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We study the ground state of a system of bosons interacting with Yukawa potentials, in both the liquid

and solid phases, with a variational and an exact Monte Carlo method. A number of diA'erent wave functions
to describe the solid phase are investigated. It is found that a Gaussian-Jastrow wave function has a lower

energy than either a periodic wave function or a symmetrized Gaussian-Jastrow wave function. We have

determined the liquid-solid coexistence curve and discovered that the solid melts when Lindemann's ratio
exceeds 0.28. We have also determined that if the solid is superfluid, the superfluid fraction is less than
0.13. A significant conclusion of the comparison of exact and variational results is that the Gaussian-Jastrow
wave function for a solid is better than the Jastrow function for liquid when used in a variational calculation.
Thus a bias will be introduced when variational calculations are used to estimate crystallization and melting
densities. There is a class of Yukawa potentials which do not have a crystalline phase at any density.

I. INTRODUCTION

In recent years, many studies have made of the
ground state of liquid and solid helium and several
models of neutron matter using the Monte Carlo
technique to evaluate the expectation values cal-
culated with a variational wave function. ' Else-
where' we have reported the results of calcula-
tions for a simple model of neutron matter: bo-
sons interacting with a Yukawa potential. We had
found that bosons interacting with either the
"Bethe",' or with the "Chester-Cochran" potential'
do not crystallize at any density. Because of the
relatively low mass, the zero-point motion of the
neutrons is too large to localize the neutrons on
crystal sites. The calculations in this paper in-
vestigate a wider range of Yukawa potentials in
order to determine when a crystal forms and the
properties of such a crystal.

Consider the ground state of bosons interacting
with a Yukawa potential

V = eo exp ( r/o)r . -
The basic mechanism for crystallization for this
potential may be quite different than that of a hard-
core system like helium. For hard-core poten-
tials, the system crystallizes at high densities be-
cause in that way the particles avoid overlap; it is
basically a packing problem. On the other hand, a
soft-core potential allows overlap. Indeed, it is
likely that the high density phase of any soft-core
system is an imperfect gas. The system crystal-
lizes to minimize the total energy, but can do so
only if the zero-point motion is small enough.

It might be expected, then, that the ground-state
properties of a soft-core system would be quite

different from hard-core systems several of which
have been extensively studied, both theoretically
and experimentally. The Yukawa potential is both
soft and short ranged; it does not have the long-
range correlations of a coulomb system. A Yukawa,

crystal may be considerably different from a hel-
ium crystal, since the soft core allows exchange
effects much more readily.

A Yukawa system is probably a good model for
other interactions. For example, it has been used'
to determine the equation of state of neutron mat-
ter with c and a chosen to reproduce some of the
effects of the more complicated acid potential. For
0 equal to infinity the system is the one-component
plasma.

The Yukawa potential is convenient from a compu-
tational point of view. Since we can simulate at
most several hundred particles, the potential must
drop off fast enough so that if can be neglected for
distances greater than a few interparticle spacings.
The alternative is to use Ewald image method of
summing over the images of the particles in the
periodically extended space. The density in this
paper is restricted to the region p' '0 «1, where
the Ewald technique is not necessary, and long-
range effects are thought not to be important.

Our paper is organized as follows. In Sec. II we
describe the variational and exact Monte Carlo
methods which we use to calculate the ground-state
energy. With the exception of the treatment of the
permanent wave functions these methods have been
described elsewhere, and need only be outlined
here. We then describe the ground-state calcula-
tions for the liquid phase. After that we introduce
the four different wave functions for the crystal
phase which we have investigated. The usual
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Gaussian wave function times a Jastrow function
is found to have the lowest variational energy. It
should be noted that this is an unsymmetrical func-
tion, a symmetrical version of it has a slightly
higher energy. Using this wave function, we find
both the variational and exact liquid-solid coex-
istence curve. The remainder of the paper is a
discussion of some properties of the ground state,
the single-particle density, Lindemann's ratio'
the existence of vacancies, and an upper bound to
the superfluid density in the crystal phase.

II. ASSUMPTIONS AND COMPUTATIONAL METHODS

A quantum system with a Yukawa potential can
be characterized by two parameters: the density
and an interaction parameter. In this paper we
will use reduced units. That is, the unit of length
is 0; the reduced density is po', and energies are
in units of h'/2mo'. The DeBoer "quantumness"
parameter measures the kinetic energy relative
to the strength of the potential

A *= h/os' rsi e

In these reduced units r, of the electron gas is
given by

y, = p '~'24. 49/A~ .
The systems which are simulated in this paper

contain between 32 and 256 particles placed in a
cube with periodic boundary conditions. In several
cases, we have increased the size of the system
in order to observe the dependence of the energy
and other properties on the size of the system.
For low densities, that is p ~ 8.0, 54 particles are
generally suff icient.

The methods of calculation are, for the most
part, indentical with those outlined in our previous
paper of neutron matter. ' A variational calcula-
tion consists in sampling configurations drawn
from the trial wave function by the Metropolis
random-walk algorithm. ' ' The variational wave
function 4~ we have used in this paper has the
form

4 r =II xp[e(r„u)III-6(r;),

G(R, 5')4„,(R') dR' (5)

many times 4„will converge to the exact ground
state of the system 4 „and the eigenvalue of the
equation is proportional to the ground-state ener-
gy. In practice, the random walk is importance-
sampled with the trial wave function 4 ~. This
means the Green's function actually used is
G(R, R'}4 r(R)/4r(R'). The result of the iterations
will then be 4, 4 ~. Other ground-state properties
can be found by a weighted average" over the final
output configurations. The weights are proportion-
al to 4, (R)/4 r(R) and are calculated by using the
importance-sampled Green's function on the final
configurations. At the present time, the calcula-
tion of the weights can only be done rather crude-
ly; although mathematically the mean value of the
weights is given exa, ctly, computationally the
variance is quite high. The calculation of the
ground-state energy has been done for a variety of
problems and proven to be very reliable when the
interation for Eq. (5) is carried out 50-100 times.

The results should of course be independent of
which trial function g~ is used for an importance
function in the exact Monte Carlo method. The
results displayed in Table VI show that this is
nearly always so.

lattice sites and is discussed below.
%ith a given wave function, we evaluate the varia-

tional energy as the average of FI wr(R)/+ r(R). The
parameters of the wave function are then varied to
find the minimum energy. Once the best Jastrow
function is found, we calculate other properties of
the wave function such as the pressure, two-
particle correlation function and the single-particle
density matrix.

The method for calculating the exact ground-
state energy has also been described elsewhere. 2''
The basic method is as follows: we begin with
points drawn from the variational wave function
4 r(R}. We have found that it '.s possible" to sam-
ple the Green's function of the Hamiltonian K

3C(R}G(R,8') = 5(R —1t) .
It is easy to show that if we iterate the equation

(4)

This pseudopotential is smoothed for large r so
that it goes to zero continuously at the edge of the
simulation cube. The function 8(r;) is used in
crystal calculations to localize the particles on

where the pseudopotential u(v) has the sa.me form
as the one previously used in neutron matter cal-
culations and found to be a good approximation to
the ground state, namely

u(r) =Ae (1 —e '~ )/r

III. LIQUID PHASE

The variational method described above has been
used to calculate the liquid energies at 19 differ-
ent points in the A~, p plane. The best Jastrow
parameters and the variational energies are given
in Table I. %hen calculations have been carried
out for different values of E they are also shown.
Our exact calculation are shown in Table II for
three of the points in the Yukawa plane. Refer-
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TABLE I. Variational results for the liquid phase at several values of pears and A*. K is the
number of particles in the simulation. A, B, and D are the Jastrow parameters (in units of
a), see Eq. (4) of the text. T is the kinetic energy and E the total energy in reduced units
(a '/2mo').

0.002 44
0.003 66
0.004 88
0.012 2

0 ~ 024 4
0.244 1
0.244 1
0.244 1
0.006 10
0.008 84
0.012 21
0.029 8
0.244 1
1.133
0.029 2
0.069 6
0.244 1
0.488 3
0.029 3
0.069 6
0.244 1

0.345
0.345
0 ~ 345
0.345
0.345
0.345
0.345
0.345
0.487
0.487
0.487
0.487
0.487
0.487
0.539
0.536
0.539
0.536
0.629
0.629
0.629

54
32
54
54

108
54

128
250

54
54

108
54

128
128
108
108
108
250

54
54

128

24.8
24.0
24.0
22.4
20.8
12.5
12.5
12.5
19.2
19.2
19.2
16.0
9.6
6.4

15.2
13.1
9.9
0.75

12.8
11.2
8.8

0.17
0.22
0.16
0.19
0.22
0.69
0.69
0.69
0.20
0.25
0.22
0.44
1.12
1.56
0.44
0.63
1.06
1.37
0.47
0.72
1.3

0.19
0.18
0.18
0.19
0.18
0.11
0.11
0.11
0.4
0.4
0.3
0.3
0.2
0.2
0.3
0.2
0.2
0.2
0.5
0.4
0.2

0.304
0.437
0.652
1.56
2.88

15.9
15.9
15.9
0.62
0.87
1.28
2.26
9.65

31.9
2.11
4.18

10.4
14.5
1.67
3.16
8.09

0.815
1.59
2.65

11.69
34.46

730.4
729.3
729.5

2.23
4.03
6.62

24.79
373.6

2084 ~ 6
20.35
66.00

310.3
685.7
15.46
49.1

227.9

+ 0.008
+ 0.02
+ 0.01
k 0.02
+ 0.07
~ 0.4
y 0 4

0.3
k 0.01
k 0.01
+ 0.04

0.05
4 0.2
+ 0.4

0.04
+ 0.06
+ 0.3
+ 0.4

0.05
k 0.1
k 0.2

ence 2 contains additional variational and exact
results for values of A* appropriate to neutron
matter (0.98 and 1.08). Figure 1 shows the radial
distribution function computed both variationally
and exactly at one density (A* =0.629, p =0.07).
Figure 2 shows the exact structure factor. It is
apparent that the exact correlation function has
significantly more structure than the variational
one. This trend is true for other quantum liquids
such as helium. "" our S(k) is consistent with
linear behavior for small k. This suggests that
the exact method of computation includes some
of the effects of long wavelength phonons.

Using the weights from the exact code we have
calculated the single-particle density matrix at

one density. (See Refs. 2 and 8 for the method. )
It is shown in Figure 3. Its limiting value for
large r is the fraction of particles in the zero mo-
mentum state, which in this case (A* =0.629 and

p =0.07) is 0.08.

I.O—

0.8-

TABLE II. Results of the exact Monte Carlo simula-
tions for three values of po and A* in the liquid state.
N is the number of particles. T is the "mixed" kinetic
energy and F is the square of the pseudoforce. 2 8 is the
ground-state energy per particle in reduced units {a tail
correction has been added). The points correspond to
those on Fig. 4.

Point

0.6-

0.4—

0.0
0.0 lO 20 3.0 4.0 5.0

0.003 66 0.345 32 0.46 0.42 1.51 + 0.01 A
0.012 2 0.345 54 1.53 1.54 11.3 + 0.1
0.069 6 0.629 54 3.33 2.91 48.46+ 0.02 C

FIG. 1. Radial distribution function g{r) for the liquid
at the density p= 0.0696 and A+= 0.629. This is the point
marked C on Fig. 4. The solid line represents the re-
sults of our exact calculations; the variational results
are given by the dashed line; r is in reduced units.
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such a contour; the constant y prescription is
therefore probably accurate. The harmonic trial
function lacks the important two body correlations
and for this reason the Lindemann's ratio as pre-
dicted by this model is about —,

' of the exact Linde-
mann's ratio.

B. Gaussian Jastrow wave function

To improve the harmonic wave function one us-
ually introduces two body correlations by multi-
plying it by a Jastrow wave function. The result-
ing wave function has been used for variational
studies of solid helium" and neutron matter. '
The wave fmctioq is then

C ~=exp — C r; -R, ' — u r&ji(j (8)

l000

2000

lo I.O O. I

P

lo-'

xA - 0.4
\ - 0.345

l0

FIG. 4. Phase diagram of Yukawa Qosons. p is the
reduced density, r, and A* are measures of the poten-
tial defined with Eq. (2). The solid line is the exact
liquid-solid coexistence curve; the dashed line is the
variational line. The dashed line separating the bcc
and fcc solid phases is calculated from the harmonic
wave function. The three points marked A, 8, and C
are points for which we have done exact calculations.
The dotted line is the "Bethe" neutron matter potential. 3

The lines of constant g* are parallel to this dotted line.

and width change little with respect to A*. The
energies of the two crystal phases are extremely
close to each other throughout a wide range of
densities. Because of this, it will be very diffi-
cult to improve on this determination of the co-
existence curve by adding two particle correla-
tions to the trial functions. The difference in en-
ergy between the two phases is several orders of
magnitude smaller than the Monte Carlo statisti-
cal error of the energy. Throughout the remain-
der of the paper the bcc lattice is used for cal-
culations with p& 0.196 and the fcc for p &0.196.

The harmonic trial function was also used to
extrapolate the liquid-solid coexistence curve
from the region where we have done exact cal-
culations of the energy to both higher and lower
densities. For wave functions of this type, Linde-
mann's ratio y is proportional to Cp '~'. We as-
sume the coexistence curve to lie on a contour of
constant C*p '~'. For the density region that we
have investigated by variational and exact cal-
culation, the phase boundary does seem to lie on

where u(r) is given by Eq. (4). This wave function
has a much lower energy than the harmonic wave
function and over a wide range of densities this
wave function has given a lower energy than any
other wave function that we have tested. Its chief
disadvantage is that it is not symmetric with re-
spect to particle interchange as is the true gx'ound

state. The variational energies, optimum Jastrow
parameters, and Lindemann's ratio for 19 den-
sities are shown in Table III. Shown in Fig. 4 is
the liquid-solid coexistence line predicted from
these energies. The line itself is the contour
C *p ' ' =11.9 from the harmonic wave function as
described in the preceding paragraph. Examina-
tion of the phase diagram shows that if A* is lar-
ger than 0.60*0.04 this system treated in the har-
monic approximation is always in a liquid state;
it will not crystallize at any density.

It is difficult to do the double tangent construc-
tion on this system because the liquid and solid
energies are so close. However one can get an
estimate of the transition w'idth from the varia-
tional pressures. It is easy to show that in the
limit when 5p/p is small,

where p is the density and P is pressure, calcula-
ted in both phases with the use of the virial theor-
em,

P=3p 2T+p-. dVg r r ~ Vv x (10)

Here T is the kinetic energy per particle, and
v(r) is the Yukawa interaction. For the low den-
sity liquid-solid transition (to the right of the
critical point C on Fig. 3) we obtain 5p/p =0.01 for
A~ ='0.487 and 5p/p =0.02 for A* =0.345. These are
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TABLE III. Results of the variational Monte Carlo simulation with a Gaussian wave func-
tion for various points in the p, A* plane. See Table I for the explanation of the symbols. C
is the localization parameter of the Gaussians. y is Lindemann's ratio: rms deviation from
the lattice site divided by the nearest-neighbor distance. The systems with N =108 are on a
fcc lattice; the others are on a bcc lattice.

po 3 K A/0 Jjo C

0.002 44
0.003 66
0.004 88
0.012 2
0.024 4
0.244
0 ~ 244
0.006 10
0.008 84
0.012 21
0.029 8
0.244 1
1.133
0.029 2
0.069 6
0.244 1
0.488 3
0.029 3
0.069 6
0.244 1

0.345
0.345
0 ~ 345
0.345
0.345
0.345
0.345
0.487
0.487
0.487
0.487
0.487
0.487
0.539
0.536
0.539
0.536
0.629
0.629
0.62g

108 16 Q. 25 0.078
108 17 0 28 012

54 18 0.31 0.20
10S 19 0.25 0-39
108 18.4 0.37 0.49
250 12 0.94 1.95
256 12 0.94 . 1.95

54 13.8 0.27 0.16
108 13.6 0.34 0.23
108 12.8 0.31 0.23

54 15.2 Q. 62 0.58
128 8.8 1.5 2.34
250 4.8 2.5 4.67
108 12.8 0.62 0.58
108 11.5 0.91 0.86
108 8 1.6 2.34
250 6.1 2.1 3.5

54 11.2 0.62 O.58
108 9.0 1.0 1.0
128 6.1 2.1 2.34

0.32
0.18
0.58
0.24
0.17
0.16
Q. 16
0.64
0.56
0.48
0.24
0.16
0.08
0.32
0.32
0.16
0.11
0.48
0.29
0.16

0.396
0.607
0.918
2.41
3.68

19.2
19~ 2
0.861
1.23
1.46
3.38

13.86
31.6
3.17
5.35

12.7
19.2
2.g2
5.0

10.9

0.87
1.64
2.54

11.2
33.2

725.8
725.8

2.32
4.00
6.60

24.39
371.S

2086.4
20 ~ 27
65.6

310.5
686.2
15.59
49.1

229.1

k 0.01
~ 0.01
+ 0.01
4 Q.l

0.1
+ 0.3
~ 0.4
~ 0.02
+ 0.02
+ 0.04
+ 0.07
+ 0.3
+ 0.3
+ 0.04
+ Q. 1
+ 0.2
+ 0.2
+ 0.04
+ 0.1
k Q.3

0.309
0.301
0.262
0.223
0.239
0.255
0.254
0.310
0.275
0.325
0.266
0 ~ 238
0.303
0.257
0.269
0.256
0.273
0.275
0.260
0.284

only order of magnitude estimates but they show
how close are the densities of the two phases.

C. Periodic wave function

In the Gaussian wave function each particle is
localized around a lattice point. With the periodic
wave function particles are free to move through-
out the lattice, but are subjected to a periodic
pseudopotential. The crystal factor of the wave
function 8(R) is chosen to be a product of single-
particle terms having the periodicity of the cry-
stal.

e(B) =;e(~;) =exp ( -Q g(;))

where

y(r) =Q C p exp(i%, ~ r, ) .

R is a member of the reciprocal lattice and ct; are
additional variational parameters. The complete
trial wave function is the product $~8(R).

We have previously published' calculations with
this wave function for neutron matter. Our re-
sults were somewhat inconclusive because the sys-
tem did not crystallize at any density, and in that
situation it is not possible to discover the best
SQlid wave function. Lowy and Woo" using an ap-
proximate integral equation have been able to cal-

Fp

Ct; = Cp, d r (P —r', ) exp (R ~ r),
p

(12)

where r is half of the nearest-neighbor distance.
Since the energy calculated with this wave function
is considerably higher than that of the Gaussian
function we must conclude that it is the functional
form of the periodic wave function that is at fault,
and not merely its shape. In particular, the

culate the phase transition of 'He with this periodic
wave function. However, our present Monte Carlo
variational calculations show that in all cases
where the solid is the preferred phase, the Gaus-
sian- Jastrow wave function has a significantly
lower energy than the periodic wave function.

Shown in Table V are the energies, Lindemann's
ratio and the number of vacancies at the point B
on Fig. 4, corresponding to A*=0.345 and p
= 0.0122. Doing a complete search in a large di-
mensional parameter space of the c~'s with a
Monte Carlo program is extremely difficult. The
variational calculations for the most part have
been done using only one c„ that having (0 ) with
the smallest nonzero vector in the reciprocal lat-
tice. The last row in Table IV is for a Gaussian-
Jastrow wave function. The entry before that is an
attempt to reproduce the shape of the Gaussian
wave function near the lattice site. This implies
that we must choose
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D. Permanent wave function

A 'completely symmetric function can be con-
structed from the Gaussian wave function by sum-
ming over all permutations (P) of particles to
lattice sites. Let P(r) be a single-particle orbital
about the origin, e.g. , exp (-Cr'). For a given
set of lattice vectors R;, the permanent wave
function is defined as

=Q II 4(r» -Rr, ) .
P

(13)

We have sampled the square of this permanent
with a generalization of the usual Metropolis'
Monte Carlo method: the random walk for the
permanent trial function is now in both coordinate
and permutation space. The probability density to
be sampled is

F(R, p) =4&$)'Z II 4(r; —R„)p(r; —R, ) . (14)

Gaussian trial function does not allow double oc-
cupancy of lattice sites, while the periodic one
does. Let us contrast the Qaussian trial function
and the periodic trial function with the same Jas-
trow parameters. The kinetic energy of the two is
nearly the same while the potential energy of the
periodic wave function is 0.9 units higher. The
percentage of unoccupied Wigner-Seitz cells (V,)
rises from 0.03%%u~ to 3.3%%up. The periodic compo-
nent of the wave function does nothing to prevent
vacancies or double occupancy, and the Jastrow
factor in the trial function is not nearly repulsive
enough to do so. Our Monte Carlo calculations
show that a periodic wave function has a higher
energy than the Qaussian wave function for a wide
range of densities in the Yukawa crystal. Hence,
we believe that this periodic wave function is not
a good trial wave function for any crystal with an
interparticle potential having a soft (1/r) core.

The random walk consists of a possible step in
coordinate space followed by one in permutation
space. The move in coordinate space is chosen in
the usual fashion; a new coordinate for one of the
particles (say particle i) is chosen inside a cube of
side A. The probability for accepting this move
(R-R') is

gr(R ')' P(r,' —Rs, )P(r,' —R, )min 1, (16)

After the move of particle i, a pair permutation
between particle i and all other particles is at-
tempted. That is, for each particle j+i, a trial
permutation P, (k) is constructed where

P(q), k=f
P, (k)= P(f), k=q

P(k), otherwise . (16)

The probability for accepting this permutation is

Q(r, -R~, )P(r, —R~;)
' @(r, -R, )y(r, —R, )

(17)

Since the majority of permutation exchanges are
rejected, this is not the most efficient algorithm"
but by the usual arguments' a sufficiently long
random walk is a sample of the square of the wave
function.

The convergence of the random walk to the equil-
ibrium distribution was checked several ways.
First, it was observed that the various averages,
such as the energy and the mean-square displace-
ment reached steady values after about 200 moves/
particle. Define Q„as the probability that a par-
ticle will be involved in a permutation cycle of
length n. The values of Q„were kept and it was
observed that they were constant irrespective of
the starting configuration. Configurations (spatial
and permutation) were generated using a small
value of C, where long permutations are plentiful,

TABLE IV. Results of the periodic wave function at a density p03=0.0122, A*=0.345. The
values of C are the Fourier components for an fcc crystal N = 32 with A =21.7, B = 0.18, D
=0.27. For the two rows marked with a~ the Jastrow parameters wereA =19.1, B=0.25,
and D =1.43. Vo is the fraction of vacant Wigner-Seitz cells. It should be noted that Cf f f ~0
in order for the particles to be localized on the lattice sites.

C200 C220 C3gi C22p Vp

-0.5
—1.0
-2.0
-1.0
-1.0
-1.93

*-1.93
*Gaussian

0 0
0 0
0 0

+ 0.25 0
-0.25 0
-0 ~ 281 + 0.095
-0.281 + 0.095
with C=0.466

0
0
0
0
0

+ 0.254
+ 0.254

0
0
0
0
0

+ 0.217
+ 0.217

9.89
9.49
8.21
9,88
8.68
8.50
9.69
8.80

11.64 + 0.02
11.73 k 0.03
11.88 + 0.05
11.92 + 0.03
11.88 + 0.05
11.72 + 0.04
12.10+ 0.04
11.27+ 0.05

0.389
0.318
0.185
0.419
0.221
0.214
0.236
0.213

0.150
0.089
0.004
0.190
0.030
0.006
0.033
0.0003
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and these configurations were used as a starting
point for a random walk at a larger value of C.
The population of permutation cycles after equil-
ibrium was established as the same as that from
a random walk started from the lattice configura-
tion and the unit permutation. Hence the random
walk in permutation space is apparently ergodic;
the permutations did not seem to be either frozen
in or out.

Finally Qreen's theorem gives a relationship
between two energies which will, in general, only
be satisfied if the random walk has sampled
enough of configuration space.

( V'W(R ) + V lnf (R, P ) ~ VW(R)) =0,
where

(18)

Our results show that with 1000 moves/particle the
random walk is representative of the full configu-
ration space. Equation (18) is satisfied within the
statistical accuracy of our work. This amounts to
about Vg of either of the terms in Eq. (18).

Table V contains the energies per particle of the
permanent and Qaussian wave functions for A*
=0.845 and p=0. 0122 (point 8 on Fig. 4}, for sev-
eral values of the localization parameter C. The
energy of the permanent wave function is higher
than that of the Qaussian for all values of C; the
kinetic energy of the permanent is slightly small-
er since it allows greater excursions from the
lattice sites, but the potential energy rises by a
larger a.mount. This can be explained in the fol-
lowing manner: suppose particles i and j have
exchanged lattice sites, i.e., P(i) =j and P(j }=i.
Then both particles i and j will be attracted [see
Eq. (14)] to a point at position 2(8, +Hi}, and this
pseudolattice site will be doubly occupied giving

rise to additional potential energy.
The increase in energy of the permanent is quite

small for the optimum value of C, because there
are very few permutations there. A more sensi-
tive indicator of the effect of the permanent is the
population of permutation cycles Q„, also given
in Table V. At the optimum value of C =0.265
the probability of a particle being permuted is only
Sx10 4. As C is lowered this number rises very
quickly because there is roughly a barrier of
exp(-2Cr2„) for the formation of pair permutations.
For C =0.212, Vf(; of the particles are involved in
a permutation, for C =0.159, 29/p are involved in
permutations (one of which had a cycle length of
50).

E. Permanents with vacancies

Instead of allowing exactly one particle per lat-
tice site, a more general type of solid wave func-
tion can have a different number of particles and
lattice sites. In fact a number of theoretical
models have" predicted that the ground state of a
quantum crystal may have vacancies and if this is
the case the solid might have superQuid proper-
ties. Table V contains the results of a Monte
Carlo calculation with a system of 107 particles
and 108 lattice sites. The density is the same,
p =0.0122, which means the lattice spacing has
decreased slightly. The permanent wave function
was used, and the permuted lattice sites included
the empty one. The energy increased by 0.07
+0.01, the increase being split equally between
kinetic and potential energies. The above of
course is rather a crude test of the concept of
vacancies in the ground state, since it is likely
that if they do exist in the ground state their con-
centration is very much smaller than 1/p.

The whole question of vacancy formation in these

TABLE V. Variational results for the crystal phase at the density pcr3=0. 0122, A*=0.345
(point 8 of the text). The Jastrow parameters areA =19, B=0.25, and D=0.25. The wave
function was either a permanent (P), a Gaussian (G), or a permanent with one fewer particle
than lattice site (PV). C is the localization parameter of the Gaussian, T and E are the kine-
tic and total energies in reduced units, y is Lindemann's ratio, and Q is the probability that
a given particle is a member of a permutation cycle of length /.

Wave
function N

Lattice
type Qg

P
P
P
G

G

G
PV

108
108
108

54
108
108
107

fcc
fcc
fcc
bcc
fcc
fcc
fcc

0.265
0.212
0 ~ 159
0.265
0.212
0.159
0.265

2.00
1.77
1.50
2.37
1.99
1.72
2.05

11.28+ 0.01
11.44 + 0.03
11.76+ 0.03
11.19+ 0.03
11.30 + 0.01
11.51 + 0.01
11.36+ 0.01

0.265
0.304
0.365
0.231
0.285
0.315
0.265

0.9991
0.93
0.71
1.0
1.0
1.0
0.995

7x104
Sx103
0.04
0.0
0.0
0.0
0.004

1x104
1 x 10 3

0.02
0.0
0 ' 0
0.0
0.001
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crystals requires a great deal more careful in-
vestigation and considerably more computation.
The calculation we have just discussed only tells
us that nothing drastic happens when a single va-
cancy is introduced into the system described by
the same wave function as we used in the absence
of vacancies.

F. Exact calculations in the solid phase

We used the exact Monte Carlo method sketched
above to calculate the ground-state energy and
other ground-state properties in the solid phase.
Essential to the reliability and efficiency of the
exact method is the introduction of a good trial
wave function, since this wave function guides the
random walk to the important regions of con-
figuration space. We have carried out the exact
random walk at three densities near the liquid-
solid phase coexistence curve with three types of
importance functions: the liquid or Jastrow wave
function type„ the Jastrow-Gaussian wave function
and the periodic wave function. The results for
the liquid phase are in Table II, those for the
solid phase are in Table VI. Table VI, where
comments are made on the agreement of the re-
sults obtained with different importance functions.

It might be supposed that one should obtain esti-
mates of the eigenvalue for the ground state using
trial wave functions of very different character;
for example trial functions describing a liquid or
crystal. However, comparison of the "exact" en-
ergies computed using different trial functions
will only converge to a spatially homogeneous
liquid trial function will only converge to a
spatially homogeneous distribution and that a walk
guided by a solid wave function will only converge
to a solidlike state. Of course at any given den-
sity there is only one solution to Schr6dinger's

equation without nodes, but in the thermodynamic
limit it seems likely that in the liquid phase,
there exists a metastable solid wave function and
vice versa. Ne believe that if a Gaussian wave
function is used to guide the random walk, it will
converge to a unique metastable solid state (even
in the liquid phase), and vice versa with a liquid
trial wave function.

The situation with the periodic wave function is
somewhat different since particles are free to
move throughout the box and can show liquidlike
behavior. For this reason it appears that the en-
ergy eigenvalue of a ra.ndom walk guided by this
function can converge to either the liquid or solid
value, depending on which is lower. The conver-
gence to the liquid value happened for a 32-par-
ticle system at a density p=0.00366 and A*
=0.345, but not for the 54-particle system where
A*=0.629 and p=0. 0696, although the presence
Of large fluctuations in the random walk indicated
to us that it was trying to make the transition to
the liquid state. In a larger system such fluctua-
tions become more rare.

We also calculated the exact values of other
quantities such as Lindemann's ratio, and the
density distribution. The convergence of these
quantities is less satisfactory than that of the en-
ergy. For example, for the periodic trial func-
tion for which the energy converged to the liquid
energy, the density distribution still remained
nonuniform, although the trend was toward a more
uniform distribution. In order to calculate the
value of other quantities one needs the weights
4', (R)/4'r(R) and the calculation of these weights
is subject to large fluctuations. In fact one can
only trust these wej. ghts if one has other reasons
for believing that the ground state resembles the
trial wave function.

TABLE VI. Results of the exact Monte Carlo simulation at three densities with different
trial functions for the crystal phase. The symbols A, B, C, and D are the same as in Table
II. The entries in the last column show the kind of wave function used for importance samp-
ling in the exact Monte Carlo simulation. For the points B and C, the different importance
functions lead to energies which agree within the rather small statistical errors. The re-
sults for point A do not agree so well —probably due to difficulties in convergence in one of
the runs. The basic idea of importance functions and importance sampling is discussed in
the text immediately after Eq. (5).

Point Importance function

0.003 66
0.003 66
0.012 2

0.012 2

0.012 2
0.069 6
0.069,6

0.345
0.345
0.345
0.345
0.345
0.629
0.629

32 17.6 0.28 0.12 0.18 0.63
32 22.4 0.19 0.12 0.18 0.47
54 19.2 0.25 0.23 0.24 .1.95
54 19 2 0 25 0 35 0 24 2 20
54 21.6 0.19 0.78 0.24 2.40
54 9.0 1.0 1.0 0.29 4.79
54 10.4 0.78 1.95 0.32 4.23

1.56+ 0.01
1.51+ 0.01

11.09 4 0.01
11.07 + 0.01
11.07 + 0.02
48.76 + 0.05
49.1 + 0.2

A
A
B
B
B
C
C

Jastrow-Gaussian
Jastrow- Periodic
Jastrow-Gaussian
Jastrow-Gaussian
Jastrow-Periodic
Jastr ow-Gaussian
Jastrow- Periodic
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V. EXACT LIQUID-SOLID PHASE COEXISTENCE

The phase boundary estimated from our exact
energies is shown with the solid curve jn Fig. 4.
As before the curve satisfies the equation C *p ' '
=14.8. Since we have only done exact calcula-
tions at three points this curve is a rough esti-
mate of the actual curve. Note that this curve
predicts that the one component plasma will
crystallize at r, =130+10. This is in good agree-
ment with the recent value r, =135, obtained by
Glyde ef pL.

The comparison of the variational and exact co-
existence curves shows what we believe to be a
general feature of variational calculations: A
variational study of liquid and solid phases will
always favor the solid phase; the variational solid
energy is closer to the exact energy than is the
liquid variational energy to the exact energy. In
other words, the Gaussian-Jastrow wave function
is a better approximation to the solid phase than
is the Jastrow wave function to the liquid phase.

VI. LINDEMANN'S RATIO AND THE LOCAL DENSITY

DISTRIBUTION

I.O
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We have tabulated Lindemann's ratio y for the
various trial wave functions discussed above. The
variational results in Table III indicate that the
solid is unstable if y is greater than 0.28+0.02.
There is considerable uncertainty in this number
because of the limitations of the variational me-
thod. A similar value has been obtained at the
melting density" of He'. This is rather surprising
considering the difference in potential and possibly
in the mechanism behind the solidification.

Using the weights from the exact method we have
determined the ground-state density distribution
in the solid at A*=0.345 and p=0.0122. Shown in
Fig. 5 is the sphericalized distribution about a
lattice site; the solid curve is a Gaussian with the
same moment as the exact points. Table VII con-
tains the Fourier components of the exact density
distribution, at this density, where

FIG. 5. $ingle-particie density around a lattice site
in the solid, p= 0.0122 and &+=0. 345 (point B.on Fig.
4). The circles are the result of an exact calculation,
the curve is a Gaussian fitted to the mean-square value
of r; r is in reduced units, p(r) in arbitrary units.

VII. UPPER BOUND TO THE SUPERFLUID FRACTION

Recently it has been conjectured" that He' has
a small and as yet undetected nonzero superfluid
component. One can easily get an upperbound to
the superfluid fraction by a variational approach.
Using the same method suggested by Saslow, "

TABLE VG. Fourier components of the single-particle
density evaluated exactly (pz) and as predicted from a
Gaussian distribution ( p&). The second moment of the
Gaussian gives a Lindemann's ratio of y = 0.244.

/

p k = (1/.v) ( g exp(i% ~ r) ~

) /

Also shown are the Fourier components of a
Gaussian fitted to the second moment. Within the
errors of our calculation it appears that the den-
sity distribution is closely approximated by a
Gaussian. It should be noted however that this
Gaussian is appreciably narrower than the Gaus-
sian in the trial wave function. This feature of
the trial function was first noted by Hansen and

Levesque. "

k

000
110
200
112
Q22

013
2 c7 cP

123
004
033
114

1.0
0.552
0.311
0.169
0.093
0.050
0.027
0.011

-0.0009
0.0011

-0.0025

1.0
0.556
0.310
0.172
0.095 4
0.053 3
0.029 8
Q.016 6
0.009 15
0.005 13
0.005 13
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we have used our exact density distribution re-
sults to determine this upper bound to the super-
fluid fraction at a density p =0.0122 and A*=0.345
for the Yukawa crystal. An upper bound to the
superfluid fraction p, is given by

s." 2 ki&' 2K&)I&I 2&'rex wi ),
(20)

where fc is a wave vector in the reciprocal lattice,
p„ is the exact" fourier component of the density,
as given in Table VII and V, is the flow field vel-
ocity. The P~ are parameters which are varied to
minimize the upper bound. This minimization
yields a set of linear equations which are easily
solved numerically once the exact p, are known. "
For a crystal with the values of ~ in Table VII
(and others at higher values of k) this method
yields p, &0.13. This upper bound, Eg. (20), can
be used with any model wave function for a cry-
stal. Care should be taken in its application.
There are some model wave functions for which it
is extremely plausible that p, is zero e.g., a
model with strictly localized particles on lattice
sites would rule out any flo~ of any kind. For our
wave functions the p„'s are all rather similar and
we do not see any reason why some flow could not
take place. Whether it would be superflow is yet
another matter.

This value is in reasonable agreement with the
upper bounds as calculated by Saslow" for solid
He. ' In fact the upper bound is almost entirely a
function of the mean-square displacement from a
lattice site given that the density distribution is
well approximated by a Qaussian function. Since
no component of that magnitude has been obser-
ved in solid He4, it can be concluded that this
method does not yield a very good estimate of the
superfluid fraction.

VIII. CONCLUSION

A system of particles interacting with a Yukawa
potential is an example of a system with a poten-
tial which is both short range and soft. At high
density it behaves like a Coulomb system. Only if
the kinetic energy is small enough will it crystal-
ize. Our exact Monte Carlo calculations imply

that this will happen only if A*& 0.48. The ener-
gies of the liquid and solid phases are extremely
close to each other over a large density range;
the relative width of the coexistence region is
estimated to be only 11. This emphasizes the
importance of doing accurate calculations to find
the phase boundaries for such smooth potentials.

We have found that our variational calculations
tend to favor the solid phase. That is our solid-
phase variational calculations are in closer agree-
ment with the exact Monte Carlo results than the
variational results we obtained for the liquid
phase. While this conclusion is of course only
strictly true for the class of variational wave
function we have used we believe it to be rather
generally valid. The reason for this belief is that
the configuration space of the crystalline phase is
considerably simpler than that of the fluid phase.
The particles are localized and do not move freely
past one another. Hence it is easier to build a
variational wave function for the crystal phase as
compared with the fluid phase. Both functions
contain two-particle correlations, the function for
the crystal phase contains single-particle corre-
lation in addition.

The Yukawa crystal is in many ways similar to
solid helium. It will melt if Lindemann's ratio is
greater than about 0.28. The single-particle den-
sity is well approximated by a Gaussian distri-
bution. A periodic trial wave function has a signi-
ficantly higher energy than the Gaussian trial
wave function, probably because it allows double
occupancy of lattice sites. We have found that it
is possible to sample a symmetrized Qaussian
wave function and that its variational energy is
slightly higher than that of the unsymmetrized
Gaussian. Adding one vacancy to this crystal in-
creases the energy. However, it is difficult within
the variational approach to determine whether the
ground-state crystal contains any vacancies. We

have also determined that the superfluid fraction
in the crystal is less than 0.13. As we have al-
ready mentioned earlier this bound seems rather
insensitive to the form of the variational function,
or whether we use results from variational cal-
culations or our exact simulations. They all pro-
duce very similar values for the Fourier compo-
nents pi, of the density, on which the bound de-
pends.
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