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Static and dynamic interaction of superconducting vortices with a periodic pinning potential*
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A model is developed which describes the static and dynamic interaction of the vortex lattice with the

pinning potential due to harmonic one-dimensional variations of the thickness of superconducting films. Using

a London-Pearl approach, an expression is derived for the free energy of the mixed state in thin modulated

films from which static equilibrium configurations of the vortex lattice and the corresponding deformations

due to the harmonic pinning force are deduced. Lattice configurations of lowest energy are found when the

magnetic induction B corresponds to matching of the {undistorted) triangular vortex lattice to the periodic

pinning structure. Particular attention is devoted to lattice configurations slightly deviating from a matching

situation, for which long-wavelength transverse deformations are found predominant, and to Bragg
configurations, where short-wavelength deformations of wave vector k=(1/2)g, (g, is a nearest-neighbor

reciprocal lattice vector) propagate along a high-symmetry direction of the triangular lattice. We estimate the

critical current density, j,{B),for these lattice configurations. A matching peak in the j,(B)-curve is found to
have approximately a resonantlike shape whose width depends on the shear modulus of the lattice and on the

strength of the elementary interaction of a single flux line with the pinning potential. The flux-flow regime is

also investigated when steady-state vortex motion results from the equilibrium of the Lorentz driving force,

the viscous damping force, the harmonic pinning force, and the pinning-induced lattice restoring force. A

highly coherent flux-flow regime with rf properties similar to those of series arrays of resistively shunted

Josephson junctions acting in phase and frequency coherence (super-radiant state) is found in the dynamic

matching state. For nonmatching configurations we study the influence of dynamically excited lattice

deformation modes on the current-voltage characteristics when vortex inotion is driven by dc or by

superimposed dc and rf transport currents. In particular, for nearly matching configurations the width of the
rf-induced interference transitions is related to the shear modulus of the vortex lattice and to the flux-flow

resistivity.

I. INTRODUCTION

It is well known that the transport properties of
inhomogeneous (or nonideal) type II superconduc-
tors depend strongly on the interaction of vortex
lines with pinning centers. ' In this connection a
basic problem of great technological importance
is undoubtedly the calculation of their critical
currents as a function of magnetic field, tempera-
ture, and pinning configuration. This is, how-

ever, an exceedingly difficult task because of the
complexity, variety, and spatial distribution of the
pinning structures involved. For this reason, con-
siderable interest has recently been devoted to the
interaction of the quantized vortex lattice with well-
defined periodic pinning structures. ' ' Such regu-
lar pinning configurations offer the unique and at-
tractive possibility of comparing critical currents
deduced from experiments with theoretical esti-
mates based on simple models.

So far, two kinds of periodic pinning structures
have been investigated. In the experiments of
Baffy et al. ,

"'a periodic pinning configuration
was achieved by spatially modulating the impurity
(Bi) concentration of superconducting Pb/Bi alloy
films along their thickness. In this case, the pinn-
ing mechanism is related to periodic changes of the

two parameters characterizing the mixed state:
the penetration depth A(T) and the coherence length

$(T), both depending in opposite ways on the elec-
tronic mean free path. As a consequence, the
energy of a vortex line also becomes a periodic
function of position showing minima in regions of

higher impurity concentration for materials char-
acterized by large ~ values (K is the Ginzburg-
Landau parameter). Therefore, these regions act
as pinning planes for the vortex lattice created by
a magnetic field parallel to the films. The second

type of controlled pinning structure is that con-
sidered by Martinoli et al. ,"' who studied the
static and dynamic (flux-flow) behavior of the vor-
tex lattice in superconducting granular Al films
with periodically modulated thickness placed in a
transverse magnetic field. In a simple picture,
neglecting to a first approximation the thickness
dependence of X and P, in very thin films, the vor-
tex line energy is proportional to its length. This
suggests that in these experiments the thickness
minima should play the role of pinning lines.

An interesting feature of these periodic film
structures is the presence of characteristic peaks
in t'.~e critical current density ( j,) versus magnetic
field (H) curves. The j, maxima. appear at well-
defined field values corresponding to matching of
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the Qux-line lattice to the periodic pinning array.
At a matching field the lowest energy configura-
tion of the vortex lattice is achieved by flux lines
localized at the pinning sites described above.
Since in this situation each flux line simultaneously
experiences the pinning effect of the periodic
structure, one expects the pinning force, and

therefore j„ to reach a maximum value. This
behavior, on the other hand, suggests thatamatch-
ing configuration corresponds to "resonant"' cou-
pling of the vortex lattice with the periodic poten-
tial induced by the pinning structure.

An interesting and spectacular aspect of periodic
pinning structures is, however, that observed by
us'-' in experiments on the dynamic interaction of
the vortex lattice with the periodic pinning poten-
tial in thickness-modulated films. Inspired by a
previous paper of Fiory' we investigated modu-
lated films in the flux-flow regime drivenby super-
imposed dc and radio frequency (rf) transport cur-
rents. For a matching configuration we observed
pronounced supercurrent steps in the current-
voltage I-V characteristics. ' These steps are a
manifestation of a Josephson-like ac quantum in-
terference effect and appear at voltages for which
the characteristic frequency associated with vor-
tex motion in the periodic potential is a multiple
of that of the applied rf field.

The pinning potential plays a crucial role in these
flux-flow experiments. In fact, it introduces the
necessary mechanism" for coupling the electro-
magnetic field to the supercurrent oscillations
generated by vortex motion in the flux-flow regime.
As pointed out by Meincke, " this is almost excluded
in ideal type II superconductors. This coupling,
however, is possible when the effect of pinning re-
sults- in a sufficiently coherent modulation of the
vortex velocity as in the case of a matching con-
figuration. For this particular situation the cor-
responding modulation of the oscillating super=
current density distribution leads to a net super-
current oscillation whose interaction with an ap-
plied rf field gives rise to the interferenee transi-
tions observed in the I-V characteristics. Direct
experimental evidence for the existence of the
superfluid quantum oscillation generated by the
moving vortex lattice has been recently provided
by Martinoli et al. ' who detected the rf voltages
arising from the oscillation in the dissipative flux-
flow regime.

The static interaction of the vortex lattice with

the periodic pinning structure achieved by Baffy
et al. has been studied theoretically by Ami and
Maki" and by Dobrosavljevie. " On the other hand,
there is no theoretical model treating the static
and dynamic behavior of superconducting vortices
in thickness-modulated films. It is the purpose of

the present work to develop a model for this par-
ticular experimental situation. Our approach is
based on the London model of the mixed state"
which is known to be valid for extreme type II
materials and at moderate flux-line densities
(B«H„). We restrict our considerations to very
thin films and assume that the radial vortex size
is much less than the typica3. scale of the pinning
structure (local approximation). Furthermore,
only the case of weakly modulated layers is dis-
cussed.

In Sec. II, we discuss the static interaction of the
vortex lattice with the periodic pinning structure
in thickness-modulated films. In some particular
cases the exact equilibrium configurations of the
flux-line lattice can be determined in a simple way
from a general expression for the free energy of
the mixed state. Lowest energy configurations
corresponding to resonant coupling with the pin=
ning potential are found when the lattice matches
the periodic film structure. Qfe estimate the crit-
ical currents to be expected for these situations.
In Sec. II, we also consider deviations from a
matching configuration. This is an important as-
pect of experiments dealing with periodic pinning
structures, since detailed information concerning
the elastic properties of the flux-line lattice can
be extracted from the shape of a matching peak in

thej, (H) curves.
In Sec. III, we discuss the dynamic aspects of the

interaction in the flux-flow regime of thickness-
modulated films. Our phenomenological equation
of motion is similar to that considered by Schmid
and Hauger" for the case of random pinning. Lar-
kin and Ovchinnikov" have recently derived this
type of equation from the microscopic theory. %e
restrict our attention to the high-velocity limit
where the periodic pinning potential can be treated
as a perturbation. %e derive results to second
order in the perturbing potential for vortex motion
under various conditions (with and without electro-
magnetic radiation, for matching or nonmatching
configurations). In particular, the electrodynamic
properties of thickness-modulated films are related
to the restoriag forces arising between the vortices
as one deviates from a matching configuration.

II. STATiC INTERACTION

A. General considerations

9/e consider a superconducting film of variable
thickness in a transverse magnetic field H= B.
The film is assumed to be very thin so that its
thickness d is everywhere much less than the
penetration depth X(T)[d«X(T)). If this condition
is satisfied, we can neglect additional complica-
tions arising from bending of the flux lines.
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In order to determine the free energy of the
vortex lattice in the pinning potential induced by
the thickness variations, we need appropriate ex-
pressions for the self-energy of a vortex line as
well as for the interaction energy between two flux
lines. In the London approach considered here,
these quantities can, in principle, be deduced from
the magnetic field and supercurrent distributions
around a single vortex line obtain. ed by solving
London's equation within the superconducting film
and Maxwell's equations in free space. For films of
of variable thickness this is, in general, s rather
complicated problem. It is possible, however, to
achieve a considerable simplification if one as-
sumes that -the vortices are well localized with re-
spect to the variable film profile. By this, we
mean that the typical size of a vortex, approxi-
mately given by the range A = 2A.'/d of its electro-
magnetic screening region in thin films, '6 is much
less than the characteristic scale of the thickness
variations. For the particular case of films with
periodica3. 1y modulated thickness the local limit
considered here corresponds to the condition A

«X„where A. is the wavelength of the modulation.
%e note that because of the long-range repulsive
interaction between vortices in thin films" the
cooperative behavior of the flux lmes interacting
with the pinning structure is not seriously affected
by the local approximation.

In the local limit, the current-field distribution
around a flux line can be deduced from that of a
vortex in a flat film whose thickness corresponds
to that at the vortex position in the layer with

spatially varying thickness. The properties of
vortices in flat superconducting films have been
discussed by Pear1'q in the limit d«X(T} and we
shall therefore develop our model using a local
formulation of Pearl's work. Whenever possible,
however, we shall indicate how results deduced
in the local limit should be modified in order to
take into account nonlocal effects.

We choose a (two-dimensional) vortex lattice
frame of reference as coordinate system. Then,
in the local approximation discussed above the
self-energy Ur of a vortex line at the lattice site
r, can be written as'"

U, =d(F,)( ') (In
' —y)+dt, 4, ,

where A(ri} = 2K'/d( r, ) is an effective local pene-
tration depth and q, is the core condensation energy
(per unit length of flux line}. For large &i values we
can neglect the thickness dependence of q, ." y is
the Eu1.er constant. In a similar way, a simple
local generalization of Pearl's results'6 to films
with variable thickness leads to the following ex-

ession for the interaction energy W», of two vor-

4d Bq
U =qd+ —q ——A er ' r-

2 8A

&d ~Q&r ri
W„,=re„.d+

4
ze„.— " A

(4)

+ g (I+ e-lq. P&i }eiq (ri-rq& (5)

where z = (y, /4vA)q[ln(2A/$) —y]+ z, and w«. = »(y, /
4')'F, (r„/A) are t.he self-energy and interaction
energy per unit length of vortex, respectively.
In Eqs. (4} and (5), and in the subsequent equations
of this paper, the sum is over q and -q (two terms)
and rrr = rr —rr" It is readily seen that ~r an ~»
consist of the usual isotropic terms for the flat-
film case and of additional generally anisotropic
contributions (proportional to nd} arising from the
thickness modulation.

Having determined U, and W». the calculation of
the free energy density f is straightforward. "
We obtain, using Eqs. (4} and (5),

e 'i q' ( I'
&

Pj))

2A
o r

+ —Q Au&(, (1+ e iq'.ir)
4 rr

x erq'(rr-ro)

where f, =nz+ (I/2A)Z„&i&„is the .fre, e energy
density for a film without thickness modulation,
n =8/y, is the flux-line density, A the specimen
area, and the primed sum is over / and l' sepa-

tices at r, and r,, '.

W„=,(»/2)(C&, /4»X)'Id( r,)F, [r», /A( r,) ]

+d(r, ,)F q[r„,/A(r, ,)]), (2)

where F,(z) = H, (z) —Yq(z) and r», =
~
r, —r,, ~. H, and

Y, are, respectively, a Struve and a Neumann
function of zero order.

%e now apply these general results to the parti-
cular case of superconducting films whose thick-
ness is harmonically modulated in one dimension.
In the lattice fiame of reference introduced above
the film profile is described by the following ex-
pression:

d( r ) = d + Ad cos q ~ ( r —r,),
where q is the wave vector of the modulation (]q~
=2»/X, ) and b.d its amplitude. r, defines the rela-
tive position of the vortex lattice with respect to
the thickness modulation. Assuming Ad much
smaller than the average film thickness d (&d/d
«1), one can expand Eqs. (1) and (2) to first order
in 4d obtaining the following results for U, and
vv rrt ~
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rately omitting the terms l = l'. For simplicity we
have introduced the quantities

b,q ——q- —A

M 8& fpw
d BA ~).

CX

X)

(X X)

/
/

/

The equilibrium vortex configurations are found by
minimizing f with respect to the vortex positions
r, . For each flux line l, this gives the condition

Vzfz=o

where fz is the free energy per vortex. f and fz
are therefore related by f= (I/A)Zz fz. Equation (9)
simply states that the total force acting on the vor-
tex / vanishes. These preliminary results can be
now used to discuss different situations.

B. Matching configurations

In Ref. 5, we have shown that the vortex lattice
matches the periodic film structure when the con-
dition

(10)

is satisfied. In Eq. (10), g is a vector of the re-
ciprocal vortex lattice. As we shall see in detail
below, when Eq. (10) is satisfied the restoring
forces between the vortices induced by the pinning
potential vanish and one is dealing with an undis-
torted regular lattice structure. Moreover, by
combining Eq. (10}with Eq. (5) one immediately
recognizes that the interaction energy 8'«, be-
comes isotropic since exp(ig rz} = exp(ig r„)=1.
for a periodic structure. Accordingly, we conjec-
ture that, as in flat films, "the triangular lattice
structure represents the stable configuration in
modulated layers at a matching field. In our opi-
nion, however, this is true only in the local limit
considered here. In fact, as one can easily ima-
gine, nonlocal effects favor anisotropic current-
field distributions around the vortices. " As a con-
sequence, deviations from the triangular structure
are expected when A becomes comparable with X,.

For a triangular lattice, a simple calculation
ba.sed on the relation B= (2/&3)(izz, /a'), where a
is the lattice constant, shows that in our local
approximation the matching fields B„„correspond-tfyff2

ing to Eq. (10) are given by

B„,„,= (~&/2)(Vz, /&', )(nz+ nzn, + n,') ', (ll)
where n, and n, are integers. The "fundamental"
matching configurations corresponding to q= g,
(or B») and q= g, (or B») are shown in Fig. l.
Here, g, and g, are first- and second-nearest-

q=g 8
I IO q=gp 8)

)

FIG. 1. Fundamental matching configurations g
=g& and Q= g2 of a triangular vortex lattice in a one-
dimensional harmonic pinning structure (represented by
the periodic vertical lines). B» and B&& are the corres-
ponding matching fields given by Eq. (11).

neighbor vectors of the reciprocal lattice.
Using Eq. (10) the free energy density f given

by Eq. (6) can be written as

1f = f, + (n„ng+ — &zz «.) cosqro,
12'

(12)

where n„ is the flux-line density corresponding to
a matching configuration. In Eq. (12) we have
written q r, =q~o since ro can be chosen parallel
to q without loss of generality. Furthermore, we
note that for matching configurations the free
energy changes introduced by the thickness modu-
lation are proportional to 4d. In order to evaluate
the lattice sum appearing in Eq. (12), we make use
of the continuum approximation proposed by Fetter
and Hohenberg. " In this approach lattice sums
are replaced by appropriate integrals over a
smooth flux-line density. For our model a simple
calculation leads to the following important result

&zzz
z z

= 0 . (13)

Therefore, the interaction energy contribution to
the free energy due to the thickness modulation
vanishes in the local thin-film limit. It follows
that for a matching configuration the important
energy variations which couple the vortex lattice
with the periodic pinning structure arise only
from the vortex self-energy. This clearly results
from the expression of f which assumes the sim-
ple form

f = fp+ &~+& cosgto. (14}

The equilibrium position of the lattice with respect
to the modulation is found by setting sf/Sr, =0. One
obtains the condition

(15)

where m is an integer. We note that when Eqs.
(10}and (15}are simultaneously satisfied the equil-



STATIC AND DYNAMIC INTERACTION OF. . .

ibrium condition Eq. (9) is also satisfied. More-
over, Eq. (15) indicates that both the thickness
minima and maxima represent equilibrium posi-
tions for the vortices. By considering 82fle(ro,
however, it is easily seen that when 4p &0 the
thickness minima are stabI e equilibrium positions
(or pinning lines}, whereas for ne &0 the thick-
ness maxima play the same role. In both cases,
the free energy density is f =f, —n„~ 4e

~

and xs

therefore lower than that of flat films by an amount
corresponding to the pinning energy arising from
the thickness modulation.

In Eq. (7) both terms, e and (Se/SA)A, contribut-
ing to 4q are positive but exhibit different tem-
perature dependences. For the present local mo-
del, valid when &(»1 and d«X(T}, q is the domi-
nating term at all temperatures, and therefore
&& &0. It is not excluded, however, that for mod-
els consistent with a less restrictive choice of x
one can define an "inversion temperature" T* for
which 4q =0, and where the pinning effect switches
from the thickness minima (T )T~} to the thickness
maxima (T&T*). For T= T*, of course, there is
no coupling between the vortex lattice and the
periodic pinning structure.

C. Critical currents of matching configurations

Using Eq. (14) it is now possible to calculate
the critical current density j,„for a matching
configuration. Assuming a uniform transport cur-
rent flowing parallel to the grooves of the grating-
like film surface, j,„is determined by requiring
that the Lorentz driving force (per unit volume)

j,„B/c equals the maximum value of
~
sf/Sr, ~.

This is realized when

the critical currents given by Eq. (17) correspond
to (relative) maxima of the j,(H) curves. Note that

j,„is proportional to hd. Moreover, within the
framework of the present model j,„does not de-
pend on the interaction energy between the flux
lines and is therefore independent of the matching
configuration under consideration. In connection
with the possible existence of the inversion tem-
perature T* defined above, we note that in this
case the j,„vs T curve does not exhibit a
monotonic behavior but shows a characteristic
minimum at T= T, where j,„vanishes. This
unusual temperature dependence of the critical
current has been observed in our experiments on
thickness-modulated layers.

If one assumes that the contribution to the pinning
energy arising from the repulsive interaction be-
tween the vortices vanishes also under nonlocal
conditions, it is possible to extend the result just
derived for j,„to nonlocal situations. According
to a general definition of the pinning potential given
in Ref. 10 and already used for thickness-modulated
films in Ref. 6, one has to replace nq in Eq. (17)
with the following expression.

(18)

where 4(q) is the Hankel transform of the free
energy density distribution within a vortex line.
Equation (18) reduces to the local expression Eq.
(7) for q=0 since by definition 4(0) =e. 4(q) has
been recently calculated by Clem" for arbitrary
film thicknesses using a vortex model more refined
than the one considered here.

x, =(2m+ I)(X,/4) . (16) D. Deformed vortex lattice —Harmonic approximation

Equation (16) shows that the critical state of a
matching configuration corresponds to vortices
located halfway between the minima and the maxima
of the thickness modulation. The critical current
density is given by the following expression:

(17)

Obviously, since at a matching field the vortex
lattice assumes its lowest-energy configuration,

When the matching condition Eq. (10) is not satis-
fied, one is dealing with a distorted vortex lattice
whose equilibrium configuration is determined by
the balance of the pinning forces induced by the
thickness modulation against the restoring forces
between the vortices arising from their mutual
electromagnetic repulsive interaction. This clearly
results from the equilibrium condition Eq. (9)
which can be explicitly written as

i& qeia. (ri ro&+ eiq -(r& Pp& ~ iq-n((& + ii' (I + e (0 rii. ) ii + 'i(' i( 0
Bb ze r Bg) . r

LE'

q,
+sr'

(19)

The first and the second term of this expression
are the pinning forces on the vortex l arising from
the spatial oscillations of the self-energy and inter-
action energy, respectively. The third term rep-

resents the response of the vortex lattice to the
harmonic pinning force. In the following consid-
erations we shall restrict our attention to a slightly
distorted triangular lattice where the vortex posi-



1180 PIERO MARTIN OLI

tions are defined by

()rt r f+ur. (20}

where k is the wave vector of the deformation con-
fined to the first Brillouin zone. Hence, q and k
are related by

In Eq. (20}, r', is a lattice vector of the undistorted
triangular lattice and u, represents the displace-
ment of a vortex from its nominal site L. For the
subsequent considerations we assume that u, is
much smaller than the period of the thickness
modulation (n, «A, ). Then, writing the displace-
ment field u, in the form (harmonic approximation)

u, =i Q u(q)e""i 'o',
q

where the amplitudes u(q) are expected to be pro-
portional to 4d and by expanding the equilibrium
condition Eq. (19}to first order in b,d one obtains,
using Eq. (13),

(21)

r Bbg)0 ro
—,'h(. q —g —,sin(q r~)+D(q}u(q)=0,

4

4

(
(.)*((~(i)-((i)l ~(iA

( (q) [n(q)+&(q)) j
(23)

where (i is the circulation about a vortex. ii(q),
$(q), and n(q) denote lattice sums involving the
interaction energy and its derivatives. To solve
Eq. (22) for u (q), it is convenient to introduce
normal coordinates" which diagonalize the dy-
namical matrix in Eq. (23). In this particular
representation, u(q) is given by

u(q)= —g e (q ~ e )ae

( p 86 (r'
)

x sin(q ~ ro~) Do(q),

(24)

where e~ is a unit vector describing longitudinal

(p = I}or transverse (p = f) polarizations. For
deformations propagating along symmetry direc-
tions of the triangular lattice the e~'s are defined
by the following relations

e, ~ k=4, e, ~ k=0, (25)

(22)
where au(or = b.ip(so~) and D( q) is the "dynamical
matrix. " In Eq. (22) we have introduced a single
index L for the lattice sum since we have taken the
lattice point l as the origin of coordinates in the
sums over-/' appearing in Eq. (19). Using the nota-
tion of Fetter and Hohenberg, "the dynamical ma-
trix D(q) can be written as

q=k+ g. (26)

The force constants D~(q}'s are periodic functions
in the reciprocal lattice, ""i.e. , D~(q+ g) = D~(q)
=D&(k). They are related to the lattice sums q(k),
$(k }and c((k) by the following relation:

D~(k}/ir =q(k}+ [P(k)+ (r'(k}]'~', (2V}

where the plus and minus sign correspond to p = l
and p= t, respectively. p, is the factor multiplying
the matrix in Eq. (23). An important consequence
of the long-range repulsive interaction between
vortices in very thin films is that the lattice is
essentially incompressible (D, »D, ) for long-wave-
length deformations (k(r «1).""" As a conse-
quence, longitudinal deformations may be neglected
in this limit. e don't know if this is still valid for
short wavelengths. Since such deformations are
important in a vortex lattice interacting with a
harmonic pinning structure, we shall consider
both the l and t components in Eq. (24).

Since the D~'s vanish for k=0, from their per-
iodicity it follows that D~(g) =0. Therefore, for
matching configurations the lattice restoring
forces induced by the periodic pinning structure
vanish. As a consequence, the harmonic approxi-
mation considered here leads to divergent defor-
mation amplitudes [Eq. (24)] for q= g. In some
respects, this result shows that matching con-
figurations correspond to "resonant" coupling"
of the vortex lattice with the periodic pinning
structure. Qn the other hand, however, this also
shows the limits of the harmonic approximation
which applies only as long as u(q) «X,. This con-
dition calls for pinning forces much smaller than
the restoring forces D~(k)X corresponding to vor-
tex displacements of the order of X, (weak pinning
limit}. When 8 is sufficiently close to a matching
field, however, the weak-pinning condition is no
longer satisfied since, independently of the strength
of the pinning forces, D~(k)-0 as q-g. In this
case, other models should be considered in order
to describe the exact nature of the transition to a
matching configuration.

Having determined u, to first order in d d, we
can now calculate the free energy density in the
harmonic approximation by expanding Eq. (6} to
second order in bd. The calculations are simple
but rather long so that we shall not give the details
here. The resulting expression for f assumes the
simple form
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f=f 0+she(5 cosqr~+[u(q} ~ q](1 —82„-cos2qro)I

—2nI,~ n(q)) sin(q. q ) +
AD

(k) '(q)(1 —2,- -nns2qr ), (28)

where the u~(q)'s are the I and t components of
u(q) in Eq. (24) and 5~ - is the Kronecker 5. In
deriving Eq. (28) we have used the inversion sym-
metry of the triangular lattice and Eq. (18) in or-
der to eliminate several terms involving compli-
cated lattice sums. In Eq. (28), energy contribu-
tions involving ~q and ~m~o arise from the harmon-
ic pinning structure, whereas those proportional
to D~(k) are related to the elastic deformation en-
ergy sto'red in the distorted lattice.

For q = g, a condition automatically implying
that 2q is also a reciprocal lattice vector, the
terms of f containing u(q} diverge as shown in our
previous discussion. This indicates that the above
expression for f is no longer valid in the particular
case of matching configurations. Note, however,
that in Eq. (28) the contributions to f independent
of u(q) give exactly the free energy density found
previously for the matching case [Eq. (14)].

Several interesting situations can be now dis-
cussed with the aid of Eq. (28).

E. Bragg configurations (2q = g)

An interesting situation arises when the vortex
lattice does not match the harmonic pinning struc-
ture but satisfies the condition 2q =g. In this case,
the representative point associated with the wave
vector k of the harmonic lattice deformation lies
exactly on the Brillouin zone boundary. For this
reason we call "Bragg configurations" vortex con-
figurations defined by the relation 2q =g. It must
be noted, however, that the 2q =g configurations
considered in this paper are not the only ones sat-
isfying the Bragi' condition. 'Iheir distinctive
property is that k is parallel to a high-symmetry
direction of the triangular lattice (k = —,

' g, ) and
therefore Eq. (25) applies. As an example, in Fig.
2 we illustrate in reciprocal space the particular
case 2q =g~, where g~ is a fourth-nearest-neighbor
vector of the reciprocal lattice. The magnetic
field B corresponding to the situation shown in
Fig. 2 is such that B»&B&B„(B= (2)( 2 jv}y, /A.,'].

The vector relation 2q = g not only implies well-
defined values, B=4B„,„,, of the magnetic field
but also well-defined orientations of the vortex
lattice with respect to the thickness modulation.
Accordingly, one could wonder whether Bragg
configurations are or are not equilibrium config-
urations of the vortex lattice. For B=4B

y 2 in

Bril|ouin Zone

QI
~ ~ ~y A95

et gp g4

FIG. 2. Geometrical relationship {in reciprocal
space) between wave vector Q of the thickness modula-
tion and wave vector k of the pinning-induced deforma-
tion for the Bragg configuration 2q = g4. The polariza-
tion vectors 5& and 5', are also shown.

fact, the vortex lattice could assume its equilibri-
um configurations by selecting orientations differ-
ent from those predicted by 2q =g. A definitive
conclusion concerning this point requires, of
course, a complete study of the free energy den-
sity given by Eq. (28). This, in turn, implies a
detailed knowledge of the k dependence of the force
constants. Unfortunately, this information is not
available so far. Nevertheless, preliminary con-
siderations indicate that some Bragg configurations
are actually equilibrium configurations of the vor-
tex lattice, whereas others are not. For instance,
the configuration 2q =g4 of Fig. 2 is believed to be
an equilibrium lattice configuration for the follow-
ing reasons. As B varies from Byy to Byo q de-
scribes in reciprocal space a certain path con-
necting the fundamental matching configurations
q=g, and q=g, . As a consequence, for some val-
ue of B lying between B» and B,o the corresponding
k vector must reach the Brillouin zone boundary.
It will be subsequently shown that the energy gain
of the vortex lattice due to the pinning structure is
inversely proportional to the D~(k)'s which on the
zone boundary are expected to assume their mini-
mum value for k = —,

' g, . Hence, among the lattice
configurations showing deformations characterized
by k vectors reaching the Brillouin zone boundary
those satisfying the condition 2q =g are believed to
have the lowest energy. For Bgy&B &Bop there are
two possible Bragg configurations, namely those



l 1S2 PIE RO MARTI N 0 LI

defined by 2q =g~ and 2q =g, (Fig. 2). The last one,
however, is unlikely an equilibrium lattice con-
figuration, the corresponding magnetic field B
=(4/3) B„being too close to B». For this field,
in fact, q is more conveniently located near g„
where smaller k vectors favor configurations of
lower energy (Sec. II F). One is left with the pos-
sibility 2q =g~ which in our opinion represents an
equilibrium configuration of the vortex lattice.

The free energy density of a Bragg configuration
can be written as

I I
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Q-qc, (k);(t()(1-ccqkqc, ),

where u~(q) is given by

u, (q) =-,'(q ep) [-Ac/D, (k}]e, . (30)

i (qc

a
Pk

These simple expressions have been deduced from
Eqs. (24) and (28) by noting that the lattice sum ap-
pearing in these equations vanishes for 2q =g. Note
that the free energy change df=f, fis pro-portion-
al to (d.d)', whereas for matching configurations we
found af o:d,d. Moreover, for some Bragg con-
figurations the polarization factor q ~ e, (or q ~ e, )
appearing in Eq. (30) vanishes. This happens, for
instance, when 2q =g, (q ~ e,=0} or 2q =g, (q ~ e, =0}.
For such configurations no coupling exists between
the harmonic pinning structure and the longitudinal
(or transverse) deformations of the vortex lattice.

The position of the vortex lattice with respect to
thickness modulation is determined by the con-
ditions af/ar, =0 and a'f/er', &0. 'Ibis leads to

r, =(2nI +1)(A,, /4}. (31)

Bragg configurations obeying Eq. (31) are shown in
Fig. 3, where for clarity we first illustrate the
case 2q =g, by means of a one-dimensional vortex
chain [Fig. 3(a)]. Then, in Fig. 3(b) we show a
two-dimensional picture of the deformed triangular
lattice corresponding to the condition 2q = g~ il-
lustrated in Fig. 2. In deducing this lattice con-
figuration, we have considered only transverse
deformations and have made use of the property
that for a triangular structure the lattice in real
space is rotated by 30'with respect to the cor-
responding one in reciprocal space. Moreover,
the wavelength 2if/h of the shear deformation shown
in Fig. 3(b) turns our to be W)I., and its direction
of propagation (parallel to k) makes an angle P,
satisfying the relation sinP =vY/7, with the wave
vector q of the thickness modulation. These nu-
merical results are easily deduced from Fig. 2.
Note that Fig. 3 clearly shows the pinning effect
of the thickness minima acting as attractive trap
chains for the flux lines.

From Eqs. (29)-(31) it follows that the free
energy density of a stable Bragg configuration is

(b)

FIG. 3. (a) Bragg configuratio'n Rf=P& of a one-
dimensional vortex chain in a thickness-modulated film.
Also shown is the longitudinal deformation of the chain.
Dots at the thickness maxima and minima indicate vor-
tex positions for the undistorted but not stable Q =g,
configuration. (b) &ortex lattice configuration satisfying
the 2/=$4 Bragg condition illustrated in Fig. 2. The
corresponding magnetic field is 8= (&/3/7) {S)()/X ~t). The
periodic vertical lines represent maxima of the thick-
ness modulation. Open circles denote vortex positions
in the undistorted triangular lattice. The pinning-induced
(transverse) deformation propagates in the % direction
and has wavelength W7X~. Note the attractive effect of
the thickness minima (pinning lines). ro= (3/4)&~ is
given by Eq. {31).

given by

f=f, —
2

n(d. s)' Q (32)

In this connection, we note that the equilibrium
condition sf/er, =0 also predicts the existence of
regular (u, =0 at all lattice sites I) but unstable
(a'f/er', &0) lattice structures when r, = n(A. /2).
As shown in Fig. 3(a), such configurations corre-
spond to vortex lines located alternately at the maxima
and minima of the thickness modulaticn. Their energy
f=f„however, is larger than that of the distorted
but stable configurations considered above [Eq.
(32)]. Hence, we conclude that the harmonic pin-
ning potential favors the formation of a distorted
vortex-lattice structure.

In a Bragg configuration the vortex lattice inter-
acts with the pinning structure of thickness-modu-
lated films by means of short-w'avelength def6r-
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mations (ka- I). This appears to be a distinctive
feature of harmonic pinning structures. In ran-
dom pinning structures, in fact, the lattice usually
responds to weak pinning forces as an elastic con-
tinuum (ka «1).""" The important point here is
that a vortex lattice interacting with a random
pinning structure can generally reach its equili-
brium configuration by selecting only those fluc-
tuations of the pinning potential whose wavelengths
are comparable with a. Over a relatively wide
range of flux-line densities one is therefore deal-
ing with a selective "quasi-matching" effect which
automatically leads to long-wavelength deforma-
tions. In the case of a harmonic pinning structure,
on the other hand, such long-wavelength deforma-
tions are clearly impossible for large deviations
from a matching configuration (as is precisely the
case for a Bragg configuration) since a single
Fourier component plays the dominant role in the
pinning potential and consequently no alternative
choice is left to the vortex lattice in finding its
equilibrium conf iguration.

Using the method of Sec. II C, one can very easily
determine the critical current density j,~ for Bragg
configurations. From Eqs. (29) and (30) one ob-
tains

j„=(c/q, ) q(A~)' g 2
(33)

The critical state corresponds to ra= (2m +1}(&,/8).
Equation (31) shows that j,s is proportional to (ad)
and depends on the Bragg configuration under con-
sideration through the characteristic angle P [Figs.
2 and 3(b)] appearing in the polarization factor
q e~. Since the force constants D~'s are functions
of the flux-line density, j,~ also depends on the
magnetic field B = 49„,„,defining the correspond-
ing Bragg configuration.

A concrete estimate of f and j,s requires the cal-
culation of the force constants D~(k)'s for k = -,

'
g, .

In principle, this can be done by performing the
lattice sums" rl(k), ](k), and n(k) appearing in

Eq. (2V). As far as D, (k) is concerned, to our
knowledge a similar calculation has not yet been
attempted for the case kg-1 considered here. On

the contrary, D, (k) can be easily estimated by
comparing the last term of Eq. (28) corresponding
to the deformation energy stored in the vortex
lattice with an analogous expression obtained by
Conen and Schmid" for transverse deformations
propagating in the g, direction. A straightforward
calculation leads to

value of the force constant for shear deformations
propagating in the g, direction.

f=f, ——,'n[(ne}'/K, ] b sin'y/(I +b —2Mb cosy)',

el

0

et

0

F. Vortex configurations for ka (( 1

By combining Eq. (24} with Eq. (28), the free
energy density of vortex configurations which do
not satisfy the conditions q = g or 2q = g turns out
to be f =f, n~~—~D~ (k)u (2q).

In the following we restrict our attention to vor-
tex configurations characterized by long-wave-
length deformations of the vortex lattice (kn«1).
According to Eq. (26}, such lattice distortions oc-
cur when q slightly deviates from a reciprocal
lattice vector g, i.e., when 8 is relatively close
to a matching field B„„.In this connection we

1
remember that the harmonic approximation no
longer applies when 8 is too close to B„„.For

1 2this reason the following considerations are valid
only under rather restrictive conditions we shall
specify later on. Nevertheless, the approach
described below is considered very useful since it
provides the basis for an interpolation procedure
leading to a significant improvement of our model.

In the long-wavelength limit (ka «1}transverse
deformations of the vortex lattice predomi-
nate. """ The corresponding force constant is
given by D,$) =K,k', where K, = C«y, /8. D, is
isotropic since the lattice has hexagonal sym-
metry. For the same reason Eq. (25} is valid
for all k directions in the limit ka «1. Then,
using Eq. (24) for u, (q) and the notation of Fig. 4,
the free energy density of vortex configurations
close to the matching configuration q =g can be
written as

D, (g /2) =4.62C (34} f3ril louin Zone

where C« is the shear modulus of the vortex lat-
tice. ' ' Since k = —,

' g, reaches the Brillouin zone
boundary, Eq. (34) is believed to give the largest

FIG. 4. Geometrical relationship (in reciprocal space)
between g, Q, and k for small deviations (ka «1) from
the matching configuration g =g.
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where b = (q/g)' = (8„„/8). In deriving Eq. (35),
we have neglected the contribution to u, (q) in Eq.
(24) arising from the spatial oscillations of the
interaction energy. This term vanishes for q
= g and therefore, compared to the self-energy
contribution, is expected to be small in the limit
A'a «1. The angle (I() defining the orientation of the
vortex lattice with respect to the thickness modu-
lation (Fig. 4) is obtained from the equilibrium
condition sf/ay = 0. This leads to

cosy = 2 b /(1+b) . (36)

sin'P =(e, e,}'=(1+b) ', (36)

where e, is a unit vector parallel to the wave vec-
tor q of the thickness modulation. Using these re-
sults, it is now possible to construct a picture of
the deformed vortex lattice (corresponding to a
given value of b) with the method already applied
to the Bragg configuration of Fig. 3(b}. In the
present case, however, the coordinate ro which
together with y defines the position of the lattice
with respect to the thickness modulation is un-
determined. As a matter of fact, the free energy
density [Eq. (28)] is generally independent of r,
in the harmonic approximation.

From Eqs. (35) and (36) we deduce the following
expression for the equilibrium free energy den-
sity:

f =f, — n„[(a&)'/ K]/( -I)'b. (39)

As expected, our model leads to a divergent ex-
pression of f for b = l. Actually, Eq. (39) is valid
only as long as the harmonic approximation ap-
plies, i.e., when u, (q}«X, . This is equivalent to
requiring that he «K, (1 —b)', a rather stringent
condition for the pinning structure since we are
already considering situations where (1-b}'
«1. It is possible, however, to extend the present
discussion to the matching case (b =1) by perform-
ing a simple interpolation of Eq. (14) [where r,
assumes the equilibrium value given by Eq. (15)]
and Eq. (39). This leads to the following expres-
sion for the free energy density of vortex config-
urations such that IB —8„„[«8„„,:

f=f0 -n~&e[I +(4K,/b, e)(l -b)'] ' . (40)

Note that cosy ~ 1 for all values of b and that, as
expected, y =0 for b =1. Using simple trigonom-
etry and Eq. (36), one easily deduces magnitude
and direction of the wave vector % characterizing
the shear deformation of the vortex lattice. One
obtains

k2 =q2(1 —b)~ /b(1 +b)=-,' q2(1 —b)2, (]1-b(« I),
(37)

This relation has the expected minimum [Eq. (14)]
for b =1 and changes precisely into Eq. (39) when
he«K, (l-b)'. Using Eq. (3'I), in the opposite
limit ne» K,(1 —b}' Eq. (40) can be written as

f =fo —nsAe+8Cee(b/q}2 . (41)

(a)

u(x)

0 0 0 0 0 0 0 0 0 0 0 0 0
(c) . u(x)

I !0-

FIG. 5. One-dimensional vortex chain in a harmonic
pinning structure. Shown are nonmatching configurations
and deformations L g) of the vortex chain corresponding
to different strengths of its force constant gl(k). (a)
Rigid reference vortex chain fg)(k) = ~]. (b) Formation
of a vortex-defect superlattice with period X D=g A~/

fp —X~) in the case of a soft vortex chain fD(k)
= 0]. (c) Vortex chain in the harmonic approximation
[L)(k)A, ~ »qQ&]. For clarity the amplitude of zg) has
been slightly exaggerated. (d) Vortex chain in the limit
g)(k)A~ «qQ q showing superlattice structure of (b)
locally distorted at the defect sites, where u (x) is
smoothed out by the finite vortex-vortex interaction.
Note that L)(k) is actually controlled by the magnetic
field which determines c and, hence, k = 2x/X D. For
given X~ and Aq (c) and (d) correspond therefore to
different B values. In (d) XD should be larger than in
(c). (d) represents therefore the chain configuration
closer to the matching case (a =X~).

The following model" provides a physical inter-
pretation of ihe interpolation leading to Eq. (40).
For simplicity, we restrict our attention to the
one-dimensional situation shown in Fig. 5, where
a. single vortex chain interacts with the harmonic
pinning potential of a thickness-modulated film.
Let us first consider a perfectly rigid vortex
chain. Then, a possible configuration corre-
sponding to a nonmatching state is that shown in
Fig. 5(a}. Obviously, its free energy density is
the same as that of the pinning-free vortex chain,
i.e., f =f,. In order to simulate the situation oc-
curring in the limit ne»K, (1 —b) in which we
are interested here, we turn off the interaction
among the vortices of the chain. Then, the result-
ing configuration is that shown in Fig. 5(b), where
the vortices are located at the bottom of the po-
tential wells of the harmonic pinning structure.
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However, since the initial configuration [Fig. 5(a)J
was a nonmatching one, an array of vacancies
(a «X») or interstitials (a & X») develops along the
vortex chain. One can easily verify that for com-
mensurate situations ma =nA» such that N ~n -m

(

=m, where N, m, and n are integers, the defect
array is periodic. The period XD = 2w/k of the re-
sulting vortex-defect "superlattice" is determined
by Eq. (26). For instance, in Fig. 5 the relevant

g vector is g, (g, =2v/a). Accordingly, from Eq.
(26) one deduces XD =aX»/~a —X» (. Using a con-
tinuum approximation (X~»a) in Fig. 5(b) we also
show the displacement u(x) of the vortices from
their equilibrium positions in the rigid reference
chain [Fig. 5(a)]. u(x) is a periodic function of x
(period Aa) showing linea. r regions between suc-
cessive chain defects. Discontinuities of magni-
tude A» appear in u(x) at the defect sites. The
free energy density of the soft vortex chain of Fig.
5(b) is f =f0 —nb e.

We now turn on a finite repuls ive inter action
among the vortices. Then, two drastically differ-
ent situations can occur. If the force constant D(k)
of the chain is such that qAe «D(k)X„ from See.
IID we know that the resulting deformation of the
vortex row is harmonic [Fig. 5(c)]. The situation
shown in Fig. 5(c}corresponds, therefore, to the
two-dimensional case b.e «K, (1 —b)' discussed in
detail above. Note that in the harmonic approxi-
mation the superlattice structure is washed out by
the repulsive interaction between the vortices. In
contrast, in the opposite limit qadi»D(k}X» corre-
sponding to vortex configurations very close to the
matching one (n= n„, P.~» Q) the superlattiee is
not seriously affected by the vortex-vortex inter-
action, whose main effect is to smooth out the dis-
continuities in u(x} at the defect sites [Fig. 5(d)].
Since the resulting chain distortion does not signi-
ficantly differ from that of the soft vortex chain of
Fig. 5(b}, the energy density gain f» due to the pin-
ning potential will be nearly the same as in that
case, i.e., f»=-n„b c. Because of the finite inter-
action, however, we have now to take into account
the deformation energy stored in the distorted
chain. In this connection we note that large por-
tions of the vortex chain shown in Fig. 5(d) behave
as an elastic continuum, characterized by D(k)
=Kk', where the strain Bu/Bx is small and nearly
uniform: BM/Bx= X»/A~ =k/q. Accordingly, the
elastic energy density associated with these re-
gions is f, =-,'C(k/q)', where C =Kn ~K/A» is the
elastic modulus of the chain. There is, of course,
additional deformation energy stored in the re-
gions, of size -A~, surrounding the defects, where
the rapid variation of u(x) precludes the use of
elasticity theory. Compared to f„however, this
contribution is expected to be small. Thus, taking

into account both f~ and f„ the free energy density
of the vortex chain of Fig. 5(d) becomes f =f,
—n„b,c +-,'C(k/q)', an expression very similar to
that [Eq. (41)] resulting from the interpolation
procedure in the corresponding limit Ae»
K,(1 —b)'. For this reason, although at present
very little is known about the structure of the
superlattice and its deformation in the two-dimen-
sional ease, the interpolation approach discussed
above is considered basically correct.

We now focus our attention on the critical cur-
rents of thickness-modulated films under nearly
matching conditions (]8 B„„~«—8„„).In this
connection, it is useful to briefly reconsider the
case of a matching configuration. For j ~j,„all
flux lines of the lattice are simultaneously pre-
vented from moving by an identical energy bar-
rier ~ which varies with current from ~=2b, e for
j=0 to ~ =0 for j =j,„. The presence of this uni-
form energy barrier is reflected in the coupling
energy he appearing in the expression for j,„
[Eq. (17)]. Suppose now that the vortex lattice
deviates from a matching configuration. In this
case, the vortex lattice responds to the harmonic
pinning force by exerting a restoring force on the
flux lines. Because of this additional coupling
with the whole lattice, the vortices, in contrast
with the matching ease, no I.onger interact with
the pinning potential and the transport current as
independent units. Under these circumstances the
exact calculation of j, amounts to determining the
"critical" positions of the vortices from the set
of coupled nonlinear equations V, f, =(I xq, )/c
describing their static equilibrium in presence of
a finite transport current. Though rather com-
plex, such a calculation would have the merit of
specifying the role of a defect in triggering the
elastic instability" of the vortex-defect super-
lattice [Fig. 5(d)] as j reaches j,. In this connect-
ion, we emphasize that the formation of lattice
defects is essential for the occurrence of a finite
critical current. We have seen, in fact, that with
the exception of Bragg configurations the volume
pinning force Bf/Br, vanishes for a harmonically
distorted lattice [Fig. 5(c)]. For nonmatching
situations a significant pinning effect is expected
only when a fairly resolved defect array develops
in the vortex lattice. According to our previous
considerations, this will be the ease when qhe
«D(k)X» or, equivalently, when Ae&K, {1—bP.

In the following, we estimate j, with an approxi-
mate method based on the energy-barrier picture
discussed above. It seems reasonable to assume
that for nearly matching configurations Eq. (17)
still applies provided that he is replaced by a
lower energy barrier reflecting the effect of lat-
tice rigidity. As one can easily imagine, the
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periodic lattice deformation induced by the pinning
structure spatially modulates the energy barrier
experienced by the vortices. Elementary consider-
ations show that for j=0 the space average of
A(r, ) is -2I)f/n„, where cf=f, -f is given by Eq.
(40). Hence, replacing af/n„ for ae in Eq. (17)
and remembering that B=B„„,one obtains

,
—'.;=-", (-",} (.'..., -)'

'

Thus, in our approximation a matching peak cen-
tered at B =B„,„,has a resonantlike shape. The
width of the critical current resonance is control-
led by the ratio Ae/K„where i), e represents the
pinning effect and K, the elastic response of the
vortex lattice. As expected, for a given thickness
modulation a large stiffness of the lattice (Ae
«K, } favors the formation of sharp matching
peaks, whereas for a soft lattice (ae»K, ) the j,
resonances are mashed out.

Finally, we briefly discuss the interaction of a
rather dense vortex lattice (a «X~) with the har-
monic pinning structure. In this case, q is con-
fined within the first Brillouin zone and therefore
X=q. Since Eq. (25}applies when qa«1, it fol-
lows that e, q =0 and e, q =q. Moreover, by
transforming the lattice sum appea. ring in Eq. (24)
into an integral over a smooth flux-line density,
one can easily verify that the transverse part of
this term vanishes. Therefore, from Eq. (24) one
deduces u, (q) =0. We conclude that for qa «1,
i.e., B»B„, the vortex lattice couples mith the
harmonic pinning potential only by means of /on-
gitudinal deformations. If one neglects the small
contribution to u, (q) arising from the longitudinal
part of the lattice sum in Eq. (24), the free energy
density can be written as

f=f. --.ii(q&e)'/D, (q), (48)

where" D, (q) =(Bip,/2((d)q for very thin films (d
«X) in the limiting case qa«1.

III. DYNAMIC INTERACTION

A. Equation of motion

ilvi= i)ri =Fr, rifi (44)

where v, is the flux-line velocity, rpg the viscous
damping force, and Fz =(j x ()/i)tche Lorentz
driving force corresponding to a. uniform trans-
port current density. The viscosity coefficient
g is related to the flux-flow resistivity pz by q
=B&p,/c'pz. The last term in Eq. (44) is the force
arising from the spatial variations of the free
energy f, per vortex line. V, f, has been already
considered [Eqs. (9) and (19)] in the study of the
static interaction of the vortex lattice with the
periodic pinning potential and is given by

When the transport current I flowing parallel to
the grooves of the harmonic film profile exceeds
the critical value Ic (I &Ic}, the mixed state en-
ters the flux-flow regime. In order to investigate
the dynamic interaction of the whole vortex lattice
with the pinning structure, we first consider the
motion of a single flux line in the harmonic poten-
tial due to the thickness modulation. According to
Schmid and Hauger" its dynamics are determined
by the balance of four different forces: the vis-
cous damping force, the Lorentz driving force,
the harmonic pinning force, and the pinning-in-
duced restoring force arising from the interaction
with all the other vortices of the lattice. Once the
motion of a single vortex line is known, the elec-
trodynamic properties of thickness-modulated
layers in the flux-flow regime are easily deduced
by averaging the single flux line contributions
over the entire vortex lattice.

The equation of motion (per unit length) of a
single vortex line l can be written as

a+i()ii'
(

-i q z,x rii' ~I si()ii'1+e gg') — +z
~~gg' &gg' g ~&gg &gg

(45)

an expression containing terms describing the os-
cillating pinning force and the lattice restoring
force (Sec. IID).

We note that Eq. (44) is a phenomenological eq-
uation of motion. " At large flux-flow velocities
(see Sec. IIIC), however, Eq. (44) becomes es-
sentially similar to an analogous equation of mo-
tion derived by Larkin and Ovchinnikov" from the
microscopic theory. The main difference is that
these authors describe the effect of pinning by

means of a continuous deformation field u(r, 7},
whereas in our model we shall take into account
the discrete nature of the vortex lattice. This is
essential in the case of a harmonic pinning poten-
tial, where short-wavelength deformations of the
vortex lattice play sometimes an important role
(Bragg configurations).

We shall now discuss the flux-flow regime in

thickness modulated films under various con-
ditions.
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B. Matching configurations

Generally, the effect of the pinning forces on a
moving vortex lattice results in forced excitation
of strongly damped deformation modes of the vor-
tex lattice. A quite different dynamic interaction
occurs, however, when the vortex lattice matches
a periodic pinning structure. In this case, there
is no lattice distortion and each flux line of the
moving lattice simultaneously experiences the same
pinning potential. In other words, the motion of the
whole lattice is the same as that of a single flux
line. One is therefore led to imagine a particular
Qux-flow regime where dynamic coupling of the
vortex lattice with the periodic pinning potential
gives rise to a highly coherent velocity oscillation
of the vortices. This collective oscillation of the
Qux lines modulates the uniform lattice motion
which would exist without pinning.

The equation describing vortex motion in thick-
ness-modulated films assumes a particularly inter-
esting form for matching configurations. Using
Eqs. (10) and (13) and the inversion symmetry of
the triangular lattice, one can easily verify that the
last two terms of V,f, in Eq. (45) vanish for an un-
distorted lattice (r». =r'». ). From Eqs. (44} and
(45) we then deduce the following equation of mo-
tion'.

qr) = Fz + q&e sinq (r, —r,). (46)

The distinctive property of the dynamic matching
state is that the oscillating flux-line velocity v, (t)
= r, (t} resulting from Eq. (46) is also the flux-flow
velocity v(t) of the whole lattice, i.e. , v(f} = v, (f).

The special interest of Eq. (46) is that it is very
similar to that for the time-dependent phase in a
resistively shunted Josephson junction, a two-fluid
model appropriate for various types of weak
links. '~" As we shall show below, there is, xn

fact, a strong analogy between Qux-Qow phenomena
in periodic pinning structures and ac Josephson ef-
fects~ in arrays of superconducting weak links. In
order to specify this point, we consider the funda-
mental matching configuration q= g, of Fig. 6,
where we assign the role of elementary weak links
to regions of the mixed state containing just one of
the particular vortex rows drawn in the figure.
When the Qux-flow regime is driven by a dc trans-
port current, coherent vortex motion in the har-
monic pinning potential causes the phase difference
8 across an elementary weak link to slip" at an os-
cillating rate d8/dt = qv(t). As a consequence, the
voltage'7 V,(t) = (g/2e)d8/dt = rpov(t)/cAappearing.
across the weak link is also an oscillating function
of time. Moreover, the equation governing e ob-
tained by combining Eq. (46) with d8/df = qv(f) is
precisely that of a resistive junction. It appears,

y(&)

FIG. 6. Vortex rows defining the weak-link oscilla-
tors of the matching configuration g=g& [a = {2/~3)&~].
The mixed-state region comprised between the dashed
lines represents an elementary weak link. V„(t)
= yp {t)/cX~ is the oscillating voltage across an
elementary weak link due to coherent vortex motion in
the periodic pinning structure {vertical lines).

therefore, that thickness modulated films in the
Qux-Qow regime are equivalent to series ar-
rays' " of resistive junction oscillators acting in

phase and frequency coherence when the moving
vortex lattice matches the harmonic pinning struc-
ture (Fig. 6). This means that the oscillating vol-
tage detected across N vortex rows as those shown

in Fig. 6 is simply V(t) = NV„(t), a result charac-
terizing the "superradiant state" in arrays of highly
synchronized weak links. '~" Note that the corres-
ponding electric field oscillation E(t) = V(t)/L. where
L is the distance between the electrodes, obeys the
usual flux-flow relation E(f) = v(f)B„„/c. This c;u~

be easily verified by expressing. N in terms of I.
and X~ (for instance, N= L M3/2)). for the p;irticul;ir
case of Fig. 6) and using Eq. (11).

It is straightforward to extend well-known r~'8

of the resistive-junction model ta our p;u ticu1;u
array situation. The oscillating electric ticld L'(l')

is given by the following Fourier series solution-"'

of Eq. (46)

where y=j,„/j~, and (v=qv„=cqE„/B„„ is the fun-

damental frequency associated with vortex motion
in the harmonic pinning structure. E~, = v~,B„„/c,l~o
the time average of E(f), is given by

(48)

The experimental current-voltage characteristic
of thickness-modulated films in the matching state
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has been found' in reasonable agreement with Eq.
(48}.

In a two-fluid model of the flux-flow regime the
oscillating electric field given by Eq. (47) is a
manifestation of a Josephson-like supercurrent os-
cillation characterizing the dynamic matching state
of thickness-modulated films. The origin of the
superfluid oscillation has been discussed in Refs.
7 and 8. It is closely related to the modulating ef-
fect of the periodic pinning structure on the oscil-
lating supercurrent density distribution associated
with the moving vortex lattice. Since the total dc
current carried by the modulated layer is conser-
ved, the voltage oscillation (corresponding to nor-
mal fluid) described above is generated across the
normal cores of the flux lines by dissipative feed-
back of the supercurrent oscillation, Note that cur-
rent conservation is essentially expressed by Eq.
(46), where the individual current components of
the two-fluid model are easily identified by means
of the analogy with the resistively shunted junction.

The fundamental spectral component of E(t) has
been recently detected by our group. ' (d was typ-
ically in the high-frequency to very high-frequency
region. The emitted rf power, however, was con-
siderably less than that expected on the basis of a
"superradiant" Qux-Qow state. This is certainly
due to partly uncorrelated vortex motion arising
from random background pinning in our granular
Al films. For instance, if the effect of random
pinning results in uncorrelated motion of the N vor-
tex chains defining the weak-link oscillators of our
particular array (Fig. 6), the rf power available at
the detector input will be proportional to N and not
to N' as predicted by the superradiant model. In
our experiments N was of the order of 10~, a value
which could reasonably account for the observed rf
power reduction.

The response of the moving vortex lattice to an
applied electromagnetic field can be described by
assuming a driving current density of the form

I (t) = I „+I„cosQt. (49)

With this expression for I (t), Eq. (46) predicts the
occurrence of supercurrent steps in the I- V char-
acteristic2" when the fundamental frequency co

of vortex motion in the harmonic pinning potential
is a, multiple of Q(v=nQ}, i.e. , when

Eae=En="QBn n /«. (50)

This relation can be also written as V~, = V„=n(Nh/
2e)Q. In this form it clearly shows that thickness-
modulated films in the dynamic matching state in-
teract with electromagnetic radiation as macro-
scopic Josephson junctions quantized in units of
(Nh/2e). The supercurrent transitions at E„re
fleet ac quantum interference" of the natural os-

cillation generated by the moving lattice with the
applied rf field. According to Waldram et al. ,

"
subharmonic steps at E „=E„/m arising from high-
er harmonics m~ of the oscillation [Eq. (4V)]
should also appear in the I- V,curve. These sub-
harmonic structures, however, were found to be
inconsistent with analog simulations" and analy-
tical investigations" of Eq. (46). Experimentally,
subharmonic transitions have been observed' in the
rf excited I- t/' characteristics of thickness-modu-
lated films. In this connection, however, we point
out that the thickness profile of our layers was
spatially periodic but not sinusoidal. Accordingly,
subharmonic structures could reflect a more gen-
eral periodic function for the supercurrentlike
term appearing in Eq. (46).

The amplitude of the interference steps is an os-
cillating function of the rf power. At large rf fre-
quencies (E, »p& j,„)the amplitude, &j„, of the nth
transition is given by'""

n j„=2j,„~Z„(E,q/E, ) ~, (51)

where J„is a Bessel function of order n and E„
=

p&j„.No general analytic expression for &j„ is
available in other limiting cases.

C. Vortex motion at large velocities

To study vortex motion for arbitrary vortex con-
figurations, we have to solve the nonlinear differ-
ential Eq. (44}. As pointed out by Schmid and Hau-
ger" in their study of the random pinning case, an
approximate solution of Eq. (44) can be found by
considering vortices moving at large velocities
(I»I,). In this limit the dynamic displacement
u, of the vortices from the positions they would as-
sume for Qux flow in the absence of pinning is ex-
pected to be small, the pinning force being a rap-
idly oscillating function of time. In this case, a
solution of Eq. (44) in powers of the relative thick-
ness modulation &d/d can be obtained using an it-
erative perturbation method. Generally, this pro-
cedure is correct and leads to transparent physical
results. In Sec. III.F, however, we shall meet with
a particular situation where, even at large Qux-
flow velocities, our method is no longer valid.

We look for a steady-state solution r, (t) of Eq.
(44) of the form

r, (t) = r ', +v, t+ (v„/Q) sinQt+ u, [r,(t), t], (52)

where the first three terms on the right-hand side
represent the solution of Eq. (44) for the ideal flat-
film ease (&,f, = 0) when vortex motion is driven by
superimposed dc and rf currents [Eq. (49)]. v, and
v„are therefore related in a simple way to ] d, and

j „, respectively. In the high-velocity limit we as-
sume u, «X. Taking the derivative of Eq. (52) with
respect to time, one obtains for the Qux-line vel-
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ocity v,

vl = —[rI+ (rl ~ VI)ul].Bt
(53)

The second term on the right-hand side of Eq. (53)
is small compared with the first one since

~
VIuI

~

is at most of the order of uI/a «1. We shall there-
fore neglect this term in our calculations. The re-
sulting equation of motion for u, will be similar to
that derived by Larkin and Ovchinnikov" from the
microscopic theory but slightly different from that
of Schmid and Hauger" who have apparently con-
sidered the influence of this term on vortex motion.
In both cases, however, the general behavior of
flux flow in a random pinning structure was found
to be independent of the presence or not of
S(r, &)uI/ttt. Small differences appear only in the

determination of the width of the interference tran-
sitions.

At this stage, in order to keep the calculations
within acceptable limits, we introduce a further ap-
proximation which consists in ignoring the pinning
force arising from the interaction energy vari-
ations caused by the periodic film structure. This
amounts to neglecting the second term on the right-
hand side of Eq. (45). This approximation is mostly
justified by the fact that in some important cases
we shall discuss later on the contribution of this
term to the pinning force is small (nearly matching
configurations) or even vanishes (matching and

Bragg configurations). Then, by expanding Eqs.
(44) and (45) to first order in u, the following equa-
tion of motion for u, is obtained

2 ~o
I} ' —3 Q f(r, )u, + (ro, ~ u, ) " = ——bf (-1)"q(1+iq u )J (q v /Q)8lo''"I 'o'8"'" "")', -

4IIQ I I' l l' sro II' l I' ro 3 „ I o r1
S2' q, n

(54)

where f(r) is the "interaction function" introduced by Fetter and Hohenberg. " f(r) is related to the inter-
action energy M)(r) of two flux lines (Sec. II A) by M)(r)= 2(y /4oIIX)'rf(r) In Eq.. (54) the sum over the inte-
ger n runs from -~ to+ an u~r ="i-"r"

To solve Eq. (54), we now make use of the fact that at large vortex velocities one expects q u, «1. Ac-
cordingly, in a first step we may neglect the term proportional to q u, in the expression of the pinning
force on the right-hand side of Eq. (54). A solution of the resulting equation accurate to first order in &d/d

is of the form

u = U (q)8I(t (rl ro 8I'(o ro tt') I
l tfq

q, n

(55)

where the amplitudes u„(q) are easily determined using the normal coordinate representation of Sec. II D.

The resulting expression for u, is then inserted in the pinning force term of Eq. (54) and a new sol«ion,
now accurate to second order in &d/d, is worked out. Finally, after averaging the single flux-line contri-
butions v Iv ov+„eos tQ+u S/ Itsover all vortices of the lattice the following expression for the flux-flow

velocity v(t) is obtained in second-order approximation:

v(t)=r ~ s„stot ~ s-;( tsar(-Os„( )s's(( — o)t —s]

(&f')' QQ (-1) '"~ (8V,(8)(q'e()) q ((r (m. )air-rol-
4 I} „D(q)+ il}((d —mQ)

(6f ) Q Q (—1) 4 (8)8 (8)(q e,)'q
4 II ~ Do(q) —iI}(oI—mQ)

where 8=(q v„)/Q, e=q ~ r„and (d=q vo, is the
characteristic frequency for vortex motion in the
harmonic pinning structure already found in Eq.
(47). Note that in oI the zero-order velocity v, has
been replaced by the actual flux-flow velocity v~,.
As pointed out by Schmid and Hauger, ' this im
proves the quality of the high-velocity approxim-

ation. vd, is determined self-consistently. from Eq.
(56}by averaging v(t) with respect to time.

D. Current-voltage characteristics

Let us suppose that there is no applied electro-
magnetic radiation (j I= 0). Then, by averaging
Eq. (56}with respect to time and using the flux-
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flow relation E= -(vx B)/c we are led to the fol-
lowing current-voltage characteristic:

js, = (5,",,"j,„sins+5~; j,s sin28)5s

+ (&a,/p~)[I+ s (ptj,„)'Q(e, ~ eI,)'/(E~+ &s,)],

(57)

where E~ cptD~(k}/p, q Th. e two Josephson-like
terms in Eq. (5V} represent the I Vc-urve at zero
voltage for matching (q= g) and Bragg configur-
ations (for convenience in this section we prefer
the more specific notation 2k= g, rather than the
2q= g notation of Sec. II E). Vfhen j~ increases,
the phase ~ automatically adjust itself to give the

proper value of j~, until the critical state is
reached. One can easily verify that the critical values
of 8 correspond to the criticalr, values previously de-
duced for matching [Eq. (16)]and Bragg configurations
[seediscussionof Eq. (33)]. Thus, inthesetwopar-
ticular cases our model, which was expected to be va-
lid only at large Qux-flow velocities, describes re-
markably well the static behavior of the vortex lattice
in presence of a transport current.

At jt nits voltages, Eq. (5V) is valid only in the
high-velocity limit. This clearly results from in-
spection of the matching case, where the I-V curve
obtained by setting 8~ = 0 in Eq. (57) is nothing but

the expansion of the exact matching characteristic
[Eq. (48)] for Za, »P&j,„. For more general situ-
ations the shape of the normalized jajj,„vs Eag
p&j,„curve depends on the polarization factors
e e~ and the parameters E~/p&j, „characterizing
the lattice configuration under consideration. As
far as the E~'s are concerned, we note that the ex-
pression given above can be also written in the
form 8~=8/ q c(kv), where i~(k) = i/Di~(k) is the re-
laxation time associated with viscous damping of
the longitudinal (p = I) or transverse (p= t) defor-
mation modes excited through the dynamic inter-
action of the moving vortex lattice with the peri-
odic pinning potential.

For some lattice configurations it is possible to
carry out a detailed analysis of the current-voltage
characteristic. This is the case for instance, of
nearly matching configurations ( 8 8„&~

«-8„„,),
where we know that shear deformations of the vor-
tex lattice predominate (Sec. II.F}. As a conse-
quence, only the transverse (P = t) term of the sum

appearing in Eq. (57) needs to be retained in this
case. The corresponding polarization factor is gi-
ven by Eq. (38), whereas the deformation wave
vector k entering D, (k) = E,k' and, hence, Z, is gi-
ven by Eq. (3V). Normalized current-voltage char-
acteristics for nearly matching configurations are
shown in Fig. 7 for two values of the ratio E,/&s
appearing in 8,/pI j,„=—,'(IC,/&c)(1 —5)' Note that.

0
0

Edc /Pt)cn

FIG. 7. Normalized Gux-flow characteristics of
thickness-modulated films near a matching field cal-
culated from Eq. (57). parameter is the reduced field
b =B»„QB. The dashed portions of the curves approxi-
mately show where Eq. (57) is no longer correct. The
dotted curve is the exact matching characteristic (5 =1)
deduced from Eq. (4S). K&/d e=15 is a typical value
for the experiments of Ref. 6.

for a given reduced field 5=8„„,/8 the shape of the
characteristic is more "matchinglike" for the
smaller value of E,/&s. This simply reflects the
natural matching tendency of a soft vortex lattice.
Figure 7 also shows that our model becomes inac-
curate at low Qux-Qow velocities, where the I- V

curves do not extrapolate to finite critical currents
and in some cases exhibit a negative dynamic re-
sistance (dV/di&0) which has not been observed
experimentally. ' Clearly, a more refined solution
of the equation of motion is needed in the low-vel-
ocity limit.

At short wavelengths (ka- I) dynamic coupling of
the vortex lattice with the harmonic pinning struc-
ture could also result in the excitation of longi-
tudinal deformation modes. If this is the case, then
both terms of the sum in Eq. (57) are generally ex-
pected to shape the current-voltage characteristic
of Bragg configurations. As noticed in Sec. II E,
however, it is possible to separate contributions
due to differently polarized modes by selecting
Bragg configurations where one of the polarization
factors e, ~ e~ vanishes. Note that for Bragg con-
figurations E, is related to the shear modulus C«
of the vortex lattice by Eq. (34).

At a given Qux-flow velocity thickness-modulated
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films show additional dissipation when compared to
a flat reference film. This is due to viscous damp-
ping of the lattice deformation modes excited by
driven vortex motion in the harmonic pinning po-
tential. The additional time-averaged power dis-
sipation &P per unit volume is easily deduced from
Eq. (57) and can be written as

(58)

where &or~=E~,/E~. We discuss this expression in
the two limiting cases (drp«1 and ~v'p»1. Using
the definition &P = (q/A)(g, d', ),„(wherethe subscript
av denotes a time average) and Eq. (24), one can
immediately verify that for

co&p
«1 the power dis-

sipation arises from dynamic excitation of the sta-
tic lattice deformations discussed in Sec. II D.
This was expected since in this limit the viscous
damping force @&au~(q) in Eq. (54) has negligible in-
fluence on vortex motion compared to that of the
lattice restoring force D~(k)u~(q). In contrast, for
cowp» 1 the lattice response to the dynamic pinning
force becomes unimportant. As a consequence, in
this limit Eq. (54) is identical to the equation de-
scribing vortex motion at large velocities for a
matching configuration. It is therefore not sur-
prising that for err~ » 1 Eq. (58) reduces to &P

--,'
p& j',„, the timemveraged power (per unit vol-

ume) required to drive the electric field oscillation
E„,(t) = E(t) —E~,- p&j,„co stot resulting from Eq.
(4V) in the corresponding limit y « l.

E. Pinning-induced rf oscillations

Here, we are interested in the rf voltage os-
cillations generated by vortex motion in the peri-
odic pinning structure when the flux-flow regime
is driven only by a dc transport current (j,& =0).
One ean easily verify that for matching configura-
tions the oscillating electric field E(t ) =u(t)B/c
resulting from Eq. (56) has harmonic components
at (d and 2~ with amplitudes equal to the corre-
sponding ones deduced from Eq. (47) in the limit
y«1. This, of course, is consistent with the as-
sumption of large flux-flow velocities and with the
second-order approximation leading to Eq. (56).

According to the present model, when the vortex
lattice deviates from a matching configuration the
space-averaged rf voltage usually vanishes. For
Bragg configurations, however, Eq. (56} predicts
the existence of a finite voltage oscillation. In

this particular case the oscillating part E„„(t)of
the eleetrie field originates from the 5,q &

term
of Eq. (56) and is given by

1, , ~, „E sin2(&ut —8) —Ed, cos2(u&t —B)
+gP p cc

(59)

Note that E,„(t}has dispersive and absorptive
components (proportional to E~ and E„, respect-
ively) reflecting dynamic excitation of dissipative
deformation modes of the vortex lattice similar to
that shown in Fig. 3(b). The oscillation has dis-
persive or absorptive character according to
whether co7p«1 or +up»1.

Examination of higher-order terms in the power
expansion of v(t) shows that the rf voltage has
finite harmonic components also for vortex con-
figurations satisfying the more general condition
mq=g (m integer). For configurations correspond-
ing to a fixed value of m only the m(d component
and its higher harmonics show up in the frequency
spectrum of the voltage oscillation. It appears,
therefore, that thickness-modulated films in the
flux-flow regime are equivalent to current-con-
trolled voltage oscillators whose harmonic content

I

can be varied by changing vortex configuration,
i.e., by varying B. The amplitude of the spectral
components of the oscillation, however, rapidly
drops with increasing harmonic order. For this
reason only a few of the higher harmonics of the
fundamental voltage oscillation might be detected

experimentally.

F. Effect of rf radiation

Pinning-induced coupling at rf frequencies causes
interference phenomena between the moving vor-
tex lattice and applied electromagnetic fields. "
Here we study the influence of the interference ef-
fect on the current-voltage characteristic when

vortex motion is driven by superimposed dc and
rf currents [Eq. (49)]. By averaging Eq. (56) with

respect to time, after some algebra the following
I —V relation is obtained

j pP dEd, +5~
&j,„sin8+ (-1)"J„(z)6z z

.
2 M ~ (-I) '"J (z)~„(z)(e. e~)'E, 6

p mn1,~ ~ J (z}(e . e~} (E~ E )
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where E„(and in similar way E ) is given by

E„=nQB/cq .
This expression is a generalization' of Eq. (50}for
arbitrary values of B.

Shown in Fig. 8, is the current-voltage charac-
teristic for matching configurations as deduced
from Eq. (60). In this case the effect of rf radia-
tion is described by the sin8 term and the last
term (where E~=O) of Eq. (60). As a result of
phase locking" between the fundamental component
of the vortex-lattice oscillation and the applied rf
field, the Josephson-like term induces sharp
supercurrent steps when Ed, =E„. One can im-
mediately verify that the magnitude 4j„of the in-
terference steps is given by Eq. (51), as one ex-
pects at large flux-flow velocities and rf fre-
quencies. As shomn in Fig. 8, the last term of Eq.
(60) modifies the shape of the unexcited charac-
teristic between the interference steps but, un-
fortunately, diverges for Ed, =E„. This shows
that for q- g the perturbation method used to solve
Eq. (54) is no longer valid~ as Ed, approaches E„.
Even though this situation is unsatisfactory, we

shall not attempt to remove the divergence, as it
mill not affect the width of the interference transi-
tions in which we are mostly interested here. Note
that for q=g our second-order approximation does
not predict subharmonic locking, in agreement
with the results of Refs. 32-34.

Let us now consider the important case of lattice
configurations which slightly deviate from a
matching situation ((B—B„,„,~«B„„). In this
case, only the transverse (P =t) contribution in
the last term of Eq. (60) needs to be retained.
Since E, is small, in the high-frequency limit
considered here (E, » pij,„)situations can be
easily realized, where E, »E. , or, equivalently
Qv, » 1. It will be subsequently shown that E, is a
measure of the width of the interference transi-
tions. As a consequence, the condition E, » E, is
just that required to detect distinct interference
transitions. %ritten in the form Q~, »1 it clearly
shows the role of lattice relaxation in quantum
interference phenomena of a lattice moving in a
harmonic pinning structure. If we now restrict
our attention to the portion of I-V curve compris-
ing just a single transition, from Eq. (60) we see
that for Qv', »1 only the corresponding term in
the sum over n significantly contributes to j„.
Thus, near E„we can write

j~ = p~ E~ + 2 p~j ~Z„(z)(e ' e()

Eq, —E„
B',+(E„-Z„}'' (62)

X
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where the polarization factor is given by Eq. (38)
and E, =(cpz/y, q)K,k' follows from Eq. (37). The
divergent behavior found in the matching case
(Z, = 0) requires a certain precaution in applying
Eq. (62). It seems reasonable to assume that the
criterion for Eq. (62} to be valid is the absence of
regions showing negative dynamic resistance.
Elementary algebra shows that this is the case
when J'„(z)b,q &K,(1 —5}'. If this condition is satis-
fied, the current-voltage characteristic has the
form shown in Fig. 9. As one can see, dynamic
excitation of shear modes of deformation causes
broadening of the interference transition at E~,
= E„Using Eq. (3.7) the transition width nE de-
fined in Fig. 9 can be written a5

nE=2E, = (c/y, )p&K,q(1 —5)'.
FIG. 8. Effect of rf radiation on the normalized I-V

matching characteristic of thickness-modulated films
as described by Eq. (60). The supercurrent steps are
centered on the unexcited matching characteristic
(dashed curve). The dotted branches of the curve show
where the second-order perturbation method breaks
down. rf frequency and rf power are such that E&/

pf J g ~ 4 (nearly high-frequency limit) and E~f/E&
=z =1.

This relation, independently of whether the condi-
tion J„(z)d» &K,(1 —b)' is fulfilled or not, correctly
predicts sharp interference steps for matching
configurations (5=1). For this reason Eq. (63) is
believed to be of general validity as long as ka «1,
i.e. ,

~

1 —5
~

«1. Note that on account of the parti
cular nature of vortex motion in a harmonic pinning
potential, Eq. (63) is quite different from a corre-
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~dc

lot film

between the rf field and the 2(d oscillation of the
moving vortex lattice described by Eq. (59). Note
that only the dispersive component of Eq. (59) is
responsible for the occurrence of these step struc-
tures. As it requires the evaluation of a compli-
cated double sum over Bessel function amplitudes,
we have not determined their magnitude.

IV. CONCLUSIONS

dEdc
d'

= Eac

FIG. 9. Rf-induced interference transition in the
Qux-flow characterstic of thickness-modulated films
in a nonmatching state. The I-V curve shown here
schematically represents Eq. (62) in the case J „fg)Ae
&E& {1-5)2. idth &E, and height hj„, of the transi-
tion are given by Eqs. {63) and {64},respectively. The
lower part of the figure shows the derivative curve
usually measured experimentally.

sponding expression' ' 2' for the random pinning
case.

Also defined in Fig. 9 is the height hj„of the
interference transitions. hj„can be easily calcu-
lated from Eq. (62) and, of course, is found diver-
gent for b =1. In order to remove this undesirable
feature, we propose the following interpolation
formula for hj„:

(64)

This relation reduces to Eq. (51) for b = 1 and con-
sistently changes into the expression resulting from
Eq. (62) when J„(z}&q«K, (1 —b)'. Note the follow-
ing interesting property of Eq. (64): when there is
no rf excitation, the magnitude of the "zero-order
transition" can be written as 6j,= 2 j„where j, is
given by Eq. (42).

As a final point, we briefly discuss ac quantum
interference for Bragg configurations of the vortex
lattice. In this case, the sin28 term of Eq. (60}
gives rise to sharp interference steps at E~, = E„/2.
These subharmonic steps reflect phase locking

The model developed in this paper provides, we
think, a more than satisfactory description of va-
rious phenomena resulting from the interaction of
the vortex lattice with a harmonic pinning struc-
ture. Although the model has been explicitly
worked out for the particular case of supercon-
ducting films with harmonically modulated thick-
ness, we feel that it can be extended also to other
types of weak periodic pinning structures. We
have shown, in fact, that in modulated films the
interaction essentially depends on two parameters:
the coupling energy Aq associated with the elemen-
tary interaction of a single flux line with the pinn-
ing potential, and an elastic constant of the vortex
lattice describihg its response to the harmonic
pinning force. In thin films and in the important
case of nearly matching configurations, this elastic
constant turns out to be the shear modulus C«.
Thus, in order to apply the present model to other
harmonic pinning structures, one has, in princi-
ple, only to determine the basic pinning interaction
and to specify the effective elastic constant' rele-
vant to the situation under consideration.

Besides describing the electrodynamic proper-
ties (critical currents, I- V characteristics, pin-
ning-induced rf voltages, and quantum interference
effects) of modulated layers in the matchin" state.
the model also predicts how these properties are
modified by the presence of static or dynamic lat-
tice deformations induced by the harmonic pinning
force as the vertex lattice deviates from a niatch-
ing configuration. In this connection, our model

suggests the attractive possibility of determining
the shear modulus of the vortex lattice froni Eq.
(42) using a static experimental method or from
Eq. (63}using a dynamic technique. For this rea-
son these two relations are considered central
results of this paper.

In Sec. III B, we have shown that thickness-
modulated films in the dynamic matching state
are equivalent to series arrays of resistively
shunted Josephson oscillators acting in phase and
frequency coherence (superradiant state). This
property makes modulated layers potential candi-
dates far device applications as rf detectors and
cryogenic voltage oscillators. In this connection,
however, we note that a serious limiting factor to
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the operation of similar devices is noise generated
in real films by random background pinning. The
study of this problem undoubtedly requires further
theoretical and experimental work.

Several assumptions have been introduced in
order to keep the structure of the model as simple
as possible. Perhaps, the most serious one is that
limiting the description of flux-flow and inter-
ference phenomena to large vortex velocities and
rf frequencies. Concepts based on the vortex-de-
fect superlattice picture outlined in Sec. II F could
prove very useful in determining the nature of vor-
tex motion in the low-velocity limit.
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