## Hard-sphere roton interaction

W. Meyer

Instituto de Fisica "Gleb Wataghin," Departamento de Electronica Quantica, Universidade Estadual de Campinas, 13100 Campinas, São Paulo, Brazil

K. W. Wong

Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045 (Received 14 September 1977)

Utilizing a roton-roton interaction derived from a hard-sphere model for superfluid helium we obtained a qualitatively correct temperature dependence to the correction of the transition temperature  $T_{\lambda}$  due to roton-roton interaction as compared to that calculated without such roton-roton interaction.

## I. INTRODUCTION

To explain the thermodynamic properties of superfluid <sup>4</sup>He, Landau<sup>1</sup> suggested an excitation spectrum as depicted in Fig. 1. For small momenta this spectrum is phononlike, however at high momenta  $\hbar k \approx \hbar k_0$  ( $k_0 = 1.91$  Å<sup>-1</sup>) the spectrum deviates from the linear momentum dependence and is called the roton region, which can be approximated by

$$\epsilon = \Delta_0 + (\hbar^2/2\mu)(k - k_0)^2, \tag{1}$$

where  $\hbar \vec{k}_0$  and  $\Delta_0$  designate the roton momentum and energy, respectively.

At temperatures T higher than 1 °K, the superfluid-mass density  $\rho_s$  is depleted primarily by rotons. The roton-mass density  $\rho_R$  is given by

$$\rho_R = \int \frac{d^3k}{(2\pi)^3} m(\epsilon) n(\epsilon) = \frac{\hbar^2 k_0^2}{3\beta} N_R, \qquad (2)$$

where the effective roton mass

$$m(\epsilon) = (\hbar^2 k^2 / 3\beta) n(\epsilon) e^{\epsilon / \beta}$$
(3)



MOMENTUM / h K(Å-1)

FIG. 1. Excitation spectrum of superfluid helium proposed by Landau.

is given from momentum considerations.<sup>2</sup> In Eqs. (2) and (3),  $\beta = k_B T$  is the product of the Boltz-mann's constant and the temperature of the liquid, and

$$n(\epsilon) = (e^{\epsilon/\beta} - 1)^{-1} \tag{4}$$

describes the number of rotons with momentum  $\hbar \vec{k}$ . Thus, the number of rotons per unit volume is given by

$$N_{R} = \frac{1}{(2\pi)^{3}} \int n(\epsilon) d^{3}k = \frac{2(\mu B)^{1/2} k_{0}^{2}}{(2\pi)^{3/2} \hbar} e^{-\Delta_{0}/\beta}.$$
 (5)

From Eqs. (2)-(5) one obtains, setting  $\rho_R$  equal to the liquid-helium-mass density  $\rho$ , a critical temperature  $T_{\lambda} \approx 2.8$  °K, much too large as compared with the experimental value of 2.17 °K. Furthermore, the superfluid-mass density  $\rho_S = \rho - \rho_R$ for  $T \approx T_{\lambda}$  is also an order of magnitude overestimated.<sup>3</sup>

Ruvalds,<sup>4</sup> who postulated a  $\delta$ -function interaction between the rotons, calculated in the Hartree-Fock approximation the effect of this interaction on the excitation energy, yielding

$$\epsilon' = \epsilon + 2g_A N_B(T), \tag{6}$$

where  $g_4$  is the attractive strength of his  $\delta$ -function interaction. Using (6) in (5) and choosing  $g_4 = -3.7 \times 10^{-38}$  erg cm<sup>3</sup> he showed that the critical temperature can be brought down to the experimental value. However, it has to be kept in mind that in his model the value for  $g_4$  is an order of magnitude larger than one would need in order to obtain a correct value for the roton-roton binding energy.<sup>5-7</sup> Furthermore, a  $\delta$ -function interaction cannot explain the value of the roton-roton collision frequency.<sup>8</sup>

Based on a hard-sphere model for liquid <sup>4</sup>He,<sup>9,10</sup> we have derived a roton-roton interaction which not only gives the correct value for the roton-ro-ton binding energy but also the correct value for the roton-roton collision frequency.<sup>11</sup> Therefore,

17

1067

we shall use this same interaction potential here to derive its influence on the transition temperature  $T_{\lambda}$  along the lines as presented in Ref. 4. Our goal is twofold. First, we show that our microscopic model which is consistent with earlier calculations<sup>10</sup> for the binding energy and scattering frequencies of rotons, in fact provides the right order of magnitude correction to the transition temperature. Second, in calculating for the transition temperature, it is also shown explicitly, with our model, that the roton energy decreases with increasing temperature, in contrast to earlier calculations by Parry and ter Harr.<sup>12</sup> This lowering of the roton energy with increasing temperature has been verified conclusively by neutron scattering data,<sup>13</sup> and is the key ingredient in adjusting the transition temperature  $T_{\lambda}$  to lower values when taken into account.

## **II. THEORY**

From the hard-sphere interaction we obtain for the roton-roton interaction in the Hartree-Fock approximation<sup>11</sup>

$$H = \sum_{\vec{k}} \epsilon_{\vec{k}} \beta^{\dagger}_{\vec{k}} \beta_{\vec{k}} + \frac{g}{2V} \sum_{\vec{k},\vec{p}} V(\vec{k},\vec{p}) \beta^{\dagger}_{\vec{k}} \beta_{\vec{k}} \beta^{\dagger}_{\vec{p}} \beta_{\vec{p}}, \qquad (7)$$

where

$$V(\vec{\mathbf{k}},\vec{\mathbf{p}}) = \cos(\left|\vec{\mathbf{k}} - \vec{\mathbf{p}}\right|a) - \frac{a\vec{\mathbf{k}}\cdot\vec{\mathbf{p}}}{|\vec{\mathbf{k}} - \vec{\mathbf{p}}|} j_1(\left|\vec{\mathbf{k}} - \vec{\mathbf{p}}\right|a).$$
(8)

The  $\beta_{\tilde{k}}$  represents the quasiparticle operator obeying Bose statistics, and the interaction strength  $g = 4\pi a \hbar^2/m = 4.33 \times 10^{-38}$  erg cm<sup>3</sup> for a helium atom with a hard-core diameter a = 2.1 Å and a mass  $m = 6.7 \times 10^{-24}$  g. The Hamiltonian given by Eq. (7) represents the lowest order of roton interaction and is, in fact, valid only for momenta k and p around  $k_0$ .<sup>11</sup> The first term in Eq. (7) represents the excitation spectrum at T = 0 °K, and the second term is the Hartree-Fock (HF) exchange. The direct HF term does not appear here because it has already been absorbed into the computation of  $\epsilon_k$ . The self-consistently corrected energy in this approximation is therefore given by

$$\epsilon'_{k} = \epsilon_{k} + \Sigma_{k}(T), \tag{9}$$

with

$$\Sigma_{k}(T) = \frac{g}{V} \sum_{\dot{p}} V(\vec{k}, \vec{p}) n_{\dot{p}}', \qquad (10)$$

where n'(p) is given by Eq. (4) with  $\epsilon_p$  replaced by  $\epsilon'_p$ . To calculate the self-energy in Eq. (10) approximately, we observed that the experiments yielding information on the roton-roton interaction are the Raman scattering experiments,<sup>14,15</sup> which only reveal the properties of the l=2 angular component of the roton-roton interaction.<sup>16</sup> However, measurements on the linewidth of the Raman scattering cross section<sup>17</sup> lead, in fact, to the same collision frequencies as those obtained from viscosity measurments.<sup>18</sup> Thus, we may conclude that the l=2 component constitutes the main channel in the roton-roton interaction. With this physical consideration in mind we decompose V into spherical harmonics

$$V(\vec{\mathbf{k}}, \vec{\mathbf{p}}) = \sum_{l} \lambda^{(l)}(k, p) P_{l}(\cos\theta_{\hat{\mathbf{k}}}, \hat{\mathbf{p}}).$$
(11)

Now, for the calculation of Eq. (10) we shall only retain the l=2 component (see Ref. 11 for further computational details). Thus,

$$\Sigma_{k}(T) = \frac{4\pi}{(2\pi)^{3}} g \int_{0}^{\infty} dq \, q^{2} n_{q}' \left( -2j_{2}(ka) \, j_{2}(qa) + \frac{1}{2} \left[ j_{0}(\left| \vec{\mathbf{q}} + \vec{\mathbf{k}} \right| a) + j_{0}(\left| \vec{\mathbf{q}} - \vec{\mathbf{k}} \right| a) \right] - j_{0}(ka) \, j_{0}(qa) - \frac{k^{2} + q^{2}}{2kq} \left[ j_{0}(\left| \vec{\mathbf{q}} - \vec{\mathbf{k}} \right| a) - j_{0}(\left| \vec{\mathbf{q}} + \vec{\mathbf{k}} \right| a) - 6j_{1}(ka) \, j_{1}(qa) \right] \right).$$

$$(12)$$

Since we are only interested in  $\Sigma_k(T)$  for  $k \approx k_0$  and since n(q) also peaks strongly around  $q = k_0$ , Eq. (12) yields

$$\Sigma_{k_0}(T) = -0.422gN'_R(T), \qquad (13)$$

where  $N'_R(T)$  is given by Eq. (5) with  $\Delta_0$  replaced by  $\Delta_0 + \Sigma_{k_0}(T)$ . Expression (13) shows clearly that with increasing temperature the roton energy will decrease contrary to the conclusion drawn by Parry and ter Haar<sup>12</sup> in their calculation. Furthermore, increasing the hard-core diameter *a* in fact increases the coupling strength *g* and also the expression inside the large parentheses in Eq. (12), leading to a lowering of  $T_{\lambda}$ . This actually implies that the model is consistent with the decrease of  $T_{\lambda}$  at increasing pressures on the liquid.<sup>3</sup>

To calculate for  $T_{\lambda}$  we substitute  $n'_R = N'_R \times 10^{-22}$ and  $\tilde{g} = g \times 10^{38}$ , then set  $\rho_R = \rho$  in Eq. (2), which together with Eqs. (5), (9), and (13) leads to

$$3.586 + 0.045\tilde{g} = \frac{1}{2}\ln T + 8.65/T, \qquad (14)$$

where we have chosen  $\Delta_0 = 8.65$  °K,  $\mu = 1.06 \times 10^{-24}$  g,  $k_B = 1.38 \times 10^{-16}$ , and  $\rho = 0.145$  g/cm<sup>3</sup>. Furthermore, by choosing the hard-core diameter a = 2.1

Å and the helium mass  $m = 6.7 \times 10^{-24}$  g, with the normalized interaction strength  $\tilde{g} = 4.33$  erg cm<sup>3</sup>, we reduce the value for  $T_{\lambda}$  from 2.8 to 2.6 °K. To reduce  $T_{\lambda}$  further to the experimental value of 2.17 °K under the same approximations as considered above, we would have to increase  $\tilde{g}$  four times. However, this point should not be disappointing to us. In fact, our interaction strength  $\tilde{g}$  as shown by Tüttö<sup>19</sup> has about the maximum value possible under which the HF approximation can

- <sup>1</sup>L. D. Landau, J. Phys. USSR <u>5</u>, 71 (1941); <u>11</u>, 91 (1947).
- <sup>2</sup>A. A. Abrikosov, L. P. Gorkov, and I. Ye. Dzyaloshinskii, *Theoretical Methods in Statistical Physics*, 2nd ed. (Pergamon, New York, 1965), p. 12.
- <sup>3</sup>R. J. Donnelly, *Experimental Superfluidity* (University of Chicago, Chicago, 1967), and references therein.
- <sup>4</sup>J. Ruvalds, Phys. Rev. Lett. 27, 1769 (1971).
- <sup>5</sup>J. Ruvalds and A. Zawadowski, Phys. Rev. Lett. <u>25</u>, 333 (1970).
- <sup>6</sup>A. Zawadowski, J. Ruvalds, and J. Solana, Phys. Rev. A 5, 399 (1972).
- <sup>7</sup>F. Iwamoto, Prog. Theor. Phys. <u>44</u>, 1121 (1970).
- <sup>8</sup>J. Yau and M. J. Stephen, Phys. Rev. Lett. <u>27</u>, 482 (1971).
- <sup>9</sup>K. W. Wong and Y. H. Huang, Phys. Lett. A <u>30</u>, 293 (1969).
- <sup>10</sup>W.Meyer, thesis (University of Southern California, 1974) (unpublished); W. Meyer, K. W. Wong, and Lin-Ing Kung, Phys. Rev. B 15, 5283 (1977); and W. Meyer

still be applied meaningfully. Going to larger values for  $\tilde{g}$ , contributions from two roton-bound states will become important in the evaluation of the self-energy, thus, reducing its value until it eventually changes sign at sufficiently large  $\tilde{g}$ . Thus, our value for  $\tilde{g}$  is just about the optimal value we can expect. The reason for our failure to obtain a better value for  $T_{\lambda}$  must lie in the crude approximations that we have made, such as neglecting all scattering channels other than l=2.

- and K. W. Wong, Phys. Rev. B (to be published).
- <sup>11</sup>W. Meyer, K. w. Wong, and J. H. Marburger, Phys. Rev. B <u>14</u>, 1932 (1976).
- <sup>12</sup>W. E. Parry and D. ter Haar, Ann. Phys. (N.Y.) <u>19</u>, 496 (1962).
- <sup>13</sup>D. G. Henshaw and A. D. B. Woods, Phys. Rev. <u>121</u>, 1266 (1961).
- <sup>14</sup>T. J. Greytak and J. Yan, Phys. Rev. Lett. <u>22</u>, 987 (1969).
- <sup>15</sup>T. J. Greytak, R. Woerner, J. Yan, and R. Benjamin, Phys. Rev. Lett. 25, 1547 (1970).
- <sup>16</sup>M. J. Stepehn, Phys. Rev. 187, 279 (1969).
- <sup>17</sup>T. J. Greytak and J. Yan, Proceedings of the Twelfth International Conference on Low Temperature Physics, Kyoto, 1970, edited by E. Kanda (Academic of Japan, Kyoto, 1971) p. 89.
- <sup>18</sup>D. F. Brewer and D. C. Edwards, Proceeding of the Eighth International Conference on Low Temperature Physics, London, 1962, edited by R. O. Davis (Butterworths, London, 1963) p. 96.
- <sup>19</sup>I. Tüttö, Int. J. Low. Temp. Phys. II 77 (1973).