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A recent study on composite solitons in 'He-A is extended to more general configurations and to all

temperatures. The texture free energy and the NMR satelhte frequencies are determined. In particular, the
satellite frequency associated with the splay composite soliton appears to account for. the transverse satellite

observed by Gould and Lee.

I. INTRODUCTION

In recent papers" we have shown that among
planar structures in 'He-A a twistlike composite
soliton has the lowest energy. In the composite
soliton both the I (designating the symmetry axis
of the quasiparticle energy gap) and the d (describ-
ing the spin component of the condensate) vectors
rotate within the same plane but in the opposite
direction. In an open system this composite soli-
ton has also been shown to be the end product of
the decay of a pure d soliton. We have further
calculated the satellite NMR frequencies in the
presence of the twist composite soliton and found
excellent agreement with that observed in the
longitudinal experiments by the Qrsay-Saclay
group' and by Gould and Lee.' On the other hand,
the predicted transverse satellite frequency was
a little larger than that observed by Gould and
Lee.4 We suggested that the transverse satellite
may arise from a related but different texture. In
fact, we will show' that the experimental procedure
used to observe the transverse satellite by Gould
and Lee4 produces the splay composite soliton.
Furthermore, the corresponding transverse satel-
lite frequency accounts beautifully for the ob-
served transverse satellite.

The object of this paper is to consider the other
possible composite solitons and study their NMR
response. We have noted earlier the three typical
planar textures', splay, bending, and twist. The
twist structure has already been studied in Ref. 2.
This classification is based on the relative orien-
tation of k, the unit vector normal to the domain
wall, and Io (or d, ) the asymptotic orientation of I
(or d). In a (long) cylinder for example the lowest-
energy texture would require k to be parallel to
the cylindrical axis, since in this configuration the
surface area associated with the planar texture is
minimized. More generally in any container with
two open ends, the most favorable textures ap-
pear to be those with the domain walls parallel to
the end surfaces. k is furthermore the direction of
the space inhomogeneity, which is assumed fixed

in the following analysis. In the presence of a
static magnetic field H„we can further assume
that t and d lie in a plane perpendicular to H, .
Therefore, in a long cylinder, the direction of the
static magnetic field determines uniquely the tex-
ture involved. In particular, when H, is parallel
to the cylindrical axis as in the longitudinal ex-
periment by Gould and Lee, we have the pure twist
texture. Qn the other hand, in their transverse
experiment H, was applied perpendicular to the
cylindrical axis. In this situation we cannot have
the twist texture but the splay-bending texture.
(We shall call hereafter the splay-bending com-
posite soliton with the lowest energy simply the
splay composite soliton. ) More generally, if H,
makes an angle 8 to k, the relevant texture changes
continuously from the pure twist texture for 8 =0
to the splay texture for 8 = v/2 as 8 increases from
0 to v/2. We predict that, if the experiment is
done with a static magnetic field H, with an angle
8 to the axis of the cylinder, one can see a con-
tinuous change of the texture involved in the form
of continuous changes in satellite frequencies from
the pure twist case to the splay case. An obvious
advantage in this setup is that one can pick up both
the longitudinal and the transverse signal simul-
taneously with a single rf field along the cylindrical
axis.

Another particular feature of the Cornell satel-
lites4 is their temperature dependence. The longi-
tudinal satellite frequency normalized by the Leg-
gett frequency has been found to be weakly temper-
ature dependent, whereas the transverse one is
almost insensitive to temperature. We have sug-
gested earlier that this temperature dependence
can be understood in terms of the temperature-
dependent Fermi-liquid corrections to the Ginz-
burg-Landau free energy as proposed by Cross. '
Basically the coefficients in the texture free ener-
gy are expressed in terms of the superfluid densi-
ties (mass as well as spin) which have different
temperature dependence. This results in tempera-
ture-dependent satellite frequencies. We find that
the transverse satellite frequency is in general
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less sensitive to temperature variations than the
longitudinal satellite frequency.

The calculations for the temperature dependence
will be reported both for the splay composite as well
as twist composite solitons. For the twist com-
posite soliton, the temperature dependence can be
obtained exactly in terms of a parameter ~, (to be
defined later in Sec. IV) which depends on the spin
and the mass superfluid density and the Fermi-
liquid parameters. For the splay composite soliton
the result is given only for T near T,. Comparison
of our results with the observed temperature de-
pendence of satellite frequencies yield a value for
F; (= 1.02 at the melting pressure) quite similar
to values estimated earlier. "

In Sec. II, we first calculate the free energy and

the profile associated with the composite soliton,
where the space gradients (direction of k) makes
an arbitrary angle g to H, (0 & g & w/2). In Sec. III,
we present the calculation of satellite frequencies
for the longitudinal as well as transverse magnetic
resonance. Section IV includes generalization of
the texture free energy for all temperatures and

a discussion of temperature dependence of satellite
frequencies due to the temperature-dependent Fer-
mi-liquid corrections. Section V includes a sum-
mary of results. In the Appendix, we present the
results for bending structure.

In all of the calculations reported here, the A-
phase order parameter is given by A„,=d„4, , with

n. , = (n, /&2) e"(6, + i6,), , (1)

where 6„5„and l (-=6, x 6,) constitute an ortho-
gonal triad of unit vectors describing the orbital
component and d represents a unit vector describ-
ing the spin component of the order parameter.
The spatial variation of these vectors is deter-
mined in the Ginzburg-Landau regime' by the free
energy F= F„,,+ ED, where

F — + $3@ 3 g ~ Q 2+ QxQ 2+2

and

Z = ' e o(-cosyx+ sing y+ ie) .
v'2

(3)

+ InI'(I v dl'+
I
«dI')]

where in the weak coupling theory K is given by"

6 N 7I(3)
5 (8m*) (2wT )''

In the presence of a strong magnetic field Ho ln
the z direction, both d and l are constrained in the
x-y plane;

d = singx+ cosPy,

l = sinxx+ cosy y,

+ 2(2- a')P+ —,sin'(y —P)

(4)
Here A=-,'K&', =4 y„C', where C is the spin-wave

velocity with the propgation vector perpendicular
to f, a=k, siny+k, cosX with k= (k„k» k,) and (
= C/0„, is the dipolar-coherence length. 0„is the
longitudinal NMR frequency in 'He-A, o($) is the
surface area of the domain wall. In Eq. (4) we in
elude the dipolar interaction energy ED (the last
term). We also have

4, =k,ay, /(2 —a ) . (5)

The phase current is thus nonvanishing only if k,k,
=0 with k = (k', + k22)'~'. Therefore, in the limits
H, l) k and H, &k, the phase current vanishes iden-
tically.

II. TEXTURE ENERGY AND PROFILE

We study the case when $= (0, sing, cosg) the
vector normal to the domain wall makes an angle
8 with respect to the direction of the static mag-
netic field. For gv0, the free energy [Eq. (4)] is
nonseparable and we resort to two approximations.
In the first approximation, recalling that the prin-
cipal independent variable in the twist composite
soliton was the relative angle v =X —g, we express
the free energy in terms of v and y = nv+ c, where
n is a variational parameter and c, (a constant) is
fixed by the orientation of the vector in the middle
of the domain wall. If y=-,' w at the center (v =-,' w)

we have c = (1 —n)-,'w and the structure obtained has
a splay conformation for the l vector but a bend
conformation for the d vector. This texture is the
same as the case 8=-,'p analyzed below. If y=o at
the center, c=-z-,'m, the texture obtained is bend-
like for /, and is discussed in Appendix A.

For the second approximation, we assume sinv
= sech(qs). Again q which represents the width

of the domain wall is treated as a variational param-
eter. The approximation is necessary in order
to calculate the resonance frequencies [.see Sec.
III]. A numerical calculation has been done without
the last approximation to test its validity and is
reported in Appendix B.

For planar textures Eq. (2} can be processed
with the assumption that 4, y, and g depend only
on s =k ~ x, where k is a unit vector normal to the
domain wall.

This has already been done in detail in Ref. 2.
Minimizing the free energy F„„in terms of 4, we
can express 4, in terms of y, . Then eliminating
4, we have

F 1 2 2k3gf = = —A ds 1+2a'—
o($} 2 2 —a'
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TABLE I. Results for the arbitrary angle Geld.

Long. Trans.

90.0
82.3
70.3
62.9
56.7
51.1
45.7
40.3
34.6
28.1
19.9
0.0

0.6981
0.7
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79
0.80

0.495
0.494
0.489
0.484
0.479
0.474
0.470
0.465
0.460
0.456
0.451
0.447

0.635
0.637
0.646
0.655
0.664
0.673
0.682
0.691
0.700
0.709
0.719
0.729

0.415
0.413
0.402
0.392
0.382
0.371
0.361
0.350
0.340
0.329
0.318
0.306

0.823
0.825
0.832
0.840
0.847
0.854
0.861
0.868
0.875
0.881
0.889
0.894

0.309
0.307
0.296
0.285
0.274
0.263
0.253
0.242
0.232
0.221
0.211
0.200

(a)

A straightforward calculation following Eci. (4)
yields

fe=(n4) 'f'
where

(6)

b) c)

4(qf,,) ' =—a2+ 4(a —1)'+ f a' sin'8

x (2a 1 ——,a' cos'8),

where f' = BA),' is the surface energy of a twist d
soliton. In deriving Eq. ('I), we have first inte-
grated the integrand over s, by expanding the in-
tegrand in powers of a and retaining the terms up
to the order of o4. Then we have minimized the
expression in terms of q. The free energy fe is

(a)

FIG. 2. Textures in a cylinder in the presence of
magnetic field. Only the E vectors are shown: (a) Shows
the static field Ho at an angle g with respect to the
cylinder axis. (b) and (c) show the twist and splay com-
posite with the field, respectively, parallel and per-
pendicular to the cylinder axis.

then obtained by minimizing (q$) ' separately for
each angle 8 by varying n and the results along
with the satellite resonance frequencies are sum-
marized in Table I. Qne of our approximations
(i.e. , the expansion in power of a) is justified a
post eriori, since n' ~ 0.64. In particular, for 8 = 0
(the pure twist case} the variational function to the
exact solution already found in I. For 8 =-,' m, the
composite soliton consists of splaylike 1 texture
and bendlike d texture. 3ee Figs. 1 and 2 for the
definition of twist, splay, and bend. The calcula-
tion of resonance frequencies is described in Sec. III.

(c)

FIG. 1. Three possible conformations for a composite
soliton: (a) a splay structure, (b} a bending structure,
and {c)a twist structure. The solid arrows are the
directions of the E vector, the dotted arrows represent
the d vectors.

III. MAGNETIC RESONANCES

We have already discussed the possibility of a
localized mode of oscillation of the d vector. This
mode can be magnetically excited and may be re-
sponsible for the satellite observed in the longi-
tudinal or transverse resonance. In order to cal-
culate the resonance frequencies we begin with the
d vector given by

d= cosg [sin(q~~, + f)x+ cos(g, + f) y]+ sings,
(6)

where ]), describes the equilibrium d configuration
in the presence of a composite soliton, and f and
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twist

.8

7—

R)

splay The corresponding eigenvalue equations are solved
variationally for each angle assuming that f
~ (sechqs)" and g~(sechqs)". The results are
given in Table L The parameters R,(=- X]~') and

R,(-=X', ') which appears in the satellite frequency'
as

(d, =R, Q~

((d) —&d()) = Rg Qg

.6
0

FIG. 3. e dependence of the ratios for the longitudinal

R) and transverse R
&

satellite frequencies. The texture
at 0= 0 is a twist composite, while the one at 8= m/2 is a

splay composite soliton.

Xzf =Azf =-—t", —[(1+sin'y, )f,]+(1—2sin'v, )f,
(10a)

X g=A g= ——$, —[(1+sin Xo)g„]
12d 2

+ )1 — 1+ —(a —1) (qf,)'

x(1+ sin'y ) sin2vo g. (10b)

A

g describe small fluctuations of d around the equili-
brium configuration. The spin-Quctuation free
energy is then obtained by substituting Eq. (8) into
Eq. (4) and expanding in powers of f and. g. Re-
taining the terms quadratic in f and g we have

when k makes an angle 8 to H„

5/=CA jdc [() ——,
' cic'Ceca'C)(f'cg')

+ ],2((1 —2 sin'vo) f2+ (1 —[1+(a —1}'(g$,)2

x (1——,
' sin'8 cos'X,) ) sin'vjg') ], (9)

where X, and v, are corresponding variables de-
scribing the equilibrium configuration. As to the
equilibrium configuration we have made use of a
solution determined variationally in Sec. D; for
example, y, =—a cosv, = a tanh(qs), and both a and

g are functions of angle 8 as given in Table I.
Equation (9) is recast into the eigenvalue equa-

tions

are also shown as function of 8 in Fig. 3. Here
(ct)

g
and co, are the longitudinal and the transve rse

satellite, respectively. From Fig. 3 we see that
both R, and R, decrease continuously from the
values corresponding to the pure twist composite
soliton to those of the splay soliton as 6} increases
from 0 to —,'~.

Of particular interest is the case 8 = —,'w (i.e. ,
the splay composite soliton), where we have

R, =0.635 and R, =0.823 (12)

for the longitudinal and transverse resonance,
respectively. We believe that the splay composite
soliton is responsible for the transverse satellite
frequency in the Gould-Lee (GL) experiment. '
This identification is based on not only that the
present satellite frequency is in excellent agree-
ment with the observed value, but also that it is
the unique stable texture when the static magnetic
field is perpendicular to the axis of the cylinder as
in their experiment.

IV. BEYOND THE GL REGIME

The frequency ratios R, and R, within the weak
coupling theory are pure numbers independent of
pressure and/or temperature (at least in the GL
regime) However. , at lower temperatures they do
acquire the temperature dependence due to the
temperature dependence of the Fermi-lquid cor-
rections as discussed by Cross. ' Cross has noted
that near T, the effect of Fermi-liquid corrections
is to simply replace m by no*. This has no effect
on the above frequency ratios. Below T„however,
the spin and the mass superfluid currents acquire
different Fermi-liquid corrections, resulting in
an additional temperature dependence on R, and

R,.
According to Cross' the generalized free energy

is given by

A A A A A

F„, = -,' X„C d r K, ( l ~ &@ '+ g, l x V4 '+ g, V4 ~ curl l —l l ~ curl l —~~ &4 ~ l l curl l

+ s (divl} + se(l x curl l)'+ s,(E ~ curl l}'+
~
(l x &)d ('+ X

(
(l &}d~'], (13}
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——/1 1 K' h 1 0 / Spin
Ky —

psll ~st 7 ~2 PSJ ~sJ p K3 K24 Psn~ PsJ-~ & K4 = Kg & K5 = 4 %~ + 3 " y& ~st~ ~SA

01 1 ~1 O ~gll + 2 ~ / spin
3 ( 3 if 2 Pcs 12 1 (Ef 0 f 1Psll syP Ps(.I+ 3 ~iPAIP) P

7 3~ 3 ~~ 4 ~SJ+~s +
4 ~ 1

A + ~ Fy( P~ll/ P)

y —pssin/pssin ~ g2 (i32/2 )2 pssin

(14)

and p„, p P,.™,and p', . are the mass, the spin, and
the irreducible supe rfluid density, and y is another
quantity introduced by Gross,

P3

3

P(p ) = 1 ——
II de sech'-,' P E(p )

with

E(p) ="+n, '(1 -i:)"' (15}

Here we have written E~„ in terms of / and C ra-
ther than in n =v'2 6/h„which is more convenient
in this general circumstance. Furthermore g„ is
the normal state- spin susceptibility and C, is the
spin-wave velocity with the propagation vector
perpendicular to /. Now the temperature-depen-
dent Fermi- liquid corrections are easily incor-
porated into Eq. (13), making use of the relation
due to Leggett"

P (II (1 4,. ll)/(1+ 3 E P ((}

P*,,","„=(1+ l F;)/(1+ t F,) (1 —et(,, „)/(1+ l E;0,, „),
with P, „=p'„„/p, where F, and F; are the P wave-
Landau coefficients.

In particular, within the weak- couplipg model
the above coefficients are given by

«1=«4=2+ 3 (,'A, —B,}e, «2=1+ 3 (Ai —Bi}e I

f*, ;., = (.i=cd C*, fd [(l~ dd+I, 's' '(*-Ill.

(18)

We note here that the composite soliton depends
only on z,. Introducing new variables by

~=4+~ x, ~=x- tt} ~

Equation (18) is reduced to
2

f —sdc]d(1 +I V+I d )+ K7 +K7

(19)

(20)

«1 = «2 = «3 = «4 = (3+ Ei)/(3+ Fi), «3 = 4 (1+ 3 Fi)

«, = «, [2+-,' F, + 8 1n(2yb, /vT} - 33' ],
«, =-,' «3(5+F,), A=1

for T = 0 where y = 1.76 is the Euler constant.
We note first that the anistropy in p, . and p P,."

disappear completely at T = 0 K. On the other
hand, ~, diverges logarithmically as T approaches
O. Since any composite soliton except the pure
twist soliton involves the term with a, coefficient,
these solitons become pure d solitons as the
temperature is lowered. However, even in the
case of the pure twist composite soliton, it be-
comes very close to the d soliton since z; » 1 for
T =—0.

We shall first consider the twist composite soli-
ton, which can be solved exactly at all tempera-
tures. Assuming that d, 1, and 6 are given by Eq.
(3) and that k=z, Eq. (13) is reduced to

1 x«3= 2+ 3 (Ai —Bi)ed «3 4 —
3 Bi&,

3-4+2(—, „—1)&I «, —4+ 3 (4A1 —Bi)& I

~= p — B~E fol T= T1 (16)

which has a soliton solution with U = const and

tanv/2=. exp [(«,'+1)'f'z/$, ].
This solution yields

fc —(1+«1) 1/2fd

(21)

with

e = (T, —T)/T„A1 = Ei/(1+ 3 Fi),
fd ~ C2P-1 (22)

The spin fluctuation around the composite soliton
can be treated similarly and we have

Bi = Fi/(1+ —,
' Ei), R(= —,

' [((«,'+ 1)(«,'+ 9))' ' —(«,'+ 3)]
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I.O (0.027Ai —0.11Bi)=0.35 (26a)

(0.00015Ai —0.009Bi) = 0, (26b)

0.5

0
7

FIG. 4. Temperature dependence of R, and R& for a
twist composite shown here in terms of dependence on
the parameter K7 defined in Eq. (15). At the melting
pressure K, varies from 4 at T=T, to around 0.1 at
T=0.

R [;i/(1+ -i))

for the ratios in the longitudinal and the transverse
satellite frequencies. The above ratios R, and R,
are shown as functions of z, in Fig. 4. Since z7
increases as the temperature decreases below

T„R, and R, decrease monotonically as the tem-
perature decreases. Substituting z, given in Eq.
(16) and expanding in q, we can estimate the tem-
perature dependence of R, and R, for the twist
soliton in the vicinity of T,

R, = 0.729 —(0.027 A, —0.11B~}e

and

which follows from the use of the GL data R, =O. V4

and R, —= 0.835. Since F, =15.66 at the
melting pressure, we can deduce F, from Eq.
(26a), we have E;=-1.33. Substituting this in the
left-hand side of Eq. (26b), we have

(0.00015A, —0.009B,) = 0.02,

which is appreciable but not inconsistent with the
experimental data. W'e note that the above F,' value
is very close to that obtained by Qsheroff et al. '
by analyzing the spin-wave velocity in 'He-B with-
in the weak-coupling theory.

The above weak-coupling analysis may be too
simple for 'He-A, as the axial phase is unstable
in this limit. An approximate" way to incorporate
the strong-coupling effect is to assume that the
most important strong-coupling correction is in
the normalization of a,(T)'. (This we may call
the na, ive strong-coupling theory. } This effect can
be incorporated in our analysis by replacing q in
Eqs. (24) and (25) by q*= j(&C/C) exp/(4C/
C) weakiq =1.5q at the melting pressure, where
~C is the jump in the specific heat at T,. Then
comparing the predicted temperature dependence
of R, for the twist composite soliton with the ex-
perimental data, we have now F,'= -1.01, which is
rather close to the value deduced by Wheatley'
(E;=-0.55) with the assumption I', = F;=0 for l ~ 2.
More generally, from the position of the satellite
resonance we can extract p'„"' and p', ~",

" experi-
mentally, if the temperature dependence of the
superfluid density p„and p„are known.

R, —= 0.894 —(0.015A~ —0.06B,)q . (24) V. CONCLUDING REMARKS

R g

——0.635 —(0.0003Ai —0.07B,)q,

R, = 0.823 —(0.00015Ai —0.009Bi)g .
(25)

Then, if we take our identification that the longi-
tudinal satellite of the GL experiment is due to the
twist composite soliton, while the transverse
satellite is due to the splay soliton, we should
have

Now let us consider the case of the splay com-
posite soliton. In this case the solution can be
determined only approximately. In.particular,
variational parameters have to be determined at
each temperature separately. However, if we lim-
it ourselves in the vicinity of T„we can deter-
mine coefficients of p in R, and R, by perturba-
tion, by making use of the already known solution
in the GL regime. This procedure yields, after
a long but straightforward calculation

We have extended previous study of composite
solitons into two directions. First we have studied
variationally a class of new textures which appear
in the presence of a tilted magnetic field with re-
spect to the normal vector of the domain wall. In
particular, we identify two composite solitons,
which are responsible for the longitudinal and the
transverse satellites in 'He-A. Furthermore, we
propose an experimental setup, which enables one
to explore a class of composite solitons. The cor-
responding satellite frequencies are obtained.

Secondly we generalize the texture free energy
following the suggestion by Cross, which enables
us to consider composite solitons at arbitrary
temperatures. In particular, the temperature de-
pendence of the observed ratio R, and R, are inter-
preted in terms of the temperature-dependent Fer-
mi-liquid correction. This interpretation yields
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an estimate of E„which is consistent with values
deduced previously.

APPENDIX A

In Sec. II, the case with C = -G-,'m has been men-
tioned. In this case, the / vector bends while the
d vector splays. Substituting the functions X and v
in Eq. (4}, we obtain (we consider only e = w/2)

fb gg g= (C5q) f (A1)
4(f$,) ' = a'+ 4(a —1)'+ 2(2a —1)[1——,

' a'].

APPENDIX 8

We now analyze the validity of the second ap-
proximation sinv = sects. With y = av+ c; the
splay profile [c = (1 —a)-,' m] is the solution of 8 =-,' m

v', =4 sin'v/[g E(a, v)],

E(a, v}= a'+ 4(a —1)'+ 2(2a —1)cos'y.

The energy is found to be the integral

After minimization this yields

n = 0.413

r r
f;„~=2A),' dv sinv[E(a, v)]'~',

&p
(B4)

(f$,) '=0.5524.

The energy is larger than the splay case.
(A2}

which can be evaluated numerically and found to be
f;„=0.499f' (a =0.695); the agreement with Eq.
(V} is excellent.
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