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Melting transition of two-dimensional crystals
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The solid-liquid phase transition (PT) in two-dimensional crystals is studied under the assumption that it is

driven by the dissociation of elastic dipoles. It is shown that this PT is of first-order and corresponds to a
dissociation transition of elastic dipoles. For systems where, via thermal nucleation metastable

polycrystalhne states are possible besides elastic-dipole formation, a more-complex phase diagram is

postulated with lines of first- and second-order PT. In the light of these concepts molecular-dynamics

experiments with long- and short-range interactions in two and three dimensions are discussed. Solid-liquid

PT observed in various experimental monolayer systems and showing first- and second-order PT are
interpreted in terms of the theory developed.

I. INTRODUCTION

We study in the following the break down of
"long-range" order in two-dimensional (2D) crys-
tals which can be considered as a solid-liquid
phase transition (PT). This problem has been
considered by Berezinskii, ' Kosterlitz and Thou-
less, ' and the analogous problem for Bose systems
by Popov. ' It has been pointed out by Mermin4
that the 2D harmonic net has no long-range po-
sitional order at T +0 due to the divergence of the
displacement autocorrelation function ([u(R)- u(R') P)» I R -R'

I
«r

I R -R'
I
-", wher«(R)

is the displacement from the assumed equilibrium
position R. However, if the lattice supports stable
transverse phonons then the system exhibits di-
rectional long-range order'

([r(R+ a,) —r(R)] [r(R'+ a,) —r(R')])-a,

for IR —R'
I
-~. Here r(R) is the instantaneous

position of the lattice point R and a, is a lattice
unit vector. The vanishing of the long-range di-
rectional order or topological order is associated
with a melting PT at T,(n~), where n, is the den-
sity of elastic dipoles per unit area and wiQ be
explained later. At T,(n~) the static shear modulus
which is proportional to the order parameter of
the crystaQine phase vanishes together with part
of the long-wavelength transverse phonon branch
which represents the Goldstone mode of the or-
dered phase. This PT is observed to be in 3D
systems always discontinuous, but in 2D systems
first- and second-order melting PT have been
observed. It is the objective of this paper to con-
tribute to the clarification of the physical reasons
for such behavior.

It has been pointed out in 1, 2, 3 that the destruc-
tion of topological order is associated with the

dissociation of bound states of topological objects
like pairs of dislocations forming elastic dipoles
in the case of 2D crystals. Such ideas have been
developed already earlier, e.g., by Kuhlmann-
Wilsdorf, ' for melting in 3D systems which she
explains by means of a dislocation mechanism.
In Sec. II of this paper a melti~ theory along sim-
ilar lines is developed. Because the chemical po-
tential for the thermal production of elastic dipoles
is finite in contrast to the chemical potential of a
single dislocation there exists always a finite con-
centration of elastic dipoles. With increasing T
the "dielastic" polarizability of these dipoles in-
creases until it diverges at T„.This implies that
interactions between dipoles have to be taken into
account even for dilute systems. Kosterlitz and
Thouless' study this interaction in the approxima-
tion that they take all interactions into account be-
tween one given dipole and all smaller dipoles
being located in a circle as illustrated in Fig. 1(a).
The dipoles located outside that circle of influence
are ignored. We advocate the opposite approach
in that we take only interactions between dipoles
into account which do not overlap. This approach
should be good as long as the density of dipoles
nz is small compared to the number z = 1/z(r'),
where w(r ) is the average area occupied by one
dipole and z thus roughly represents the number
of "lattice sites" available per unit area for the
dipole gas. It will be shown that the condition
n~«z is satisfied over the whole crystalline do-
main. The interaction between the dipoles which
is long ranged will be calculated in the Lerentz
field approximation familiar from the theory of
dielectric systems. This gives a condition on n~

as a function of T for a dissociation catastrophe
to occur for the elastic dipole gas. It is shown
that this theory is the analog to the Clausius-Mos-
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Hockney and Brown' where a polycrystalline phase
is observed it follows that besides dislocation
pairs 30 crystalline boundaries forming metastable
states have to be taken into account for triangular
lattices when evaluating the free energy of the
system. It is argued that this may lead to phase
diagrams (PD) involving lines of first- and second-
order PT. In this context we develop a qualitative
theory which explains why the PT observed for
systems interacting with a long-range Coulomb
interaction 1/r changes from a second-order PT
in 2D to a first-order PT in 3D. In Sec. V the
results are discussed in the light of a number of
representative experiments on adsorbed mono-
layer systems, in particular A', on grafoil, ' bu-
tadiene iron tricarbonyl on graphite, ' and 'He and
4He monolayers on graphite. ' Some aspects of the
theory have been presented elsewhere. "

FIG. 1. Thickly drawn dipole is the reference dipole.
The dashed circle separates the dipoles interacting with
the reference dipole into two classes. The class of di-
poles in (a) and (b) indicated by crosses is ignored. (a)
corresponds to the work of Ref. 2 and (b) to the Lorentz
field approach. The symbols r, b, and 0 are explained
in the text.

sotti theory for dielectric systems and has also
to be considered as the first step in a systematic
many-body theory for such systems. Due to the
translational mobility of the elastic dipoles an
equation of state for such objects taking the Van
der Waals interaction between them into account
has to be set up. This is done in Sec. III. It is
shown there taking the second virial coefficient
into account that the solid-liquid PT is of first
order for T(n~)(T~ and that the critical point Tc
= T„*of the equation of state is located on the tem-
perature axis and cannot be approached.

In Sec. IV we compare the theory with various
molecular-dynamics computer experiments. There
also second-order melting PT in 2D systems is
observed. From the computer experiments of

II. MEAN-FIELD THEORY OF ELASTIC DIPOLE SYSTEM

We assume that with increasing T dislocations
appear in pairs" forming elastic dipoles with
zero resultant Burgers vector. The elastic dipoles
dissociate at T(n~) which will be calculated in
the mean-field approximation. This means that
we take the polarization effect of neighboring elas-
tic dipoles approximately into account as indicated
in Fig. 1(b) whereas in Ref. 2 the polarization effect
of the dipoles enclosed by a given dipole [see Fig.
1(a)] is taken into account. The dipoles neglected
in each treatment are indicated in Figs. 1(a) and
1(b) by big crosses. A rigorous treatment of the
problem requires, of course, both effects to be
considered. At the end of this section we will
show that our approximation is reasonable.

For sake of simplicity we consider in the fol-
lowing an isotropic 2D crystal. Following Koster-
litz and Thouless' we introduce a stress function
x(r),"'~~ which is related to the stress by

x(r) (0 1
cu(~~ = ~~a~si s„sa r (10

Next one defines a source function q(r) describing
the distribution of dislocations and test sources
and which obeys in an isotropic medium

(2)

where K=4v(v+ X)/(2v+ X) and v and X are Lamd
coefficients. The solution of Eq. (2) can now be
written in the form

where

g(r) = (1/8& )~ ln
I r/ro I

r» a, g(0) = 0 . (4)
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Here a and r, is the lattice constant and the hard-
core radius of the dislocation, respectively. The
contribution of the nth dislocation pair to y(r) is

y (r}= —,'K & d'r' q (r')x', x~) (5a)

where

5'(r) = e,rbr', 5'(r —r ),5'(r+ r')) . (5b)if j ~ e 8 a

Here b is the Burgers vector and the average
( ) which involves a configurational and thermal
average will be calculated in the single-molecule
approximation where the test source field and the
mean field of the surrounding elastic dipoles is
taken into account in linear-response approxima-
tion. This leads to

Pgg =-2 d r 'g r x]xg

it is straightforward to derive a linear equation
for the P,'& using Eqs. (6) and (7)

5[c,ob„(r )+c265rom (r )]
n~(r)

P (cbX .«+ c~X .~())

n,(r}
(6')

source field and the second term results from the
stress excerted by the surrounding dipoles. Uef f
(Ref. 12) is the internal energy of an elastic dipole
where the two dislocations are a distance r apart
and 8 is the angle between r and b, as indicated in
Fig. 1(a), and 2p is the self-energy of an elemen-
tary dipole. Using the abbreviation

where

'g r xgxy

xre '""'(1+255'5'5 5')) (5)

where

b2K
U,«(r, &}=

4
ln ———,

' cos2& +2p.
0

Here the first term of Eq. (7) is due to the test

(7)

(8}

c,= -2Pb'n~(r)(r'), c, = Pb' ~n(r)(r' cos2&) .
Here b'=(b')', and the density of dipoles n~(r) per
unit area has been introduced. The averages ( )
are calculated using Eq. (8), and Einstein summa-
tion convention is used. For isotropic distribution
of dipoles one can handle Eq. (6') in the Lorentz
field approximation which yields

Po = e„~~,[c,o.,',(r)+ c,6„o' (r)]+4Kc,[4P»(1 —6„)A»»+(P„+P»)6,, A, , ]
Kn (r}

[(1—6„)c,P +6„(P„+P,)(c,+ c,)], (9)

where P,.& =P„-(r)=PP;n„(r)—, and a uniform polar-
ization of the dipoles has been assumed. Let us
point out that in the following no use of the r de-
pendence of n~Qr will be made. In any case only
n~(r) distributions are admitted which vary on a
scale macroscopic in comparison to the extension
of the Lorentz circle. The second term in Eq. (9)
originates from summation within the Lorentz
circle which does not vanish even in the isotropic
case. The following abbreviations have been used
in Eq. (9):

integration outside the Lorentz circle which can
be expressed in terms of a contour integra1 over
this circle. Depolarization effects due to the sur-
face of the system, i.e., the contour enclosing
the whole system are contained in the first term
of Eq. (9) where the stress field inside the medi-
um is used. The solution of Eq. (9) is easily ob-
tained and using Eqs. (3) and (5), X(r) can be ex-
pressed in the form

y(r) =K d'r ' q(r')g(r —r')

12p12 ~ 11,12 & V ~ PP 0I"4) e~

where the prime indicates that summation is per-
formed over the dipoles located in the first octant.
The third term in Eq. (9) is due to the continuous

Here )i(r) is the test source function inside the
medium and P,~+r is a linear function of the stress
(o',&] produced by the test sources inside the med-
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ium as follows from the linear inhomogeneous Eq.
(9). Using

Eq. (10) by means c(f Fourier transformation and
obtains the stress function x(r) in the form

s'X(r)
&(1(&) ~&2~11 sXg Xf

one can solve the linear inhomogeneous integral

BR=K' J& &'n( ')K ( — '),
where

(12)

g"(r) = d le&2'
(2 }' 1+2(c,K)2(K'/K)(&'f, „+P'f, 2}

(13)

Here g;, f, 2, and f, ; are the Fourier trans-
forms of g(r), X';,,„,and X 22.22

—X„.„,re-
spectively, where one obtains using Eq. (4)

elastic" constant defined by Eq. (15)

K(c, + c2)(1+—,'Kc, )
1+—,'K(c, + c,) (18)

X 01~~ » (1/27'& 2)(82, 02@02 1 (14a)

(14b)X22'22 Xll'll ( / + )(+1 +2 )

and r' =2(x'„x22). Furthermore we have intro-
duced the abbreviation

K(e +c,)(1+—'Kc))
1+-,'K(c, +c,)

(15)

n' = [Kc, + (-,' —16A».»/n, ) '] ',
P' —= (2A„/n~)/[1+ K(-,'c, + c2)],

(16)

(17)

where 0." and P' are dimensionless. It follows
from Eq. (1g) that the presence of the elastic dip-
oles changes K into K'. Because this quantity is
proportional to the static shear modulus the de-
nominator of Eq. (15) plays the role of a dielec-
tric function' for that problem. Its divergence for
c, + c2 = -2/K signals the dissociation of the elastic
dipoles and K'-0' implies that the long-wavelength
shear modulus vanishes.

Let us point out that g (r r') can b—e evaluated
by means of contour integration. That it differs
from g(r —r') is due to the tensor character of the
stress field of the elastic dipoles. Because for
K'-0', 0." and P' remain finite, it follows that

g Qr-g(r) and we can restrict our discussion to
K'. That o.' and P' remain finite for K'-0 can be
shown as follows. From Eq. (8) together with the
definition of c, and c, it follows that c, &0 and
c2& 0 holds. The denominator of Eq. (17) ap-
proaches —,'Kc„&0for K'-O'. From the definition
of A», » and Eq. (14a) follows that A». »/n, «1
because for a homogeneous distribution of dipoles
A»» 0 and the disc rete summation w ill not mod-
ify that result too much. Setting A». » =-0 in Eq.
(16) and noting that ~c2(« ~c, (

shows that (2' re-
mains finite for K' -0. It follows from this that
the essential properties of the system can be dis-
cussed in terms of K' only.

Let us point out that Eq. (15}has been derived
within the Lorentz-f ieM approximation. The "di-

is therefore to be considered as analogous to the
dielectric constant given by the Clausius-Mossotti
relation for a 2D Coulomb gas problem. This re-
lation is given by

(c —1)/(e+ 1)= dna„(T)(1+S(n, T)]. (19)

Here (2„is the electronic polarizability and S(n, T}
(Ref. 13) represents a virial expansion in the den-
sity n of paired charges when one goes beyond
the Lorentz-field approximation. In a similar
fashion Eq. (18) represents the first step to a sys-
tematic solution of Eq. (6) as an expansion in the
density n„ofelastic dipoles. One can improve on
this result on setting up a density expansion for
the solution to Eq. (6') as has been done in Hef. 13
for dielectric problems. To first order in n~ one
obtains an improvement of Eq. (18}by substituting
in Eq. (18), c, ,-c, , [1+S(n~, T)], where

S(n~, T) = nK B,K2c', (g, +g2c2/c, )/n2+ O(n2)

and g, &0, g2&0 are numerical factors of O(1).
Here

r-Se-By( )' n(r
n~ 8&

where n(r) is the pair distribution function for two
elastic dipoles and the standard approximation ex-
pressing n(r) in terms of the pair potential P(r)
has been made.

The instability condition K' = 0 within the present
approximation can be put into the form

2KPb2n2[1+ S(n—K, T)]((r2}——2'(r ' cos2 6})= 1 . (20)

It follows from this that the perturbation theory
for the calculation of S(n~, T) =B2n~+ C2n22+ O(n22)

can be patterned according to the theory developed
by De Boer et a/. " We have to point out, however,
that we did not prove that the general expression.
for the instability condition K' =0 has to have the
form of Eq. (20). The evaluation of B,' and C,'
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2-phase
coexistence

Ad A

FIG. 2. Phase diagram showing solid-liquid PT medi-
ated by first-order elastic dipole gas-dislocation plasma
PT.

requires the knowledge of the two-and three-point
dipole distribution function. This problem wiQ
be considered later.

For a discussion of Eq. (20) assume first that
we set S(n~, T) = 0. Then Eq. (20) allows two solu-
tions in T. The low-T solution which is associated
with the ordering of elastic dipoles is an artifact
of the static treatment, of the problem and neglect
of activation energies due to the discrete lattice.
The high-T solution defines for n„-0a critical
temperature T~~=(b'K/4z)/4kz which is obtained
from (r 2) -~, and for n~ +0 one obtains Ts(n~)
(T$. In Fig. 2 we have drawn the dissociation
temperature T„(n~)connecting the points TQ and

+c
Let us consider next the range of applicability

of Eq. (20). In connection with this problem it is
very helpful to have some knowledge of the theory
of dielectrics which has been reviewed by Brown. '4

The analogous problem there is the problem of in-
teraction of polar and polarizable molecules. The
polar part of the elastic dipole corresponds to its
elastic dipolemoment in its ground state, i.e.,
where U,«-2p, and its extension is of the order of
the hard core radius ro of the dislocation. The
polarizable part of the dipole moment results from
its possibility to assume extensions large com-
pared to r,. It has been pointed out by Onsager
that the Lorentz-field approximation may be a
good method for nonpolar molecules, i.e., polar-
izable molecules without permanent moment. For
polar molecules, however, there is no reason to
expect it tobe a good approximation. It is just the
spurious low-temperature solution of Eq. (20) which
corresponds to an ordering transition for the elas-
tic dipoles which must be dismissed on grounds
of Onsagers objection. In order to treat the very-
1ow-T problem where the polar part of the elastic
dipoles is dominating Onsager's reaction field
method" has to be used. Because at low T ad-
ditional problems due to activation of dislocation

motion arise and because it can be assumed that
the melting PT is driven by the dissociation of the
elastic dipoles, an effect due to the polarizability,
we ignore that problem from ncnv on. Consequent-
ly the Lorentz-field method leading to Eqs. (12)
and (20) can be considered as a first step in a
systematic approach to calculate the elastic prop-
erties of the system. In order to improve the
method S(n~, T) should be calculated. It has been
pointed out that the correct computation of 82 and

C,' requires the knowledge of the two- and three-
point elastic dipole distribution function. The
problem now is, however, that due to the mobility
of the elastic dipoles and their mutual attraction
via Van der Waals forces such correlation func-
tions have to be calculated self-consistently. Ac-
cordingly further instabilities may arise in the
system, e.g. , gas-liquid-type PT which require
special treatment. This problem will be studied
in Sec. III.

Finally we have to shcnv that in the whole domain
to the left of the curve T„(n~)in Fig. 2 the assump-
tion holds on which the Lorentz-field approxima-
tion is based, namely, that overlap effects be-
tween neighboring elastic dipoles can be neglected.
For sake of simplicity we will demonstrate this
by neglecting the term S(n~, T) and the term
(r' cos2ft) in Eq. (20) which is certainly less im-
portant than (r'). Approximately then Eq. (20)
can be put into the form

n, /z(r ') = 8 (T/T~+) .
Because I/w(r2)= z roughly defines the number of
sites available for n„dipoles per unit area we get

n, /z = 8(T/Tz*),

where the low-T behavior is not correctly des-
cribed as has been explained earlier. It follows
that each eighth "site" is occupied at T = T„and
even less for T & T*„.This implies that the dis-
sociation catastrophe occurs at densities where
rather weak overlap exists. Accordingly it is just-
ified to a certain extent to neglect overlap effects
in the first approximation. We like to point out
that this is a rather common feature of such prob-
lems and is also observed in the insulator-metal
PT which arises over a polarization catastrophe. "

III. VAN DER WAALS THEORY FOR ELASTIC DIPOLE
INTERACTION

Due to the polarizability of the elastic dipoles
they interact with each other via a Van der Waals
interaction. The interaction energy of the o. th elastic
dipole in the strainfield 0 of the n'th dipole is
given by

y''=2(b o ' x ). (21)
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Here (x„x2)—= r (-sine„coss ), where r' gives
the extension of the dipole and 8 is the angle be-
tween r and b . The thermal average of Eq. (21)
can now be calculated in linear-response theory
leading to

4P-((bg & Pg'&„x.)'& (22)

The average in Eq. (22) is computed with respect
to exp[-P(U', «+ U;,',)], where U,« is defined in Eq.
(8}. In order to evaluate Eq. (22) one expressese" by means of Eq. (1), whe~e X"'(r}can be cal-
culated from Eq. (3) by using Eq. (5b). Partial
integration allows then to express y (r) in the
form 8 = n~(b, —a„/k~T), (26a}

where, however, a„and b, are T dependent and
given by

never been stable at all and disintegrated via the
formation of such objects. For sake of simplicity
we assume in the following that the repulsive
interaction which originates from the above effect
can be represented by a hard core repulsive po-
tential. The hard core is introduced essentially
for computational reasons and should be of the
order of (r')'~', i.e., of the order of the distance
where Eq. (25) breaks down. We assume that the
hard-core radius ~„,is given by rh, =yo' =y((r')
—y(x' cos28)), where y is a. factor of 0(1) and will
be determined later. The second virial coefficient
8 can then be written in the standard form

K ba=—— 0, b = —,kayo3y 4m k~T
(26b}

From Eq. (23) one obtains using Eq. (1) The Van der %aals equation of state reads now

0 ~i%~ Jl eqbq + p (24) (P,+ aJv,'}(v„-b„)= ks T . (2'I)

Equation (24) has to be inserted into Eq. (22) and
one obtains after some simple but tedious algebra

= -P — t' —g I' cos28

where R is the distance between the two dipoles.
It follows from Eq. (25) by comparison with Eq.
(20) that the factor (r') --,'(r' cos28) enters both
formulas in the same fashion. The interaction
Eq. (25) diverges therefore also at the critical
temperature T„*.The low-T divergence of Eq.
(25) is due to the same reasons as the low-T di-
vergence of Eq. (20) and has to be considered as an
artifact of the method. Because we are not in-
terested in the low-T properties of the system
and at higher T the main T-dependence is due to
the term involving the thermal average in Eq. (22)
the low-T divergence will be ignored from now on.

Due to the attractive nature of the Van der Waals
interaction and particularly due to its divergence
for T- T„*a gas-liquid-type PT of the elastic dip-
ole system can be expected. A reasonable approx-
imation to obtain a physical idea of the properties
of that system is to set up a Van der Waals equa-
tion of state. In order to calculate the second
virial coefficient of the equation of state the short, -
range interaction of two elastic dipoles has to be
known. The point here is that the composite ob-
ject formed by two elastic dipoles must have a
positive ground-state energy because it also rep-
resents a metastable state. If that would not be
true the ground state of the crystal would have

Here p, is the pressure exerted by the dipoles
and e„is the specific area per dipole. In the pres-
ent approximation where the harmonic lattice does
not interact with the dislocations the total pressure
is obtained by adding p~ to the pressure exerted
by the harmonic lattice. It is well known that Eq.
(27) shows gas-liquid PT of first order with a
critical point T, defined by the solution of

k~T, = (,—87)a,(T,)/b„(T,) .
Inserting a„and b, from Eq. (26b) into Eq. (28)
one obtains

(28)

k T, 4
(I/4v)Kb2 (29)

At this stage one has to remember that our theory
makes sense only as long as the elastic dipoles
are not dissociated thermally, i.e., for T» T„*.
If we identify for the time being T, with T„then
we obtain from Eq. (29), y =—", . This leads to a
hard-core radius xh, =+0. In case that the region
mo' would have been inpenetrable then y=4 should
have been obtained. We have obtained thus a rather
reasonable result considering the rather simple
theory which has been used. It is, however, ob-
vious that the fitting of y such that T,= T„*results
does not justify the assumption that T,= T„*has
to hold in the first place. That this is suggestive
on more general grounds is explained presently.

The theory is based on the following idea. Two
elastic dipoles attract each other when they are
far away compared to (r'), but repel each other
when they come too close. The long-range Van
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der Waals attraction is a well-established phen-
omena and needs not be proven further. The short-
range repulsion results from the fact that the Van
der Waals attraction must be bounded from below
due to the assumed stability of the "crystalline"
ground state. Long-range attraction and short-
range repulsion and in addition well identifiable
objects as demonstrated at the end of Sec. II are
the necessary requisites te set up a gas-liquid
theory. Because with increasing T the Van der
Waals attraction Eq. (25) increases and approaches
infinity at T„it follows that the gas-liquid coex-
istence curve in contrast to what happens in T-in-
dependent interacting systems should bend back
to the T axis. Because approaching T„*the polar-
izability of one single elastic dipole gets infinity
continuously, but then stays infinite we can assume
that also in the case that the concentration n~

approaches zero this point marks a con-
tinuous PT. W'e postulate therefore that the crit-
ical quantities are T, =T„*,P, =O, and v, =~. Be-
cause the coexistence curve labeled T,(n~) in Fig.
2 connects the origin with T*„whereas the curve
T„(n~)which represents the dissociation catastro-
phe line goes from n, to T„*it is plausible to pos-
tulate that the region between both curves is a
two phase coexistence region. Let us point out
that the concentration n~ =n, defined by T„(n,) =0
may be obtained via classical equation of motion
techniques but is not needed in the following. On
account of the above argumentation we may assume
that the liquid phase is not a liquid of elastic dip-
oles but a plasma of unbounded dislocations. Ac-
cordingly the PT leads into the same plasma state
as the dissociation catastrophe. This implies
that the equation of state Eq. (27) applies to the
region of the elastic dipole gas in Fig. 2 and its
instability into a coalesced state, but not to the

plasma phase. Because the coalesced phase of
elastic dipoles gets into the range of density where
the dissociation catastrophe occurs a transition
into the plasma phase occurs; without that the sys-
tem recovers in the liquid dipolar phase. It would
be too difficult to take that effect in Eq. (27) into
account as it would be too difficult to take the gas-
liquid instability in Eq. (20) into account. This is
as amatter of factnot neceshary because one knows
that the gas-liquid PT at low T leads to densities
which are of the order of magnitude of the repul-
sive core region. Because n, is much less than
this no intermediate liquid dipolar phase should
arise.

Let us point out that the given variable in the
present problem is the chemical potential 2p. de-
fined by U,« in Eq. (8). The density n~ of elastic
dipoles has therefore to be obtained via the equa-
tion of state Eq. (27) and the relation 2p.

= f &v~(p)dp .In Fig. 2 we have drawn schematical-
ly n=n(T, 2p. ). According to this theory the solid-
liquid PT is always of first order. The apparent
decrease of entropy during the gas-liquid PT is
compensated by the increase of entropy due to
dissociation of the elastic dipoles which occurs
simultaneously. Accordingly one does not have
the paradoxical result that the destruction of crys-
talline order is associated with a net decrease of
entropy.

Finally we would like to point out that the "di-
elastic" constant e, defined by Eq. (18) also allows
to determine the transversal shear mode velocity
by means of c', = c,/~, . Here c, is the shear mode
velocity when no dislocations are present. In the
liquid state one has &,= ~ and this leads to a van-
ishing of part of the transversal phonon branch.
In principle the present theory could be extended
into the liquid state where a q-dependent "dielas-
tic" constant g, had to be used and where phonon-
dislocation interaction has to be taken into account.
Such a theory for planar rotator system in 2D
which is a similar problem has been developed by
one of the authors. " Without going into detail
wewishto present only one interesting result of
such a theory. Assume that one neglects disloca-
tion-phonon interaction in the liquid state then one
has essentially a gas of interacting dislocations.
The canonical pressure p of that gas of dislocations
is given by

where q2= Kb2/4v an—d v„was defined earlier. This
equation holds for ks T &-,'q' and Z b = 0, and
is the same as the one obtained for the two-com-
ponent Coulomb plasma. '

IV. QUALITATIVE THEORY OF FIRST- AND SECOND-
ORDER MELTING PHASE TRANSITION

Although it is well known that in 3D systems so
far only discontinuous Melting PT from crystalline
solids to liquids have been observed there exist
examples of continuous and discontinuous PT in
two-dimensions. We will study this problem using
the theory developed in Secs. II and III and in ad-
dition already existing arguments based on the
droplet model of condensation. ' '

Consider first the molecular-dynamics computer
experiments of Hockney and Brown. ' Here classi-
cal point particles confined to move in the plane
interact with each other via a 1/r potential. There
is also a charge compensating background present
which renders the system stable. Such a system
orders in a triangular lattice. It can now be seen
from Fig. 4(a) of Ref. 6 that the ground state of
that system at T &0 is a polycrystalline phase. As
a matter of fact it consists of two types of domains
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going over into each other by 30' rotation. Loss
of long-range directional order occurs via thermal
production of more and more domains and even-
tually by a X-type PT into a state with a distribu-
tion function characteristic of a liquid. It also
follows from Fig. 4(a) of Ref. 6 that dislocations
are produced in pairs as T increases and that
there is a considerable increase of the vibrational
amplitude when the system approaches the PT.
The novel aspect of this problem is therefore the
thermal nucleation of domains and the domain
boundary dynamics. In contrast to dislocations
domain boundaries in 2D crystals have to be con-
sidered as 1D topological abj'ects. It is well known
that thermal nucleation or propagation of domain
boundarjes in three dimensions requires too large
activation energies as compared to thermal nu-
cleation of 1D dislocation loops. It; is therefore
very suggestive that in cases where (D —1)-dimen-
sional topological objects are possible energetical-
ly continuous melting transition may occur. In
the fallowing a qualitative theory for that problem
will be given.

For 2D systems with long-range 1/r interaction
it has been shown by Meissner et al." that the
triangular lattice has a stable phonon excitation
spectrum. In the harmonic approximation for a
1/r -interaction with 0&a &2 one develops the
lattice deviations around the triangular lattice
equilibrium positions. This gives the potential
part of the Hamiltonian

ff(R) & (&n)e/2e21 1
2 e+2lr, —r, I

&& (-(u, —u~)'+ (o(+ 2)

x [(u, —u~) ~ n, ,]'}, (30)

where u, is the ith lattice point deviation from its
equilibrium position r„and n, , -=(r, —r,)/ ~ r, —r, ~,
n is the density of particles, (vn) 'e' has dimen-
sion of energy, and all other quantities are dimen-
sionless. The interaction with the charge compen-
sating backgrouml can be neglected as long as one
is not concerned with the q = 0 mode of the system.
The phonon dispersion is obtained by diagonalizing
the inverse phonon propagator

where q integration is done over the first Brillouin
zone of area (2v)'. From dimensionality arguments
it follows now that Eq. (31) allows longitudinal pho-
nons with dispersion (d,'-q ~' for q«1. Applying
the Ewald summation method to Eq. (31) (see, e.g. ,
Meissner et al.") it can be shown that the trans-
versal phonon branch has linear dispersion ~,'~q,
q«1. From this follows that for 0& o. &2 no long-
range positional order is possible. The same ap-
plies to n —2 only that there ~~-q. For a =0 one
uses a log„rinteraction which is the Coulomb in-
teraction in twa dimensions and where the long-
itudinal mode shows the plasma gap but v,'-q
still holds. It follow s from the linearity of &,' i;n

(f for q«1 that the leading term given by Eq. (32)
which governs the dislocation interaction depends
logarithmically on the distance as it is the case
for short-range interaction. The earlier developed
theory for dislocations therefore applies qualita-
tively in the same fashion. Concerning now the
production of 30 domain boundaries in a triangular
lattice one observes the following. From sym-
metry follows that for a triangular lattice rotation
by 36' of the center of a domain compromising all
neighbors up to nth order may lead to rnetastable
states. In order to estimate the energy 5E of
such a domain we calculate the interaction energy
of a 30' rotated circular domain of radius ~ with
the rest of the crystal. The idea is essentially
the same as used in Refs. 19, 20 in another context.
Because we do not consider macroscapic charge
density perturbation the uniform background does
not enter. In order to obtain the internal energy
of the 30' rotated domain one moves each lattice
point of the original lattice into the position of
the closest lattice point of the rotated system. In
this way no macroscopic material transport oc-
curs. Accordingly the magnitude of the deviations
u, of the rotated domain must be a fraction, say
5„ofthe interatomic distance. From this pre-
scription it follows that the u, 's in Eq. (30) be-
longing to the circular domain can be averaged
over all angles and that only interactions in Eq.
(30) between points inside and outside the circular
domain have to be taken into account. After some
simple algebra one obtains for z = 1

6E/ks T 5OI'~n„, (33)

x [-n, ~+ (a+ 2)n„,n„], (31)

where i,j ran over the two coordinates of the
plane. The interaction between dislocations is
governed by the Green's-function tensor

c(-. -"}=,f d qa,-'[( cosi. (r-")], (32)

where F, -=&' 'n' 'e'/k T, sand n„is the number
of lattice points on the boundary of the circular
domain. Equation (33) shows that the interaction
energy for n = 1 between the domain rotated by 30'
with respect to the rest of the crystal can be ex-
pressedasaboundaryenergy. lncasethatEq. (33)
holds down to sufficiently small crystallites and arbi-
trary circumference the configurational free en-
ergy associated with the polycrystalline domains
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2 (2 0!)/25oI an», O~a ~2,
-e',r, n, lnN, a = 0.

(34a}

(34b)

Here F, —= (wn) 'e'/keT, n, is the number of lattice
points in a 30 rotated circular domain and N «n,
the number of lattice points of the total system.
The proportionality constants to Eqs. (34a) and

(34b) have not been calculated. It follows from Eq.
(34b) that thermal nucleation of domains for a =0
is prohibited above a certain critical I',* for which
the change of free energy

6F/ke T (f5ooFo n,*-1)1nN (35)

is positive. In Eq. (35)f is a numerical factor and

n,* is the smallest number of lattice points in a
circular domain for which the model still makes
sense, i.e., n*, should hold at least the points of
the nearest- and next-nearest-neighbor circles.
The argument to derive Eq. (35) is the same as
the one Kosterlitz and Thouless use for disloca-
tions. The second term of Eq. (35) originates
from the entropy of the considered domain. For
I;& I'0 the system is thermodynamically unstable

can be calculated via a two-state Ising model. Al-
though Eq. (33}follows simply from dimensional
arguments it is not so simple to determine the
proportionality constant to Eq. (33). As this re-
quires rather specific assumptions about the lat-
tice displacement in the boundary we are presently
not in a position to determine the transition tem-
perature from the Ising model. Our interpretation
of this PT is that there are two disordering mech-
anisms. One is the production of dislocations in
pairs and the other is the generation of domain
boundaries. The first mechanism tries to pro-
duce a discontinuous PT and the second a contin-
uous PT. %e expect that the domain boundaries
affect the elastic dipole interaction. The discon-
tinuous condensation phenomena for the elastic
dipoles predicted in Sec. QI may therefore be
smoothed out because interaction between dipoles
may be confined to one crystallite. The latent
heat going into the first-order PT driven by the
elastic dipoles alone may therefore lead to a steep-
ening of the specific heat anomaly, i.e., the log
anomaly of the Ising model may go over into a
power law singularity as it is observed by Hockney
and Brown'. Let us point out that in phase dia-
grams where lines of second-order PT go over
into lines of first-order PT at a tricritical point
T3, mean-field theory predicts at T„aspecific-
heat exponent n =-,' in three-dimensions. In gener-
al therefore a considerable steepening of the spe-
cific heat anomaly can be expected if a system is
on the brink to change its state discontinuously.

For general a one obtains instead of Eq. (33)

against domain formation and will thus disorder.
However, because ela, stic dipole nucleation occurs
already for I', & I',* it can be expected that the
melting PT is essentially driven by the elastic
dipoles. In any case the PT will be discontinuous
for o, =0, because both mechanisms mentioned will
lead to a discontinuous PT.

Unfortunately there are no molecular dynamics
experiments with log potentials (a =0) in two-di-
mensions to confirm these results. However, for
the 1/r potential which in three dimensions is the
analogous problem one knows from the computer
experiments of Pollock and Hansen" that at I",
=(+vn)' 'e'/ke T=1 55+1 Oa discontinuous melting
PT occurs. Going through the same arugments
which led to Eqs. (34a} and (34b) one obtains for a
1/r ' potential for the domain energy in three di-
mensions

g2 (4 Ot)/36oF n, , 1~a&4,
B

50I'~ n, lnN, a = 1 .
(36a)

(36b)

Here I' = (» vn}' 'e'/ke T, n, the number of points
in a metastable spherical domain and N the number
of points in the system. Using the same arguments
as below Eq. (35) it follows that for a = 1 a discon-
tinuous PT has to occur in accordance with Pollock
and Hansen o Furthermore for Eq. (36a) it follows
that for o. = 2 the analogous situation arises as for
a = 1 in two dimensions because then 6E/ke T is
proportional to the surface of the domains. De-
pending now on the number n of different meta-
stable domains in three dimensions for the 1/r'
potential an n -state Ising model may describe
the configurational free energy associated with
the domain structure. Accordingly we conjecture
that the 1/r ' potential in three dimensions may
lead to continuous melting PT, if the n -state
Ising model belonging to the stable crystal struc-
ture of the 1/r' potential allows a continuous PT.

One can also check these ideas against the re-
sults of the corresponding one-dimensional prob-
lem. Here one knows that for the Coulomb poten-
tial r the system is at all temperatures in an
ordered state." Because this system does not
allow topological defects, i.e., there are no pos-
sible metastable domains and nothing what cor-
responds to dislocations there exists also nothing
which could invalidate simple perturbation theory
as the temperature arises. The point is that the
topological defects or metastable states occuring
in two and higher-dimensions enter through the
anharmonic lattice potential where they cannot
be taken care of by perturbation theory.

Finally we would like to pointout that in systems
with short-range interaction similar ideas as those
developed above may apply. In cases where the
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H((c;&})= g v(u, —u& —c;~), (37)

where v(x) represents a potential which for sake
of simplicity we restrict to nearest-neighbor in-
teraction. Furthermore u, is the displacement
of the ith lattice constituent from its presumed
equilibrium position in the ground state of the sys-
tem, where fc,~}=—O. One defines next a Burgers
vector for each lattice cell e by means of b
=Bc,~, where the contour is taken counterclock-
wise around the o-th cell. Diagonali. zing Eg. (37)
around its equilibrium position which is a function
of the set fc,.&} one obtains the interaction law for
dislocations. For sake of simplicity one may do
this using vox -x'. Using an anharmonic potential
v(x) allows then in a natural way to introduce pho-
non-dislocation interaction.

chemical potential for domain formation is small
compared to the chemica1 potential for elastic
dipole formation a continuous melting PT may
arise. In the opposite case the PT is mainly driv-
en by the elastic dipole dissociation and therefore
is discontinuous as argued in Sec. DI. Because in
real systems with hard cores the sytem is not
characterized by just one I' as for the systems
considered above rather interesting phase dia-
grams over the coupling constant space may arise.
We expect, however, that with increasing size of
the constituent particles geometrical effects will
produce rather large boundary energy and rather
large activation energy for domain nucleation and
domain boundary propagation. Intuitively one be-
lieves also that the lower-dimensional topological
defects will be more favorable energeticaliy. We
expect that in cases where the melting PT is con-
tinuous rather large deviations from the critical
properties of the reference problem discribing
the configurational free energy of the polydomain
system may arise.

In concluding this section we would like to make
some additional remarks which respect to the 30
rotated domains which we have introduced rather
heuristically. In that context we like to point out
first that the theory of dislocations and metastable
states in general can be approached by similar
methods as developed by Berezinskii' for the meta-
stable states of the planar rotator model. In this
approach the phase space of the problem is sub-
divided into sectors, where the sectors correspond
to metastable states. In order to introduce dis-
locations in this formalism one introduces a set
of vectors (c„}for each nearest neighbor bond,
where c,&

is a lattice vector and c,.&= -c„.holds.
The Hamiltonian corresponding to a sector of the
phase space characterized by (c;&}is then given
by
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FIG. 3. Schematic illustration of 30'-rotated domain
bounded by dashed circle in a triangular lattice.

In a similar way the 30 rotated domains for a
triangular lattice may be introduced. For sake
of simplicity we describe this procedure graph-
ically by means of Fig. 3. The points in Fig. 3
corresponds to an ideal triangular lattice and the
crosses to a triangular lattice rotated aroung the
center point Z by 30. The arrows describe the
path a lattice constituent moves from its position
in the ideal triangular lattice to its position in the
30-rotated domain. Consider first the domain in-
side the dashed circle and ignore the crosses
drawn outside of this circle. It is then obvious
from visual inspection that the lattice constituents
on either side of the dashed circle will relax only
slightly from their indicated positions. This is
a consequence of the high symmetry of the ar-
rangement. It is also a simple matter to convince
oneself from the metastability of the arrangement
by using instead of point-like lattice constituents
particles with a finite core diameter. The energy
and configuration of that metastable state can now
be calculated in principle but has not been done as
yet. It follows also from Fig. 3 that forming a
3F-rotated domain using nearest neighbors to the
point Z only leads to an unstable configuration.
We think therefore that the metastable domain
with the dashed circle as circumference has low-
est internal energy. Accordingly thermal nuclea-
tion of metastable 30 domains will start with the
one shown in Fig. 3. Growth of such a domain will
lead over activation barriers into metastable states
of higher internal energy. Intuitively one expects
that for short-range forces growth of the domain
will not produce macroscopic strain and that there-
fore the internal energy increases proportional
to its circumference. This, of course, excludes
pathologically shaped circumferences. The fact
that for long-range repulsive interaction between
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point particles and a charge compensating back-
ground a, similar result holds for n =1 [according
to Eq. (33) and Eq. (34a)] is not immediately ob-
vious. Finally we like to point out that there are
perhaps other metastable states besides the 30'-
rotated domains. It is clear, however, that mis-
orientated domains have to come into existence
over a nucleation mechanism starting with smal-
ler-sized domains otherwise their formation prob-
ability will be insignificantly small. The meta-
stable domain shown in Fig. 3 seems to involve
the smallest number of lattice constituents to be
displaced appreciably besides the dislocation
pairs. It is reasonable therefore to assume that
its formation will be energetically most favorable
besides the formation of dislocation pairs. Ac-
cordingly also larger-sized 30 domains which
come into existence over a growth mechanism
can be expected besides dislocation pairs with
highest probability.

V. DISCUSSION OF MONOLAYER MELTING TRANSITION

In this section we would like to make an inter-
pretation of various solid-liquid-type PT observed
in monolayer systems adsorbed on graphite in
terms of the theory developed. One of the pro-
blematic features such interpretational work faces
is that the substrate potential enters the problem
and that there are vertical degrees of freedom.
The latter point is usually not very serious for
sufficiently strong adsorption. The periodical
potential of the graphite substrate, however, may
confine the adsorbed monolayer to epitaxy and thus
to true long-range positional order. This effect
can be taken into account by providing the mono-
layer lattice modes with a mass, i.e., (d,'"-m', ,
+c2, q', where the ratio m, /c, or m, /c~ is a mea-
sure for the strength of adsorbing forces to mono-
layer forces. Because the dislocation interaction
is determined by Eq. (32) where the phonon spec-
trum enters, the finite masses m, and m, will
qualitatively change the interaction into a finite-
ranged interaction. This means that the logy'
interaction between dislocations will be screened
off for r&1/m~. This implies that dislocation
pairs may dissociate at any finite T as it is ob-
served for molecules bound by ordinary forces.
This effect will certainly depend on the order of
magnitude of m, /c, . For m, /c, »1 the system
is presumably better studied using a static order-
disorder model, whereas for m, /c, «1 the mono-
layer lattice modes will be important and the theo-
ry as developed here is more appropriate. We
like to point out that in cases where the size of the
adatoms is such that a commensurate phase with

the substrate is not possible due to geometrical
constraints one should have in the ideal case
m«, &/c«, &=0. Only in the case where defects
of the substrate are present or there is an elastic
response of the substrate m«»/c«» e 0 is possible.
It is clear, however, that also in the case of a
nonregistered phase the substrate potential exerts
a force field on the monolayer. Linearizing this
force field around the presumed equilibrium con-
figuration of the nonregistered monolayer, how-
ever, is problematic because of ([u(R)]') -InN.
For finite-sized monolayers therefore the approx-
imation will work, but not for infinitely extended
nonregistered monolayers. In the latter case
only quantities depending on the relative devia, tions
[u(R)-u(R')] can be expanded. '

In cases where the geometrical size of the adat-
oms allows a registered phase and where the sub-
strate potential holds locally bound states a crys-
talline ordered state is possible at low T. If in
cases where m, /c, «1 besides the usual order-
disorder PT at T„where the system loses long-
range order a topological type of PT occurs is
not quite clear. We are presently not in a posi-
tion to decide this question. It is clear that for
m, /c, o0 the dislocation pairs will dissociate with
increasing T and in this way accomplish disorder-
ing. Besides this mechanism there exists, how-
ever, still the possibility of a density type of PT
at T,(n~) where disordering is accomplished dis-
continuously as it is the case for m, /c, =0. In
the following we propose that this is the case for
the registered phase of the N, monolayer on graph-
ite.

It should also be pointed out that order-disorder
transitions in monolayers may be continuous or
discontinuous. A classification of order-disorder
transitions in cbmmensurate monolayer systems
has been given by Domany et al. '4 We like to men-
tion in this context that a lattice gas model is pre-
sumably most appropriate for structures which
are rather loosely packed. In addition the sub-
strate potential should be rather strong so tint
kinetic effects are of no importance. In n&ore

densely packed commensurate adsorbed systeni~
defects in the ordered state may produce rather
far reaching disturbances in the structure which
are hard to assess in a short-range interacting
lattice gas model. The interaction between defects
over appreciable distances depending on the ratio
m«»/c«» may change the qualitative nature of
the problem. In the following we will discuss a
number of experiments in the light of the ideas
exposed here.

Consider first the experiment of Schechter,
Suzanne, and Dash' where a discontinuous melting
PT of 1-3, butadiene iron tricarbonyl (BIT),
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C,H, Fe(CO), adsorbed on graphite has been ob-
served. A discontinuous PT has been observed
for three different coverages X=0.33, 0.63, and
1.04. The effective molecular area 41 A' corre-
sponds to x= j.. Due to the rather large molecular
extensions of BIT we can assume that the periodic
substrate potential plays no role. From the dis-
continuous nature of this PT we conclude that it
is described by the dissociation of elastic dipoles
as explained in Sec. III. Presumably the monolayer
has a trigonal structure, but thermal nucleation
of 30'-rotated domains is prohibited on account
of too large format&on energy. We do not have an
explanation of the decrease of melting temperature
T~ with increasing x as exhibited by Fig. 2 of
Ref. 8.

As a second example we consider the N, mono-
layer work of Kjems et a/. ' Here the authors have
evidence that the low-density phase forms epi-
taxially on the graphite surface in the &3 x W3

structure. Accordingly each third of the graphite
hexagonal potential wells is occupied by a N, mo-
lecule. The nearest-neighbor distance of the oc-
cupied centers of the hexagonal potential wells
is 4.26 A." The extensions of the N, molecule
are given in Ref. 26 by 4.36 and 3.38 A for length
and width, respectively. It follows from this that
walls between domains belonging to one of the
three possible translated structures arising from
the x = 3 coverage must have fairly high energy
due to geometrical constraints. Furthermore due
to epitaxy 30'-rotated domains are energetically
unfavorable because their energy increases with
the domain size. Formation of dislocation pairs,
however, is possible. We suggest therefore that
the discontinuous PT to a presumably liquid phase
as observed by Kjems et al.' may be due to a dis-
sociation of elastic dipoles as argued in Sec. III.
It is understood, however, that the log, y' inter-
action in commensurate phases is screened due
to m, /c, oo. Accordingly we cannot make a def-
inite statement about the nature of the transition
as has been pointed out earlier. Due to the geom-
etrical constraints produced by the rather large
N, molecules the static order-disorder aspect of
the problem where each N, molecule hops from
one hexagonal well to another for entropy produc-
tion is presumably not realistic if longer-ranged
disturbances are not taken into account. In addition
it has to be shown that the states used in a lattice
gas description are really metastable. The order-
disorder transition for a x = 3 coverage should also
be continuous if the three-state Potts model would
apply. Furthermore Kjems et al. ' have observed
a denser phase where the melting transition is
continuous. Because this structure is not con-
strained by epitaxy 30'-rotated domains are en-

ergetically possible and we propose therefore that
the continuous nature of this PT arises from the
effect explained in Sec. IV. In the present case,
however, the configurational free energy should
be described by the hvo-state Ising model. It
would be interesting in that context to have ex-
perimental evidence on the domain structure of
such monolayers. It would also be interesting to
know the order of the melting PT of "Ar mono-
layers which form a nonregistered phase. " It
allows from the existence of nonregistered mono-
layer phases on graphite that interatomic forces
in the monolayers must play the dominant part
in determining the monolayer structure. ' This
implies that the conditions for applying. an ideal
monolayer theory are well satisfied.

As a third example we consider the PT observed
in 'He and 'He monolayers on graphite. In a recent
experiment Bretz' has measured the ordering
transition in 'He and 'He on high-quality graphite
substrate. He observes a rather strong specific-
heat anomaly with critical exponent o-0.36. This
critical-heat exponent is substantially larger as
Bretz' emphasizes as the a expected from the
static three-state Potts model as proposed by
Alexander" for this system. Although quantum
effects do not dominate frequently critical behav-
ior one expects here that the rather large zero-
point motion and the hexagonal net of weak poten-
tial wells on graphite substrate gives the low-
lying excitation modes of the ordered monolayers
a phonon like character. We suggest considering
the ordered phase of 'He and ~He as a 2D solid
with three different types of domains. The latter
can be obtained from a given domain by translation
along one of the nearest-neighbor vectors con-
necting the centers of the graphite hexagonal wells.
In addition there exists the possibility for dislo-
cations and other defects to come into existence
in an ordered domain. Due to the smaller size
of the He atoms we expect that the problem allows
three types of domains in contrast to epitaxial
N, layers. Accordingly the configurational free
energy associated with the network of erystaQite
boundaries can be described by a three-state Potts
model. "Because this model cannot hold down to
smallest crystallites and because there are also
dislocations produced in pairs, and there are
phonon vibrations coupled to the metastable states
above, it follows that the continuous PT of the
Potts model predicted by Baxter" will be mod-
ified. We expect this modification to be similar
to the one discussed in Sec. IV for the point par-
ticle system studied by Hockney and Brown. ' In
particular we think that the additional activation
of degrees of freedom associated with the elastic
dipoles will produce a steepening of the specific-
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heat anomaly of the pure Potts model as it is ob-
served. ' We have not studied the effect of quantum
tunneling" on dislocation formation and propa-
gation. We expect, however, that the generation
of topological defects is facilitated by such effects
because the usual activation energy involved is
reduced.

With respect to numerical estimates of the tran-
sition temperature T,(n~) (where n~ is determined
by 2p) for specific monolayer systems where
melting occurs via a dissociation of elastic dipoles
a crude estimate can be obtained from T,(n, ) &T„*.
This requires, however, that K is known which in
principle can be obtained via the phonon spectrum.
It is clear, however, that the anisotropy of real
lattice systems will modify the upper bound to T,
i.e., T~ from its value in the isotropic system
appreciably. This has been shown in Ref. 1V for
planar rotator systems, where the analogous quan-
tity to T„*differs for square and triangular lattices
by a factor of l/M. It follows from this thatunder
the present circumstances we are not in a position
to give a quantitative justification of the fairly
qualitative theory developed.

Let us point out that our theory in contrast to
the theory of Kosterlitz and Thouless' leads to
a discontinuous melting transition in two dimen-
sions when driven by dislocations. In principle
it is now possible to incorporate into our formal-
ism the polarization effects of the dipole gas on
the self-energy of one dipole as it has been done
in Ref. 2. It is possible that this will produce
some modification of the theory developed which
is essentially based on physical concepts famil-
iar from 3D physics. We do not think, however,
that a more sophisticated theory wiD change the
nature of the melting transition obtained by us.
The theory of Ref. 2 implies softening of the long-
wavelength transversal phonon branch to zero at
the melting temperature. Such effects have often
been postulated for three dimensions but failed
on experiment. Because the dissociation of elastic
dipoles can occur continuously or discontinuously
the problem of the order of the PT cannot be de-
cided by means of a symmetry argument but is a
problem of stability. We propose that the stability
properties of the model of Ref. 2 should also be
studied, i.e., the statistical mechanics of the spa-
tial dipole distribution functions should be incor-
porated in the model. The latter distribution furc-
tions are treated by the authors of Ref. 2 purely
stochastically. Because their melting transition
leads smoothly into the liquid state where the
dislocation distribution functions are not stochastic
it is obvious that this point has to be modified.

In concluding this section we would like to consider
briefly melting in three dimensions. From the

extensive molecular-dynamics experiments of
Cotterill et al."using a truncated Lennard-Jones
potential it follows that the melting process there
is initiated by the generation of tiny dislocation
loops of the Schockley type (see, e.g. , Hirth and
Lothe' ). The self-energy of such loops is -r lnr
if they are circular" and of radius r and when they
are in the dipole configuration their self-energy
is -l lnd, where l is the length and d is the width

of the elongated loop. The latter configuration is
presumably energetically more favorable and has
higher elastic polarizability as the circular loop.
Because the loops like other defects have finite
internal energy they will be present at all temper-
atures. If they do not interact with each other they

will never produce a P'7 when T increases. Inter-
action, however, between the loops may produce
a PT. It follows from Figs. 4-6 of Ref. 32 that
initial overlap effects between tiny loops are not

present. Accordingly we propose that the dis-
continuous melting PT observed is also here a
consequence of a condensation phenomena due to

interaction between metastable objects. In con-
trast to the theory of two-dimensional melting
developed in Secs. II and III the topological defects
are here one-dimensional loops. That the elastic
polarizability of the loops does not define a finite

temperature T„*where it diverges due to the r lnr

dependence is irrelevant. The main point is that

the r lnr or l ln d self-energy does not allow the

loops to disintegrate which would open the pos-
sibility to get steadily from the crystalline to

the liquid phase. Such a transition could be com-

pared to a continuous insulator-semiconductor-
metal transition with increasing T in a system
where the band gap is produced by the lattice
potential. The semiconducting properties of the

latter system would compare to thermal plasticity
properties of the mechanical system when loops

are allowed to get infinitely large sized.
The main point of our argument is that also in

three dimensions the discontinuous nature of the

melting PT is a consequence of the interaction be-
tween metastable states which leads to a gas-
plasma-type PT and in this way achieves the melt-

ing of the solid. There is little overlap between

the topological objects involved in the gas-plasma
transition when the process is initiated. Accord-
ingly also here the approach to the problem by

neglecting these effects altogether in lowest ap-
proximation as we did in Secs. II and III may be
justified. Similar as in Eq. (20) there exists a
critical density n, (T) of loops for which K' =0 and

a critical density n', (T) &n, (T) where a condensation
phenomena occurs leading presumably into the
state K'=0.

In three-dimension thermal nucleation of domain
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boundaries is of no importance because it involves
too many atoms and therefore leads to too high
activation energies. Melting is therefore always
discontinuous and driven by a dislocation mecha-
nism. The gas-plasma-type PT picture leading
to a discontinuous transition should therefore
essentially be the correct one to describe melting
in three dimensions. In addition it supports the
theoretical approach for two dimensions where
due to the configurational effects of domain bound-
aries continuous PT occur and in this way direct
experimental verification of the theory is pre-
vented. In 3D cases where appreciable effects
from configurational free energy associated with
a thermally nucleated polycrystalline structure

are present as discussed for the l/r'-potential in

Sec. IV a new theory has to be worked out. This
problem and the development of an analogous the-
ory in three dimensions to the one developed in
Secs. II and III for two dimensions is presently in
progress.
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