exci ted state 'in the supercon

ducto~ gap. '" For a single impurity a doublet
state is found at ~,

(5.8}

where

»[~o Fl (5 9)

and we have assumed co, - b, , T=O. This result has
been recently obtained by Matsuura44 in the ~-iI
limit.

(iii) The average order parameter a/ T =0.'- ' The
result is

n(0) 1+ cg&i p, /p, T, (5.10}
no(0) 1 —c}t&&p»/(pp") T~'

that is, the BCS correspondence law does not hold
in this case. The initial decrease at small copcen-
trations is given by

d(n(0)/n, (O)}
d(T, /T~)

(5.11)

Small differences between the expressions for C*
(3.21), h~ (5.7), and 6* (5.11) are noted.

[F] In this paper we have considered a special

distinguished from the width of the d level (b): the
former remains unchanged but the latter is nar-
rowed to cause the enhancement of the specific
heat. " It is remarkable that the Kondo effect can
be brought into the result of the nonmagnetic HF
theory by renormalizing parameters through X&&

and X„.
[E] The above consideration leads us to the fol-

lowing results for several physical quantities of
high-T~ alloys. We assume in the following I

(i) Thermodynamic critica1 field H, (T)."'" At
T=O,

H, (0)/H~(0) = (1+cgii p, /p, )' i' T,/T„, (5.4)
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case (no degeneracy and the symmetric Anderson
model). We can discuss the general case as well
in a parallel way and confirm the usefulness of the
nonmagnetic HF results. However, at present, it
is not clear how to make the necessary modifica-
tion of the parameters in the HF solution. To our
knowledge the orbital degeneracy introduces a
factor of 2l+ 1 which multiplies the concentration
c, while the nonsymmetry makes the density of
state p„at E~ smaller than in the symmetric case
by an amount which depends on the position of the
level E, and on the occupation number of d elec-
trons. Moreover, the quantities represented by

X&& and y&& in our results would also be changed.
In the strong limit they are still of the order of
T/T~. In general, we do not know how they de-
pend on E„, U, and other exchange interactions
between degenerate d electrons, and thus we defer
further discussion to future study.

[6] The magnetic impurities in the alloys in the
superconducting state below the finite tail of the

T,(c) curve is certainly in a singlet state, which

is strongly coupled to the quasiparticle excitations
of the pure superconductor by a binding energy of
the order of -Tr (Ref. 45). (6 is now small. } At

a fixed temperature, for smaller impurity concen-
trations the superconducting state is more stable
and the formation of the singlet state requires
more energy because of the quasiparticle excita-
tions. If T~ is larger than T~, at a fixed low tem-
perature for Lower concentrations, the impurity
cannot stay in the singlet state, then, magnetic
moments will appear in the superconducting state.
Therefore, we can expect a discontinuous change
in the ground state with changing the impurity con-
centrations. This phenomenon is related to the ex-
cited levels within the gap of the superconduc-
tors""; as the level in the gap crosses the Fermi
level, the transition takes place4' from the singlet
to a doublet state. The behavior of the magnetic
moments in superconducting state" is one of the
important problems to be further studied both the-
oretically and experimentaLLy.

[H] To summarize: in this paper by using a
microscopic Fermi-liquid description, we have
calculated the effect of magnetic impurities on
superconductors. At sufficiently low tempera-
tures the nonmagnetic states, the intrinsic non-
magnetic state (u«1) and the singlet bound state
caused by the Kondo effect (u» 1}, have similar
effects. The repulsive interaction at the impurity
site has an essential role in suppressing the super-
conducting state. This interaction cannot properly
be treated if we si;mply assume a virtual level with

a width T~ at the Fermi level, leaving the repulsive
scattering out of explicit consideration.

Extension of the theory to higher temperatures

-G3
n

+

(c)

Q)m+ g

QJ ]4 Q o' ~~ v"u„-cu„

seems difficult since this extension requires
knowledge of the self-energy and the vertex part
particularly at higher frequencies and higher tem-
peratures, (&u(, T& I'. A possible approach is an
interpolation method recently proposed for the s-d
interacting system by Matsuura, Ichinose and
Nagaoka. 9 "'4 In their work they use the same
method in the low-frequency region as discussed
here, but employ the ~-dependent scattering ma-
trix derived by Hamann" in the high-frequency
region. They try to interpolate the two for inter-
mediate frequencies. However, they neglect the
explicit temperature dependence of the scattering
amplitude, in direct contrast to the early treatment

-63
n

FIG. 10. Vertex part of the d electrons with opposite
d

spins, 1 &&, {a). Linear dependence on the external fre-
quencies comes from the scatterings with internal
structures, (b), (c), (d).
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of the MZ theory" which neglected the energy de-
pendence. In light of the importance of the co and
T dependence around T- T~ one has to consider
how their results, especially in the intermediate
region, might be modified by including the tem-
perature dependence. As should be the case, for
high-T~ alloys, T~«T~, their results mainly
agree with ours taken in the s-d limit u- ~. On
the other hand, for T~ ~ T~ alloys their result
in the numerical calculation of T,(c) has not clearly
shown the third transition.

(b): sQ rid [I fi(io, io)]' .r 2
.r --v)f&& sgnQ,

(a2)

(c):
( „=[rf, (io, io)]2 —.

&& sgn(s)„+(o„+A)
2giI'

= -v )t~i i sgn((u„+ (u + A), (As)

(d): = Q I' f, (io, io)r, i(io, io)
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2 sgn(u„—&u )
iI" 27' iF

where use has been made of the relations, I'f &(io,
io) =wr)it &

and I'„(ioio,) =0.' Therefore, the
final expanded result is given by

rt &(iu„+iQ, iu„; -iu& +iQ, -i&a )

= I'- 1 x'i(IQI I "'& 'AI)=n Z'X) ) 1+ + ~ 0 ~

(A6)

APPENDIX A

G(i~ —i~') 1+i&K(i~ -i&a')/s~.dG(i&u- i~')
d(d

2
+ —6((d —(d ) .r (AI)

After putting all the external frequencies to be
zero, we obtain the derivative of the vertex part
at the Fermi surface. The contributions of the
three different processes are, respectively,

We consider, near the Fermi surface, a vertex
part of d-electrons with opposite spins, I'& &(i&a„,

i&a ), corresponding to Fig. 1. To be more gen-
eral we treat the case in which the total frequency
of the coming electrons has a finite value A. Then
the vertex part r& &(i&a„+iA, -i~„; i&o +iA, -i~„)
shown in Fig. 10 (a) depends on the external fre-
quencies when internal lines of the vertex part
contain them. Through perturbation consideration'
we can find that the linear dependence on the ex-
ternal frequencies comes only from the processes
represented in Figs. 10(b), 10(c), and 10(d).

Now we take derivative of the internal lines with
respect to the external frequencies by using a
relation

APPENDIX B

We estimate the frequency summations in (4.11).
They are in general of the type

~ rp(ia)„) (al)
n 'dn

with a function y(i&a„) smoothly decreasing from
a finite value y(io) at the Fermi surface to zero.
The low-frequency region gives a singular lnT
dependence, while the next-leading term which is
temperature independent is estimated by intro-
ducing a cut-off frequency A, satisfying p(iA)
--,' p(io) as

p(iv)„) q(io) 2y[(on, A]
co 7l' w T

Then the respective terms in (4.11) become

(a2)

which reduces to (2.12) for A =0.
The same analysis on the vertex part of parallel-

spin electrons leads to

r„(i&a„i+A, -im„; iver +iQ, -iu„)
= &r)t,'„l~„~.l/r, (A6)

near the Fermi surface. The expansion (A6) is
useful in examining the contribution of the terms
corresponding to Fig. 4(d).

and

(as)



1208 AKIO SAKURAI

(B4)

with 2 =c/(wp, I') and W(P) determined by a cnt-off
condition,

(8+2) '=8(i(o)f/(u~ .~(e).
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