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Ag through Te: Pressure dependence of the Mossbauer isomer shift for Sn and Sbt

D. L. %'illiamson, ~ John H. Dale, %; D. Josephson, and Louis D. Roberts
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514

(Received 23 July 1976; revised manuscript received 7 October 1977)

Experimental Mossbauer isomer shift studies have shown that when P-Sn is compressed, the charge density

p(0) at the nucleus decreases, viz. , alnp(0)/81n V & 0. This fact suggested a study of the systematics of
alnp(0)/t) ln V for the Ag row of the Periodic Table. We have calculated alnp(0)/aln V for the elements

Ag through Te in a Hartree-Dirac-Wigner-Seitz approximation. Exchange is treated through an exchange
potential. These calculations indicate that both valence- and core-electron contributions play a role in
determining a lnp(0)/t) ln V. In the signer-Seitz model, a positive sign for t) lnp(0)/a ln V for P-Sn (i.e.,
the sign which agrees with experimental high-pressure Mossbauer isomer shift studies) is obtained only if the
exchange multiplier lies in the range 1.3 & E & 1.5, where ( = 1.5 corresponds to full Slater exchange.
These Wigner-Seitz model calculations indicate a negative sign for 8 lnp(0)/a ln V for Ag, Cd, and In, and
a positive sign for this derivative for Sb, and Te. The sign for Sn depends on $, as indicated.

I. INTRODUCTION

Some years ago the pressure dependence of the
Mossbauer isomer shift was investigated for p-Sn,
an element with a half filled s-p shell. In these
studies by Moiler and Mossbauer' and by
Panyushkin and Voronov, ' P-Sn was found to be-
have in an exceptional way in that the total con-
tact electron density p(0) = ~g(0}( decreases with
increasingpressure, viz, S lnp(0)/S lnV& 0 where V

istheatomic volume. .In contrast, for gold, ' ' an
element with one valence s-p electron (and also
for Fe, Eu, and Ta),' Mossbauer studies showed
the more usual behavior, i.e. , s Inp(0)/s lnV & 0.
For the latter metals, p(0) increases with pres-
sure. Theoretical treatments for iron' and
gold3'4 both show that the magnitude of this in-
crease for these metals can be explained primar-
ily through an approximately inverse volume de-
pendence of the valence-band contact electron
density. This behavior is qualitatively similar to
that of a free-electron gas, where p(0) would have
a simple 1/V dependence. Obviously, the volume
dependence of p(0} in P-Sn is qualitatively the
opposite of that of a free-electron gas.

Rather than viewing the perhaps unusual be-
havior of P-Sn as an isolated case, it may be of
value to examine the systematics of s lnp(0)/
81nV for the rows of the Periodic Table. It is of
particular interest to do this for the rom begin-
ning with silver because the elements Sn-Cs are
all suitable for Mossbauer studies.

In the following, we will write

s lnp(0)y=
8 lnV y

where y is taken at the zero pressure atomic vol-

ume Vo of the element.
We will use the relativistic Wigner-Seitz (WS)

model' to obtain an approximate description of
the systematics of p(0) and of y for the series of
elements Ag through Te. Results will be given
in somewhat greater detail for Sn and Sb than for
the other elements in this series. In the WS
model, compression is simulated4 simply by a
decrease of the WS cell volume, which is the same
as the atomic volume V.

Qur use of the WS model for this discussion of
systematics derives from an earlier treatment of
the pressure dependence of p(0) and of the
Mossbauer isomer shift for Au in the WS model. "
The value of the nuclear size change 6(y') obtained
for '"Au in this earlier work is in agreement with
more recent studies. "

In this earlier work, 4 we found that when a WS
Au atom was compressed from a very low density
V '-0 to the normal density of gold and on to
higher densities, the calculated p(0) went through
a minimum. For gold this minimum occurred at
a very low density compared to that of metallic
gold, and the possible existence of such a mini-
mum did not seem to be accessible to experi-
mental investigation. Such minima have also been
noted previously in calculations of p(0) vs V ' for
hydrogen in the WS model4 and for the 4s state of
iron at the bottom of the band in a modified tight-
binding model.

In our present work, we find that a minimum
occurs in the calculated WS p(0) vs V ' for all of
the elements Ag through Te. These calculations
indicate that there are two noteworthy factors in
the systematics of y with increasing atomic num-
ber from Z =47 to Z =52. The minimum in the
calculated curves for p(0) vs V ' moves toward
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higher density and the zero pressure density V, '
of the elements decreases with increasing Z.
These points will be explored in See. II.

In order to be able to see the trends mentioned
above and to be described below, we make cal-
culations of p(0) over a wide range of reciprocal
atomic volume p ' or, that is, of the density of
an element. In this context the use of the%S
model to study trends may be of value. (Qf course
the free-atom model which is frequently used to
obtain estimates of p(0} does not offer a choice of
atomic volume. ) For very small values of V '
compared to the normal value Vo' of an element,
the concept of crystal structure may not be mean-
ingful; for very high values of V ' this structure
may not be known. Although band-structure effects
are omitted in the WS model, over the range of
V ' considered this model should give a useful
estimate of the wave functions of the core states
and of the valence-band states near the bottom of
the ba,nd. To this extent the WS model may give
a qualitatively correct picture of the true volume
dependence of p(0} and may thus be useful in a
preliminary study of the systematics of y vs
atomic number. Our calculations have been made
on this premise. See also See. V.

A. Wigner-Seitz model

In the WS calculation of p(0} we have used a
computer program4 which treats the atomic
many-body problem in the self-consistent-field
approximation. The Dirae equation is used to
describe the motion of the individual electrons.
The self-consistent potential used is of the
Ha, rtree type, and exchange may be included
approximately in the form of an exchange potential.
The self-consistent calculation of course includes
the core states.

In the WS model, the atoms in the metal are
treated in spherical symmetry. Each electron
state can then be characterized by the principal
quantum number n, by the orbital angular momen-
tum quantum number / of the large component of
the wave function, and by the total angular mo-
mentum quantum number j. We may write the
total electron contact density as

z

p(o) =Q p.„(o), (2)
nlj

where Z is the atomic number of the atoms making
up the metal, and p„„.(0) is the contribution to the
charge density at the nucleus due to the ~~)j shell.
Only ns, &, and nP» electrons will contribute to
p(o).

As Crawford a}nd Schawlow and Mallow et al.'
have observed, a valence s electron will have a

significant amplitude in the inner region of an

atom and will contribute to the screening of the

core states. Valence p and d states will of course
contribute to core screening also. When an atom
is compressed, the change, 6]f,(0)~'/) p, (0)[', for
the core states due to the above screening may
be very small compared to unity. Nevertheless,
6)q, (0))' may be significant compared to 5)pr(0) [

for the valence states. In the present work the
contribution of the core states to y is found to be
of some significance. As will be seen, for the

Ag rom of the Periodic Table, this contribution is
due predominantly to the 4s, ~, electrons and is of
particular interest for Sn. See Sec. III.

B. Numerical treatment

In the present application we make particular
use of four features of the program4: (i) We may
impose a boundary condition on each electron
wave function of the atom such that the large com-
ponent will have zero slope at the WS radius, R~s.
Itws =(3V/4w)'~', where V =V(P} is the volume per
atom at an applied pressure P. The wave func-
tions are normalized within V. (ii) The program4
uses an exchange potential U„(r) which, in atomic
units, is

p(r} is the total electron density at r, and g is a
constant which may be varied in the program.

corresponds to full Slater exchange, &
= 1

corresponds to Kohn-Sham exchange, and g =0
corresponds to the omission of exchange from the
calculation, in which ease we have used the
Hartree approximation. "We give calculations
of p(0) for (=0, l, and';. The qualitative results
which we have obtained are fairly insensitive to
the value of g except in the case of Sn. y is quite
sensitive to g for Sn, and, in the WS model, it is
found to change sign as & is varied. This will be
discussed in Sec. III. (iii} Another feature of the
program which we have utilized is its ability to
converge for electronic configurations other than
that of the ground state. We have obtained solu-
tions for several Sn and Sb valence-state con-
figurations, and, to this degree, we have investi-
gated the effects of crystal structure on p(0) and

y. (iv) In all calculations we have used a nucleus
of finite extent with a charge distribution of the
Fermi shape. 4 The nuclear radius and surface
diffuseness parameters used ranged from 5.1404
and 0.5666 fm, respectively, for Ag to 5.4268
and 0.5666 fm, respectively, for Te. In our
numerical treatment of the %S model, ' the inner-
most grid point was at about 5x 10 ao which is
much less than the nuclear radius. Our values
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of p(0) are the calculated values at the center of
the nucleus.

The calculation was iterated until the total po-
tential and each subshell potential at each of
about 250 grid points were self-consistent to one
part in 10'. Also each subshell eigenvalue was
brought to a self-consistency of at least one part
in 10'

The procedure by which numerical values of,
for example, ap„»(0}/a lnV were obtained is as
follows: the wave-function program was run for
a particular exchange multiplier and electronic
configuration with Rwa = 0.99Rws(VO) and then with

Rw~= 1.01Rwa(VO}, where Rvs(V, ) is the zero-
pressure WS radius. From the p„»(0} thus cal-
culated, the Sp„,~(0)/S lnV—= Ap„»(0)/6 lnV were
evaluated at the zero-pressure WS volume V, .

II. SYSTEMATIC BEHAVIOR OF p {0)vs V FOR THE

ELEMENTS Ag THROUGH Te

In Fig. 1 we show graphs of the Wigner-Seitz
I p(0) —po(0) j/po(0) vs V ~ for the elements Ag
through Te. Here po(0) is the total contact den-
sity of an element, Eq. (2), at the zero-pressure
atomic, or WS volume V, . Table I gives R~s,
V, ', the valence configurations used, and the cal-
culated WS p, (0) for these elements. The curves
shown in Fig. 1 mere calculated with Kohn-Sham
exchange, viz. , with the exchange multiplier
l =1 in Eq. (3).

As may be seen in Fig. 1, there is a minimum
in the total p(0} vs V ' for each element. With in-
creasing atomic number Z this minimum moves
to higher values of V '. Conversely, with in-
creasing Z, the normal reciprocal volume or den-
sity Vp moves to lower values of V

We find that the calculated WS p(0) vs V ' for
Ag is quite similar to that for gold' in that this
calculated minimum is at a very low density com-
pared to the normal density V, ' of the metal. As
in the case of Au, the minimum for Ag is in-
accessible to direct experimental study. However,
with increasing Z, the position of the minimum
and Vp' move toward each other. For p-Sn the
minimum is very nearly at the normal metallic
density Vp', and for Sb and Te the minimun occurs
at a density V ' greater than Vp'. Thus the mini-
mum phenomenon becomes accessible to study
in the sense that for each element a small piece
of the p(0) vs V ' curve is in an observable re-
gion of V '.

In Fig. 1 we have shown results for the total
contact density p(0). This total contact density
may be separated into two parts p(0) = p, (0)+p„(0).
Here, p, (0) is the contact density due to core
sy/ and P, /, electrons. We define the core s j /2

l.5

I

o -0.5 —
Cd

-i.o—
Ag TeSbSnln Cd Ag

2 4 6 8 lp I 2 I 4
V-l ( ~

p-3 pp 3 )

FIG. l. Electron density at the origin vs atomic den-
sity V . Curves are shown for the row of elements:
Ag, Cd, In, Sn, Sb, and Te. All of the curves were
calculated in a relativistic self-consistent-field approxi-
mation using Qligner-Seitz boundary conditions and
Kohn-Sham exchange. These calculated electron den-
sities are shown in terms of the fraction f p(0)- po(Q)]/
po(Q), where p(Q) is the total charge density at the ori-
gin as a function of the atomic density V ' and po(0) is
this charge density at the zero-pressure atomic den-
sity Vo . The valence configurations used and the
values for Vo' and pa{0) are given in Table I. Each
curve in the figure shows a minimum. The minimum for
Ag is at an atomic density V much less than the nor-
mal density Vo for Ag. For Sn, the minimum is at a
value of V close to the normal density Vo' for Sn;
and for Sb and Te, the minima occur at atomic densities
greater than the normal densities. Thus, for this fam-
ily of curves, the sign of the slope evaIuated at Vo
changes with increasing atomic number. This result is
given in more detail in Table I and in Fig. 2.

-1.5
0

and py/2 states as those which do not have a sig-
nificant wave-function amplitude at g„s, i.e.,
g, (Rvs) is near zero. p„(0) is the contact density
due to valence-band electrons, i.e. , to those s and

p electrons which do have a significant amplitude
$„(R~s) at Rwa. This will enable us to speak of
a core contribution and a valence contribution to
ap(0)/a lnV. For the elements Ag through Te the
core contribution is then due to electrons through
the n =4 shell, and the valence-band contribution
is due to 5sy/2 and 5'/2 electrons.

We find then for all of the elements Ag through
Te and for the entire range of V ' covered in
these calculations ap, (0)/a inV&0. The core elec-
trons do not contribute in a direct way to the
minima shown in Fig. 1. Rather for all of these
elements, p, (0) increases with V ' for the range
of V ' studied here.

The minimum phenomenon in the WS calcula-
tions is an aspect of the screened 5s, /, and 5p, /,
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TABLE I. Calculated vo1ume dependence of electron contact density for the elements Ag through Te. Self-consistent
relativistic wave functions were calculated in a Wigner-Seitz approximation with Kohn-Sham exchange {g= 1) for the
specified valence configurations. The zero-pressure Wigner-Seitz radii {&~s)used, corresponding atomic densities
{Vo ), and calculated core tp, ofe{0)l, valence [p&, i/&{0), p&&i/&(0)), and total t p{0)l contact charge densities, along with
their derivatives, are all given in atomic units. The total charge densities are given for other V in Fig. 1, and the
derivatives p = 8 ln p {0)/& lnV are plotted in Fig. 2.

)=1
Configuration

Pd(4d o) core plus

Ag

5si/21 5si/ 5 s i/25p i/2

Sn

5 i/25p 1/2

Te

5 si/25p i/p5p 3/p

R ws (Vo)
Voi (10

pcore {0)
~p core {0)/~ ln V

p 5 s i/2{0)
Bp ~s i/g(0)/& 1n V

p 5&i/2{0)
Bpspi/g(0)/8 lnV

p {0)
8p (0)/8 1nV

y= Blnp(0)/BlnV (10 ')

3.01744
8.689 18

145290.62
—9.55
23.26

—19.69

145313.88
-29.24

-2.012

3.264 10
6.864 43

159118.09
—8.74
42.25

-24.74

159160.34
-33.47

—2.103

3.478 23
5.673 09

174 174.49
—6.11
$4.84

—11.92
0.44

-0.34
174 219.77

-18.37

-1.054

3.51975
5.474 69

190434.62
-4.02
55.24
-0.07
1.03

—0.55
190490.89

-4.64

-0.244

3.652 18
4.900 48

208 210.38
—2.94
73.70
19.54
1.27

-0.27
208 28 5.35

17.04

0.818

3.796 80
4.36156

227 314.95
-2.35

102.40
34.58
1.71
0.06

227 419.05
32.29

1.420

electrons for this series of elements. There is a
minimum in both the WS p„,&,(0) and the p»»(0)
(for those elements having 5P,&, electrons) vs V '
for all of the elements, Ag through Te fe.g. ,
p„»(0) for Sn in Fig. 3]. But since
p», ~,(0)«p~, ~,(0), the minimum phenomena are
predominantly due to screened 5sy/ electrons. In the
case of Sn, however, ap»»(0)/slnV may be of
some significance. See Sec. III.

In Fig. 2 we give a graph of y vs atomic number
for ( = 1 and& ='-, . yisless thanzerofor Ag, Cd, and

In, is approximately zero for Sn, and is greater than
zero for Sb and Te. y is sensitive both to atomic num-
ber and to the value of the exchange multiplier g.

From Fig. 2 we see that, for & =1 or g
='

—, , Sn,
which has a half-filled valence shell, plays a
pivotal role in that y-0. For g =1, y--2.4x10 '.
This may be compared to the change of y, say,
from In to Sn or from Sn to Sb, Ay/aZ- 10x10 '.
Thus, charging or screening effects, relatively
small in comparison with a change of atomic num-
ber, may be able to change the sign of y for Sn.
Mossbauer isomer shift measurements give y &0
for Sn in Mg, Sn, but y&0 for P-Sn. '~ Alloying
and crystal structure thus do have an effect' on
the experimental or true sign of y. The sign of y
for Sn in Mg, Sn or for P-Sn is related to the
screening of the 5s, /, electrons in these materials,
as Moiler and Mossbauer observed. ' It also seems
reasonable to suggest, on the basis of the above
remarks, that the change of the sign of y between
p-Sn and Mg, Sn is related to the fact that Sn is
pivotal, i.e., that as a function of atomic number

y is close to zero for Sn.

20
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FIG. 2. Volume dependence of contact charge density
vs atomic number. The volume dependence of the elec-
tron density p(0) at the origin (nucleus) is expressed as
y= g lnp(0)/g lnV and is evaluated at the zero-pressure
atomic volume Vo. The points are calculated in a
relativistic self-consistent-field approximation using
Wigner-Seitz boundary conditions. Two curves are
shown, one using full Slater exchange (&=1.5) and one
using Kohn-Sham exchange (/=1.0). The value of y for
Ag [and also for gold (Ref. 4)] is nearly independent of
the exchange multiplier. The other elements have y(g
=1.5) &y(&=1.0). y crosses zero in the vicinity of Sn.
Thus effects smaller than a change of Z, such as solid
state or chemical effects, may change the sign of y for
Sn. For the elements of this series with Z& 50, y is
negative, and for the elements with Z & 50, y is positive.
y is near zero for the half filled valence shell of Sn.
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In (Sec. III) we investigate the sensitivity of the
sign of y to the value of g and to atomic configura-
tion for Sn and Sb, and we calculate the cor-
responding pressure dependence of the Mossbauer
isomer shifts for these elements. A comparison
with experiment is made for Sn.

I

~-Free atom
(( = 3/2)

III. PRESSURE DEPENDENCE OF THE MOSSBAUER ISOMER

SHIFTS FOR Sn AND Sb

In a customary notation, ' the volume derivative
of the Mossbauer isomer shift S may be given by

= ny p(0}= a P (4
IO
C3

where the proportionality constant z depends only
on nucLear parameters of the Mossbauer nucleus.
For S in mm/sec and p(0) in atomic units, a("9Sn)
=0.093+0.010ao mm/sec for tin~ and n(' 'Sb)
= -0.28 + 0.09a', mm/sec for antimony. " o ("9Sn)
and n('~'Sb) are of opposite sign.

A. Tin

In Fig. 3 we show the calculated effect of corn-
pression on that part of the contact density for
Sn due only to the two 5sy/2 valence electrons in
the 5s', ~, 5p', &, configuration which is assumed
here. Two curves are shown, one calculated with
full Slater exchange, g =',—,and one without ex-
change9, g =0. We see the following: (a) The mag-
nitude of p„,&,(0} increases as g is changed from
0 to ',—.(b) The minimum in p„,&,(0) vs V '
occurs in each curve near the density Pp cor-
responding to P-Sn. (c) The position of the mini-
mum is affected by the value of t. (d) For the
curve with f ='

—, and at the normal density of P-Sn,
p„~&,(0) decreases when the density of the solid
is increased. Thus for g =';, 8p~, @(0)/8 lnV &0.
It thus has the same sign as the total y [Eq. (4}],
which is measured" for P-Sn by the Mossbauer
method, i.e., 8$/81nV&0.

In Table II we give calculated values for contact
densities and their volume dependences for p-Sn.
The calculations were made for V= V,(P-Sn), for
three valence configurations, both with and without
exchange. For a Ssyp 5pg/2 valence configuration,
for example, 8p„,@(0)/8 lnV is negative' for g =0.
It is approximately zero at I' = 1 (Kohn-Sham ex-
change}, and it is positive at I' =',—(full Slater ex-
change). 8p, (0)/8 lnV is negative with a value of
about -3 to -4ap for all of the valence configura-
tions studied and for all values for the exchange
parameter in the range 0 ~ g ~'

—,. Because of this
negative contribution from the core electrons, g
must be greater than -1.3 for the total y [Eq. (1)]
to be greater than zero in the WS model.

Figure 4 shows the rather delicate balance found

45—

"O 2

a-Sn P-Sn
I ~i i~ I I I

4 6 8 IO 12

V I (IO ~ao ~)

FIG. 3. Calculated 5s&g2 charge density p5gg/2(0) at
the nucleus for two 5s &/2 electrons in ' Sn vs metallic
density. The metallic density, expressed as reciprocal
atomic volume, covers a range which includes the den-
sity of P-Sn, as indicated. p&~&g2(0) is also shown for
the free atom. Two curves are shown. The upper curve
is for the relativistic Hartree-Slater atom (&= ~) with
Wigner-Seitz boundary conditions (Ref. 4). [The free
atom has its usual boundary conditions, and the
Slater-Latter approximation is used (Ref. 4).l The
lower curve is for the relativistic Hartree-Wigner-
Seitz atom (g= 0). Both curves exhibit a minimum in
the region of metallic density of P-Sn. The valence
configuration used is 5s~y25p&g2. At the density of
P-Sn, Q p)~gy2 (0)/glnV is found to be positive for
&= ~ in agreement with experiment.

in the WS model between the volume dependences
of the core, the 5s, ~, and the 5p, ~ contact den-
sities over the range of volume where P-Sn has
been studied experimentally under pressure. Note
that even the small change in the 5p, &, contact den-
sity is a, perceptible fraction of the change in p(0)
with 8,V/V because y is near zero (Fig. 2).

In Fig. 4 we also show the experimental result
obtained by Moiler and Mossbauer' and by
Panyushkin and Voronov. ' The experimental
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TABLE II. Calculated volume dependence of electron contact density for P-Sn. Self-consistent relativistic wave

functions were calculated in a Wigner-Seitz approximation with full Slater exchange (g= &), Kohn-Sham exchange g =1},
and in the Hartree approximation (&=0). Results are given for three valence configurations. The core [p««(0)], val-
ence [p„(0)= p»~/~(0) + p5&~/&(0)), and total [p(0)) contact charge densities and their derivatives, all shown in atomic
units, are given for atoms at a zero-pressure %igner-Seitz radius of 3.5120ao.

Configuration
Pd(4d 0) core plus

5 s i/25p i/~ 5 s g/p5p g/g5p3/
1

0

5 s g/25p3/2

p.. (0)

Bp00f0 (0)/9 ln V

p 5s 1/2(0)

&p»~/~(0)/8 lnI/'

—3a77

47.44

—11.43

—4.04

55.24

-0.38

—3.39

61.53

8.45

-3.24

24.34

—4.68

—2.87

31.34

5.59

—3.66

47.75

—11.06

—3.28

6 1.80

9.05

190 603.42 190434.65 191750.54 190 603.48 191750.73 190603.38 191750.62

p 5p i/~(0)

ap»«, (0)/O lnV

p„(0)

8p (0)/lnV

0.98

-0.78

48.42

-12.21

1.03

—0.56

56.28

—0.93

—0.43

62.64

1.00

—0.75

25.34

—5.43

1.13

—0.39

32.47 47.75

-11.06

61.80

9.05

p (0)

&p(0)/8 lnV -15.97 —4.97 4.63 —8.67

190 651.84 190490.93 191813.18 190 628.82

2.33 —14.72

191783.20 190651.13 191812.42

I
I

I
I

I

0.6 —--- /=0 I TOTAL
I O'ITHOUT

I EXCHANG
04—

0.2—

' oo Q

C)
~0.2
a

-0,6—
EXP E.R I ME NTAL

RESULT
I

-0.8—

0.04 —Q.Q4 -0.08 -O.I2

LV/V,
FIG. 4. Relativistic el.ectron contact densities at the

nucleus in "SSn vs metallic density. Both coordinates
are expanded about the values for P-Sn at zero pres-
sure. Curves are shown for the total charge density at
the nucleus both with Slater exchange (&= ~, solid curve)
and without exchange. (g= 0, dashed curve). The valence
configuration used is 5s~/25p&/2. For Slater exchange,
the core, 5s&/2, and 5p&/2 contributions to the total
show a partial cancellation of effects. The experimental
values (Refs. 1 and 2) are also shown.

isomer shift data are given in the literature"
as a function of pressure in graphical form. We
have converted pressure to volume using the avail-
able compressibility data" for P-Sn and have made
a straight-line fit to the six available experimental
data points of S vs V. This yielded aS/a lnV
=+1.1 mm/sec. We then calculated ap(0)/a lnV
from Eq. (4) using the calibration constant given
above (o =+0.093a~o mm/sec). This yielded a
measured a p(0)/a in V =+12a, ' which is the meas-
ured slope shown in Fig. 4. We have estimated
the uncertainty in this experimental slope to be
about +3a, ' due to uncertainties in z and in
aS/a lnV. This uncertainty is indicated in Fig. 4
by the crosshatched region.

Within the WS model when ful. l Slater exchange
(g =',—) is included, we obtain ap(0)/a jnV=
+ 2.2 to+ 5.Va, ' depending on configuration, while
experiment "yields +12+3a, '. Thus with (=,'—,
the WS model calculation agrees with experiment
as to sign but the quantitative agreement is poor.

As we have noted, in order to obtain y &0 for
tin, in theWS model, the exchange multiplier g
must be greater than about 1.3. A smaller value
for g closer to 1.0 may perhaps be more realistic
physically. The WS model is an approximate
treatment, and the larger value of ( & 1.3 re-
quired here may be due to this approximate nature
of the model. These WS calculations do indicate,
however, that ap(0)/a lnV for Sn is quite sensitive
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TABLE III. Calculated volume dependence of electron contact density for Sb. Self-consistent relativistic wave func-
tions were calculated in a Wigner-Seitz approximation with fuO Slater exchange g'= &) and in the Hartree approximation
g=0). Results are given for three valence configurations. The core [p„(0)],valence [p„(0)= ps f/$(0) + pspi/g(0)],
and total [p(0)] contact charge densities and their derivatives, all shown in atomic units, are given for atoms at a zero-
pressure %'igner-Seitz radius of 3.651a 0.

Con6guration
Pd(4d 0) core plus

5~ 1/~GP i/RGP3/~
i

5s1/25p f/25p3/

0

Gs i/25P i/RGP 3/ 0

pcore (0)

Bp,.„(0)/a b V

ps s i/~(0)

epssi/p(0)/8 lnv

pspi/2(0)

Bp s& i/~(0) /8 ln V'

p, (0)

&p, (0)/8lnV

p(0)

Bp(0)/a ln V

208 380.64

-1.65

61.14

7.65

1.12

-0.53

62.26

208 442.90

209 632.10

-2.49

84.13

29.55

1.42

-0.08

85.55

29.47

209 717.65

26.97

208 381.00

—1.10

31.83

6.04

1.16

-0.47

32.98

5.57

208 413.98

4.47

209 632.60

-1.98

43.36

17.02

1.47

0.01

44.83

17.03

209 677.42

15.05

208 380.71

-1.35

61.22

8.80

0.57

—0.26

61.79

8.54

208 442.50

7.19

209632.19

—2.44

84.46

30.10

0.72

—0.04

85,18

30.07

209 717.37

27.63

to the treatment of exchange and correlation ef-
fects.

8. Antimony

Detailed WS calculations analogous to those for
Sn have been made for Sb. Some results are
listed in Table III for three valence configurations,
and for' g=0 and g='—, . For Sb, ap(0)/a lnV is
positive for al.l of these configurations and for the
complete range of g values. Core electron effects
are slightly smaller than those found for Sn.
These calculations indicate that, like in tin, the
charge density at the Sb nucleus will decrease
when pressure is applied to Sb metal.

Based on the resul, ts given in Table III we may
make an estimate of the volume dependence of
the 's'Sb isomer shift in Sb. Using Eq. (4) and the
calibration constant given earlier (n = -0.28
+ 0.09a', mm/sec) we find aS/a lnV to lie in the
range from -8 to -8 mm/sec.

IV. DISCUSSION OF THE MINIMUM IN p (0) vs V ~

The essential result of this paper is related to
a minimum in p(0) vs V '. In the ease of hydrogen
where the atom has only one electron, the occur-
rence of the above minimum in p(0) as a function
of V ' may be viewed as an aspect of the descrip-
tion of metallic hydrogen in terms of the WS
boundary condition. ' For elements with a higher
atomic number where there are many electrons
per atom, both screening effects and the above
effect of the WS boundary condition may contribute

to the volume dependence of p(0). We may see
some aspects of this screening by an examination
of the wave functions, Fig. 5, for example.

In Fig. 5, 5s», and 5'/2 electron densities are

x 8—
FO

' O
D

-Sn)

I

3.53.02.0I .0 l.5 2.5
r (ao)

FIG. 5. The effect of compression on the valence
electrons in p-Sn. The radial charge densities are
shown for a Gsi/2 and a 5pi/2 electron for 95gner-
Seitz radii (R~) of 3.41go and 3.58ao. The valence
configuration used is Gs i/2 Gp i/2. The compressed
functions are not simply renormalized versions of the
lower-pressure functions but have the positions of their
outer maxima shifted. Upon compression, both p s g f/ p(r)
and ps&&/2{r) increase for r-R, . The increase in

p s& i/2(r) extends inward to a smaller radius than does
the increase in p&i/2{r). Also note that since
ps& i/2(R, ) & p»/2(R, ), more Gpi/2 charge must be
displaced by compression.
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shown for Sn for &='; and for two atomic volumes.

These volumes are in the region of V ' in Fig. 3,
where p„,&,(0} decreases as the atomic density
V ' is increased. Upon compression, both p„,&(y}
and p», ~,(r) increase for r R-~, but the increase
in p», g, (r} extends inward to a smaller radius
than does the increase in p„,~(r). Thus there
is a tendency toward an enhanced shielding of
the 5sy/2 electron and a corresponding tendency
for p„,&,(0) to decrease as the atom is com-
pressed. If the Sn atom is compressed enough,
however, the direct increase in p„,&,(0) due to
renormalization of the 5s» wave function dom-

inates both the effect of shielding by the 5P, ~,
electrons and the effect of the WS boundary con-
dition. Here p„,&,(0) will increase as V ' is in-
creased. As may be seen in Table II, 5P, &, elec-
trons have a screening effect similar to that of
5p, &, electrons.

V. SUMMARY

The systematics of the pressure dependence of
the electron density at the nucleus have been in-
vestigated in an approximate way through the use
of the WS model and results are given in some
detail for the elements Ag through Te. It is found
that for these elements, as a general trend y,
Eq. (I), increases with both atomic number and
with the exchange multiplier g, Eq. (3). In the
vicinity of Sn, y passes through zero (see Fig.
2). y is found to be predominantly due to
the 5s,» electrons, and to the screening of
these 5s,~, electrons by other electrons in the
valence shell. ' Contributions to y due to the core

and 5p, &, electrons should not be n|.'glected. For
tin in the 8'S model with g &-1.3 our calculated
y &0 is in qualitative agreement with experiment.
For Sb and Te, the model gives y&0 independent
of &, a behavior like that found experimentally for
P -Sn.

We have made preliminary Mossbauer measure-
ments" of sp(0)/s lnV for Sb. We find that for Sb,
p(0) decreases when the metal is compressed.
This result is in accord with the predictions of
the above WS model and is similar to the behavior
found experimentally for Sn."

It is suggested that it may be of value to meas-
ure y by the Mossbauer method for Te, I, Xe,
and Cs. Te and I have crystal structures which
are molecular rather than metallic, and Xe is a
Van der Waals solid. Thus, for Te-Xe, the WS

model may give but a very poor value for y. We
have calculated y for these elements and also for
Cs in theWS model, but for the above reason we
do not give detailed results here for the elements
beyond Te. These results may be of interest,
however, for they suggest that with increasing
atomic number y will pass through a maximum
positive value near Te and then decrease to pass
through zero near Xe. y will again have a nega-
tive value at Cs.

We note that in the WS model, y -0 for both Sn
and Xe, which in our WS calculations were taken
to have a half filled and a full s-p shell.

The sensitivity of y to (, particularly for Sn,
suggests that the further investigation of this
derivative may be of value in the theoretical
study of exchange and correlation effects in solids.
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