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Hard-sphere roton interaction
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Utilizing a roton-roton interaction derived from a hard-sphere model for superfluid helium we o'btained a
qualitatively correct temperature dependence to the correction of the transition temperature T„due to roton-
roton interaction as compared to that calculated without such roton-roton interaction.

I. INTRODUCTION

d'A 8 0~0
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where the effective roton mass

m(e) = ()E k /3P)n(e)e' ~

(2)

(3)

To explain the thermodynamic properties of su-
perQuid 4He, Landau' suggested an excitation
spectrum as depicted in Fig. 1. For small momen-
ta this spectrum is phononlike, however at high mo-

mentahk =leak, (k, = 1.91 L ') the spectrum deviates
from the linear momentum dependence and is called
the roton region, which can be approximated by

& = 4, + (0'/2p)(k —k,)', (1)

where Sk and h, designate the roton momentum
and energy, respectively.

At temperatures T higher than 1 K, the super-
fluid-mass density pz is depleted primarily by ro-
tons. The roton-mass density ps is given by

describes the number of rotons with momentum
hk. Thus, the number of rotons per unit volume
is given by

N„=(2 ), n(e)d'k=
(2 )„, ' e (5)

From Eqs. (2)-(5) one obtains, setting p„equal
to the liquid-helium-mass density p, a critical
temperature T„=2.8'K, much too large as com-
pared with the experimental value of 2.17 K. Fur-
thermore, the superfluid-mass density ps = p —p~
for T = T„ is also an order of magnitude overesti-
mated. '

Ruvalds, ' who postulated a &-function interac-
tion between the rotons, calculated in the Hartree-
Fock approximation the effect of this interaction
on the excitation energy, yielding

is given from momentum considerations. ' In Eqs.
(2) and (3), P = ke T is the product of the Boltz-
mann's constant and the temperature of the liquid,
and

n(~) =(e'" —1) '

e'=e+2g, N„(T), (6)
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FIG. 1. Excitation spectrum of superQuid helium
proposed by Landau.

where g4 is the attractive strength of his &-func-
tion interaction. Using (6) in (5) and choosing g,
= —3.7 x 10 "erg cm' he showed that the critical
temperature can be brought down to the experimen-
tal value. However, it has to be kept in mind that
in his model the value for g~ is an order of mag-
nitude larger than one would need in order to ob-
tain a correct value for the roton-roton binding

energy. ' ' Furthermore, a &-function interaction
cannot explain the value of the roton-roton col-
lision frequency. '

Based on a hard-sphere model for liquid 'He, 'e"
we have derived a roton-roton interaction which
not only gives the correct value for the roton-ro-
ton binding energy but also the correct value for
the roton-roton collision frequency. " Therefore,
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we shall use this same interaction potential here
to derive its influence on the transition tempera-
ture T~ along the lines as presented in Ref. 4. Our
goal is twofold. First, we show that our micro-
scopic model which is consistent with earlier cal-
culations" for the binding energy and scattering
frequencies of rotons, in fact provides the right
order of magnitude correction to the transition
temperature. Second, in calculating for the transi-
tion temperature, it is also shown explicitly, with
our model, that the roton energy decreases with
increasing temperature, in contrast to earlier cal-
culations by Parry and ter Harr. ' This lowering
of the roton energy with increasing temperature
has been verified conclusively by neutron scatter-
ing data, "and is the key ingredient in adjusting
the transition temperature T~ to lower values when
taken into account.

II. THEORY

From the hard-sphere interaction we obtain for
the roton-roton interaction in the Hartree-Fock ap-
proximation"

where

V(k, p) = cos( )k -p [a) — j,((k —p (a). (8)
lk p I

The P-„represents the quasiparticle operator obey-
ing Bose statistics, and the interaction strength
g= 4vah'/I = 4.33 x 10 " erg cm3 for a helium atom
with a hard-core diameter a= 2.1 A and a mass
m= 6.7 x 10 '~ g. The Hamiltonian given by Eq.

(7) represents the lowest order of roton interac-
tion and is, in fact, valid. only for momenta k and
j) around k,." The first term in Eq. (f) represents
the excitation spectrum at T=O'K, and the sec-
ond term is the Hartree-Fock (HF} exchange. The
direct HF term does not appear here because it has
already been absorbed into the computation of e~.

The self-consistently corrected energy in this ap-
proximation is therefore given by

(g)

with

Z„(T}=—Q &(k, p)n, (10)

where n'(jt)) is given by Eq. (4) with e~ replaced
by e~. To calculate the self-energy in Eq. (10}
approximately, we observed that the experiments
yielding information on the roton-roton interac-
tion are the Raman scattering experiments, "'"
which only reveal the properties of the l = 2 angular
component of the roton-roton interaction. " How-
ever, measurements on the linewidth of the Raman
scattering cross section" lead, in fact, to the
same collision frequencies as those obtained from
viscosity measurments. " Thus, we may conclude
that the L= 2 component constitutes the main chan-
nel in the roton-roton interaction. With this physi-
cal consideration in mind we decompose V into
spherical harmonics

V(k, p) =g X")(0,p) P, (cosem .~).

Now, for the calculation of Eq. (10) we shall only
retain the l = 2 component (see Ref. 11 for further
computational details). Thus,

~ Ã)= .j.' &qe*"!(- jt lj2(q ))~ l jt(qtk( ) ~ jt~q-k( )]-jt), )jtj )2v} o

k'
[j,(~q —k[a}-j,((q+k(a) —6j,(ka) j,(qa)] .

Since we are only interested in -Z~{T) for k =4, and
since n(q) also peaks strongly around q= k„Eq.
(12) yields

Z„(T)= - 0.422','(T),
where fqz(T) is given by Eq. (5) with &, replaced
by z, +Z (T). Expression (13) shows clearly that
with increasing temperature the roton energy will
decrease contrary to the conclusion drawn by
Parry and ter Haar" in their calculation. Fur-
thermore, increasing the hard-core diameter a
in fact increases the coupling strength g and also

3.586+0.045g= 2 lnT + 8.65/T, (14)

where we have chosen ~,=8.65'K, p. =1.06X10"
g, ke = 1.38 x 10 '6, and p= 0.145 g/cm'. Further-
more, by choosing the hard-core diameter a = 2.1

the expression inside the large parentheses in Eq.
(12), leading to a lowering of T„This actua. lly
implies that the model is consistent with the de-
crease of T„at increasing pressures on the liquid. '

To calculate for T~ we substitute n~=¹„x10 "
and g=gx10", then set p„= p in Eq. {2), which
together with Eqs. (5), (9), and (13) leads to
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A and the helium mass gpss = 6.7 x 10 g, with the
normalized interaction strength g= 4.33 erg cm',
we reduce the value for T„ from 2.8 to 2.6 'K. To
reduce T„ further to the experimental value of
2.17 'K under the same approximations as con-
sidered above, we would have to increase g four
times. However, this point should not be dis-
appointing to us. In fact, our interaction strength
g as shown by Tutto" has about the maximum val-
ue possible under which the HF approximation can

still be applied meaningfully. Going to larger val-
ues for g, contributions from two roton-bound
states will become important in the evaluation of
the self-energy, thus, reducing its value until it
eventually changes sign at sufficiently large g.
Thus, our value for g is just about the optimal val-
ue we can expect. The reason for our failure to
obtain g. better value for T„must lie in the crude
approximations that we have made, such as ne-
glecting all scattering channels other than / = 2.
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