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In this paper we discuss the thermodynamic properties of a physisorbed mixture of 3He and

He. We present microscopic calculations of the zero-temperature liquid-gas and phase-separation

aspects and extend these results to finite temperature, in an approximate way, using a simple

model. The results are then compared to the recent experimental data of Hickernell, McLean,
and Vilches on He- He mixtures on graphite. We conclude that the low-density phases of He-

He on graphite are not well understood and in particular the identification of the major structures
in the experimental data as the liquid-gas transition is not straightforward.

I. INTRODUCTION

Experimental studies of mixtures of 'He and 'He in

bulk liquid, ' solid, ' and physiosorbed films' have pro-
vided a wealth of information concerning the behavior
of strongly correlated quantum systems. Hickernell,
McLean, and Vilches (HMV) have recently reported
a heat-capacity study of the isotopic mixture as phy-
sisorbed submonolayers. The HMV results were
surprising since they found no clear evidence of phase
separation; that is, except for a small broad shoulder
which appeared at small 'He concentrations and disap-

peared with increasing concentration, all the features
evolved smoothly out of the pure phases. The most
prominent specific-heat peak (which appears from the
'He side at temperatures -1 K) has most recently
been interpreted as the liquid-gas phase transition. '
The magnitude of this peak (at a given areal density)
decreases with increasing 'He concentration x and
disappears for x & O.S. The 'He-rich side is basically
featureless except for a small broad peak -80 mK.

In this paper we will describe a theory of the liquid-

gas and phase-separation aspects of this mixture. Be-
cause a first-principles approach to these phase transi-
tions is, at present, out of reach, the starting point of
the analysis will be the zero-temperature equations of
state obtained from a variational calculation. The
basic approximation of the zero-temperature calcula-
tion is that an accurate description of the adsorbed
system is obtained by dividing the physics into a two-

dimensional (2D) many-body problem and a one-
dimensional (1D) one-body problem. This approxi-
mation will be discussed ~nd explained in Sec. II. In

Sec. III the details of the T =0 K calculation will be
presented: this will include a description of the statist-
ical cluster expansion as adopted for the mixture. In
Sec. IV we shall present and discuss the results of the
zero-temperature calculation. We shall then presume
the finite-temperature behavior by use of simple

models and inference gleaned from our experience
with the bulk. Finally we shall compare theory with

HMV in order to try to draw some conclusions con-
cerning the present extent of our understanding of the
physics of low-density adsorbed He submonolayers.

II. ADSORBED He ON GRAPHITE

The substrate used by HMV {a commercial form of
exfoliated graphite) appears, from studies of the pure
phases, "to provide a reasonably uniform surface
whose physisorbed states are quasi-two-dimensional in

character. The periodicity of the graphite substrate in-

duces a band structure in the adsorbate; however, at
low coverages the band widths are wide and the band

gaps are narrows and so in excellent approximation
the substrate can be simply thought of as a source of
uniform external potential. For the graphite substrate,
the potential well seen by a He atom is very deep(-—2SO K) and so the adatom finds itself locked into
a rigid two-dimensional plane (e.g. , the first excited
single-particle state is -80 K higher than the ground
state). In this limit then the physics of the adsorbed
system is separable into two parts: one which con-
cerns directions perpendicular to the substrate surface
(the z axis, with the substrate occupying the negative
—z half-space) and the other which concerns those
directions parallel to the plane of the substrate sur-
face. This convenient division of the problem into a
2D many-body problem coupled with a 1D single-
particle problem was first applied tn 'He suhmono-
layers by Jacksort and has yielded reasonable agree-
ment between the calculated and experimental low-

temperature specific heats. It is clearly attractive to
extend this model to the mixture. That this is indeed
reasonable is illustrated by Fig. 1 where we show the
ground state single-particle probability densities for
atoms of 'He and He. It is evident that not only are
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FIG. 1. Ground-state single-partide probability densities for He and He on graphite. The He atoms are well localized in the
0

same plane —3 A above the substrate.

the atoms well localized above the substrate surface
but, as importantly, they peak at about the same z

value (i.e. , the 'He and He systems are in the same
plane). Because the energy diff'erence between the z

excited states and the z ground state is large compared
to the relevant temperatures the excited states will be
relatively unpopulated and will make an unimportant
contribution to the thermodynamics. Thus in the fol-
lowing we shall only consider the 2D many-body prob-
lem as determining the thermodynamic state. This ap-
proximation will be further discussed in Sec. IV.

III. THEORY OF He- He MIXTURES

%'e consider a 2D mixture of xW'He atoms and
(1 —x) W He atoms interacting with a Lennard-Jones

potential

v(r) =4m[(a/r)'2 —(a/r)6]

e = 10.22K, o- = 2.556 A

/V3
ik -r

p-„=—4&F=8 pe ' '((m, )
1~I (/» "4'

f(r„), (2)

where 8 is the antisyrnmetrizer for the W3 fermion la-

bels, ({m,) is the spin function for the jth particle,
and the pair factor f is given by

u (r )/2 —(b &r/r ) /25

f„~(r) = e "" = e

In Eq, (3), b„& is a variational parameter and the
(a, P) = (3, 4) indicates that a diA'erent function can
be chosen for each type of pair. "

The Hamiltonian for the mixture H is given by

(3)

(4)

Using Psj, then, the energy expectation value F. can be
cast in the form

The energy per particle is calculated variationally using
a Slater-Jastrow wave function Ps~,
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E = (1 —x}'E (x) +2x(1 —x) E (x)

.V3

+x E33(x) + g Er(x)

where the E„& are defined as

E„„(x}= —,
'

p g„„(f)V„„(f)d r (6)

and

V„&= V(r) ——ir (1/m„+1/m~)'7'u„&(r) . (7)

Also in Eq. (6), p is the (areal) number density and
the g„&(f) are mixed two-particle distribution func-
tions defined by

W„(Xp —S,„p)
g„/(f„) =

pupp

Qs3 d r [, )

x' y Er(x)

where p„(p&) is the partial density of species o. (P),
the notation in the numerator integral indicates that
label i and j are not to be integrated over ~here
i C (a} and j C (P}. The terms denoted by Er(x) are
the cluster expansion form of part of the kinetic ener-

gy, viz. ,

definiteness, we shall choose to order the series by the
number of distinct labels in the multiplicative approxi-
mants. " Roughly speaking this is a density expansion
since a term with m number of labels will involve an
m-particle distribution function (whose origin is the
numerator of that multiplicative approximant). How-

ever, the situation is made indistinct because of the
concomitant denominator expansion in powers of I/W
which introduces the lower distribution functions into
each order.

For the purpose of numerical calculations we use a
single variational parameter independent of the type of
pair and the cluster series has been truncated after the
two-body terms. b is, however, density and concentra-
tion dependent. In addition we note that, in 2D, in

the zero-density limit b is independent of mass or
statistics (from dimensional analysis). Thus, for the
low-density systems in which we are interested a sin-
gle variational parameter should suffice. In this ap-
proximation then

g44(f) =gs(f), g34(f) = gS(f),
2

'I

2J, (k -f)
g33(f ) =gs(f ) 1

2 kpf

where kl; = (2mpx) ' ' is the Fermi momentum, Jl is a
Bessel function and it should be stressed that the
ga(r) are x dependent. [Because we only use a single
b the notation gs(f) is unambiguous. 3 X34 and X44

make no contribution since they first enter at the
three-body level. "The same truncation is applied to
the kinetic energy, Eq. (9), where we find

(9)

E, = ( t'/2m, ) ~p,
E2= E]—32xp

(2n)
d r[ga(r) —1]

(12)

where F and 4 are defined in Eq. (2). The radial dis-
tribution functions g„& and the kinetic energy, Eq.
(9), are evaluated by means of a straightforward gen-
eralization of the usual %u-Feenberg" statistical clus-
ter expansion. The differences in the cluster expan-
sion are due to ps3 now mixing boson labels with the
fermion labels. For example, two He atoms can "see"
one another through intermediary 'He atoms as well

as 'He's and whenever there are two or more 'He's in

the intermediate state they must be antisymmetrized.
The distribution functions can be written in the form

g„&(f) =g„&(f)+X„&(f}n, P, =3, 4, (1O)

where gs& (f) is the distribution function generated by
F' only and X represents the statistical cluster expan-
sion contributions. The %u-Feenberg expansion
suffers from the problem of not having a readily avail-
able small parameter with which to order the terms. "
This problem is enhanced in the mixture since the
number of correlated particles is typically not the same
number which are being exchanged. However, for

I

x dy J0(2ki:fy)
0

&& [y'cos '(y) —y(1 —y')'"]y'

with the Kirkwood-superposition approximation
(KSA) used for the three-body distribution function

g"'(1, 2. 3) =gs(f 12)gs(f23) gs(f31)

The solutions of the BBGKY-KSA have been dis-

(15)

~here J0 is a Begsel function. Thus, for a given
gs(f), Eqs. (11)—(13) allow us to calculate the ener-

gy, Eq. (5), %'e choose to use gs(f)'s which are solu-
tions of the Born-Bogoliubov-Green-Kirkwood-Yvon
(BBGKY) equation

lg8 (f 12) = V] M (f ]2)gs(f ]2)

+ p 7]u(f]3)g' '(1, 2, 3) d r3, (14)
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cussed for the case of 2D He, ' where it Was found
that they yield results in excellent agreement with
molecular dynamics.

For a mixture, all combinations of concentration,
pressure (denoted by @), and temperature might not
represent states of material stability. If the system
separates into two phases then these phases must have
the same @, T, and chemical potentials p, 3 and p.4. At
zero temperature the chemical potentials can be ob-
tained from"

0.03

ZERO PRESSURE
ISOBAR

p3 H +(1 —x) 9H
Qx

(16)

9Hjx4=H —X
QX

{17)

where H = F. + $jp is the enthalpy per particle. It is

clear that in order to obtain accurate chemical poten-
tials one needs to have accurate pressures. If one had
to obtain Q through numerical diA'erentiation of E(p)
a serious source of error would be present. However,
for a system with a power-law potential and a power
law u(r), one can show that the virial-theorem pres-
sure, which is given by

lU
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(where the ~'s are the constituents of the energy,
E6+ 6}2), is equal to that obtained by

dift'erentiating the energy. ' Thus, only the deriva-
tives with respect to concentration of Eqs. {16)and
(17) have to be obtained numerically. In principle,
one could analyze the mixture at fixed density, how-

ever, in practice it would prove quite formidable. If
the system phase separates at two concentrations x~

and x2 (~0, 1), then Eqs. {16)and (17) yield

H' ='f H (xi) —H(X2)]/(x~ —x2) (19)

where

BH

ij

9H
QX x2

t

(20)

Equations (19) and {20) are the well-known "double-
tangent" construction.

In Sec. IV, we shall discuss the thermodynamic
results of solving Eqs. (5), (16), and (17) and exam-
ine their role in interpreting the experimental data of
HMV.

IV. RESULTS AND DISCUSSION

The results of the energy calculation are sho~n in
Fig. 2. In the inset, we show the energy as a function
of density for a given x. The important point in this
figure is that whereas 2D 'He is a liquid, 2D 'He is a
gas. At zero pressure, 'He is at zero density. Thus,

I I I I I I

0.0 O.I 0.2 0.3 0.4 0.5 0.6 0.7
3He CONCENTRATION, X

FIG. 2. In the inset we show the energy as a function of
(areal) density for various He concentrations. In the main

figure we show the density at zero-pressure as a function of
concentration from which we can read oA' x,. =0.65. The ar-

row labeled HMV is the position of the lowest-density system

studied by HMV.

in contrast with the bulk the 2D system is a liquid-gas
mixture. The consequence is that phase-separation
and the liquid-gas transition become intermingled and
each must be discussed in the light of the other. We
begin with the liquid-gas transition.

We see, from Fig. 2 that the energy, at fixed densi-
ty, increases monotonically with increasing x. We can
thus find a concentration x, , which separates those
mixtures which have an energy minimum at finite
density, x & x, , from those whose minimum occurs at
zero-density, x ~x, . The value for x,. can be read oft'

ot Fig. 2 where we show the density at zero pressure

pp, since x,. is determined by the pp = 0.0 intercept.
We find x,. =0.6S. Because x,. is determined at zero
density its value can also be obtained analytically
through a density expansion of the energy, Eq. (5).
We then find x,. to be a solution of the quadratic equa-
tion

{Sqg-g —q3) x,'+ 10(q3 g4) xt' 10{gQ g g4) 0 f
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where we have defined the following quantities:

r13 = (h'/m3eo') =0.2409

v)4 = (h'/rn4ea') =0.1815

&„=(—,", ) [—,
' r(-,')]'~'=0.2686 .

(22)

Drawing from these ground-state results we can
develop a model for the liquid-gas transition in the
mixture. Pure 2D 'He has a liquid ground state and
so, if we can extrapolate from the bulk, there will be a
liquid-gas coexistence line in the @-Tplane terminat-
ing at a critical point (x =0, $4„T4,). If we add 'He
to the system then it should become "easier" to induce
a transition since the 'He component is itself un-
bound. Thus, with increasing x, the critical point and
coexistence line should move to lower temperatures
and pressures and so we can envision a critical locus
beginning at {x=0, @4, , T4, ), terminating at (x =x, ,
P, =0, T, =0), which when taken together with the
He coexistence line and that portion of the x axis, for

which x ~x, form the boundary of'a triangular "canopy"

in (x, @,T} space: the liquid-gas coexistence surface
{LGCS). The specific-heat signature which one ob-
tains by encountering the LGCS is then a series of
peaks which move to decreasing temperature with de-
creasing density, for a given density they move to
lower temperatures with increasing x, and finally there
should be no peaks for x & x, (=0.65). This pattern
basically describes the 1-K "anomalies" of HMV ex-
cept that the HMV peaks disappear by x =0.5 (the
type of discrepancy which can be ascribed to substrate
inhomogeneity). Unfortunately, this agreement does
not really prove anything. If peaks were present in the
HMV data for x )0.65 that would be devastating for
this liquid-gas model, however, the fact that the am-
plitude disappears smoothly with increasing x is entire-
ly reasonable behavior for practically any reason for
which 'He should have a peak and 'He would not.

There is, in fact, an important discrepancy between
the ground-state calculations and the interpretation of
the HMV peaks as the liquid-gas transition. The
HM V data certainly must represent that part of
liquid-gas coexistence for which the density is less

than the critical density. The densities pp shown in

Fig. 2, however, represent the maximum density points
on the saturation curves (i.e. , equilibrium at T =0 K
between a liquid- and zero-density gas). Thus, for
pure 'He, for example, pp=0. 036 A ', however, the
HMV data is still moving to increasing temperature at

0
0.048 A ', as is shown in Fig, 3. This variance in the
densities is impressive and reconciling them is quite
despairing. Two possible problem areas for the calcu-
lation present themselves: (i) the calculated values of
pp could be quite inaccurate. In 2D, the kinetic and

potential energy cancellation is much more complete
than in the bulk" (3.0—3.6 K compared to 11.5 —17.5
K}, which can make pp strongly dependent on the par-

ticular potential function' or model wave function. In
the bulk, the calculated pp's tend to be smaller than
their measured values. {ii) Band effects due to the
periodic substrate potential could make the adatoms
behave as if they had an effective mass. Thus, for ex-
ample, if m, fr =1.3m4, the pp would be increased to

O-0.06 A 2. However, the calculation of the band
structure' and the calculation of the many-body
ground state including the band structure' seem to in-

dicate that the periodicity of the substrate potential
has negligible effects for low-density He on graphite.

Finally, we note the distinct possibility that the HMV

peaks are not due directly to the liquid-gas phase tran-

sition. We shall return to these points after the fol-

lowing discussion of phase separation in the mixture.
ln Fig. 4 we show p, —g4 (=BH/Bx) as a function

of x. For the existence of an (upper) critical solution
point it is necessary that B'H/Bx' ( 0 over some
range of x. ' At the lower pressures shown in Fig. 4,
H, undergoes regions of changing curvature which in-

duce phase separation (the boundaries of the two-

phase region are denoted by circles). At the largest
pressure B'H/Bx' )0 for all x and there is no separa-
tion. We note in passing that the x =0 intercepts are
one-third the 'He kinetic energy (at that pressure) as
first pointed out by Baym. " This is easily obtained by
calculating lim„. 0(BE/Bx) from Eq. (5), [that is,
(BE/Bx) „=(BH/Bx) ~].

After a detailed analysis of p.3 and p, 4 (the "double-
tangent" construction), we obtain the phase-separation
curve shown in Fig. 5. At the lowest pressures the

system separates into pure 'He and 'He phases. With
increasing pressure, 'He becomes soluble in 'He and
for @)0.045 dyn/cm there is only one phase. Thus,
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FIG. 3. Density as a function of temperature for pure 4He

where we show the ca/culaied zero-pressure density pp com-

pared with the HMV data (x's). The HMV data are the posi-

tions of the max~ma in the specific heat curves. The dashed

line shov ing the extent of the hquid-gas two-phase region

was dragon to an «rbitrary critical temperature and is meant to
be only a guide to the typical shape expected tor such a re-

gion.
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at zero temperature for low enough pre
tern will phase separate.

pressure the s s-pre h y-

In order to discuss the relationship between hase
separation and the LGCS

'

yin a more quantitative way
we will use a simple model to fill out the

*

e avior of the phase-separation surface. Let

in " rom
us construct an approximate G bb fe i s ree energy of mix-
ing rom the zero-temperature enthalpy of mixing
and the entropy of mixing S for an ideal solution,
where SM = —x lnx —{1—x) ln(1 —x).'

u ion points whiche behavior of the critical sol t'

are obtained from this model. For, =0. ,
x =x,. an as p, . increases the critical point moves to
larger x and smaller T.. T
one would have sur

a er, ese results are clearly wh t
surmised from inspection of the

a

zet - " ', ig. . The fact thatzero-temperature "footprint " F 5.
$ ia large and negative is due to the lar~,h'1'

d

theory).
e iqui -gas mixture (from regular s 1 tou ion

If wee now combine the liquid-gas and phase-

de
separation. results, we find two t f *

wo ypes o regions
epending on whether or not th LGCSe and phase-

separation surface intersect. In Fi . 7 wn ig. we show these
wo possi i ities, very schematically, as cuts in a (T,

xe pressure. At very low pressures we ex-
, X

liquid- as lin
pect to find the situation of F' 7( )ig. a where the
iquid-gas line intersects the phase-separ t'

a, in this case, a tricritical po' t Thin . us, at low pres-

y phase equilibrium between asures, we expect a binar
e-rich liquid and a 3He-rich vapor. At hi her

, t e surfaces will no longer meet and
so there will be t~o critical po t din s an a region of a
homogeneous mixed phase.

If one does a constant-area small-x specific-heat
measurement of the mixture as shown in Fig. 7(a)
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(o)

GAS

LI QUID

FIG. 7. Schematic look at the combined liquid-gas and

phase-separation properties for He- He mixtures. (a) The
situation at low pressure and (b) at higher pressure.

The absence of phase-separation peaks (for x & x,.)
taken together with the density problems, discussed
above, constitute a serious problem in relating the mi-

croscope calculations to the HMV data. Every calcula-
tion which has been done on the 'He ground state has
reinforced the conclusion that it is a self-bound sys-
tem. The calculation of Novaco and Campbell2 which

used a more general form for the trial function and a
Beck potential indeed found precisely the same pp as
reported here for Psj and a Lennard-Jones potential.
Schick and Campbell' found that a substrate-
mediated phonon interaction would tend to enhance
the binding (although the influence on pp is not
known). In addition, the nature of many-body bind-

ing for 2D 'He and He has also been confirmed by
use of the quantum theorem of corresponding states. "
The ground-states thermodynamic phases of pure 2D
'He and He seem, from a theoretical point of view,
to be firmly established. The question of phase-
separation is on less sure footing since phase-
separation does not depend on the particular state of
the pure phases but is a stability question with respect
to changes in concentration. However, for the 2D
'He-'He system, the extent of phase separation appears
to be more model dependent {i.e. , choice of wave

function, potential, method of evaluating expectation
values, etc.) than its existence. At zero-pressure the
energy increases monotonically from x =0 to x =x,
with basically negative curvature (cf. Fig. 4). If this
behavior is not due to some approximation, then,
since one can bound such a curve from below with a
line between —

~IE4~ (at x =0) to 0.0 (at x = I), such a

system will phase separate. (The question as to what
sort of systems tend to phase separate has been inves-

tigated for a general class of boson-fermion mixtures
using a corresponding states type of approach and will

be published elsewhere. }
One possibility of explaining the differences between

theory and HMV is that the periodic substrate poten-
tial has not been given its due. The HMV peaks {the
1-K structure) thus, for example, might represent
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FIG. 8. Phase diagram for 4He showing the liquid "island"

and concomitant triple point. The diagonal lines fill in the

coexistence regions. On this figure, only the high-

temperature gas, the high-density incommensurate solid and

the registered phase can be reasonable said to have been

identified.

super lattice structure other than the J3 && K3 or they
could be a sublimationlike coexistence region between
the low-density solid and a gas. It seems unlikely,
however, that these models could explain the flagrant
isotopic dependence exhibited by the peaks especially
in light of the rather mild isotopic differences in the
v3 x J3 phase. '. A final possibility is that these peaks
are the liquid-gas transition (or at least its manifesta-
tion) which has been distorted from its pure 2D
behavior by the external field. However, this model,
as ilustrated in Fig. 8 for pure 'He would seem to re-

quire a liquid "island" placed between the low-density

gas and the registered phase for which there is no ex-
perimental justification (there would be a low-density
triple point).

In conclusion then, the low-density phases of ad-
sorbed He on graphite are not well understood. It
should also be pointed out that the nature of the
phase for densities just greater than the registered
phase is not known. '"
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